
Journal of Modern Applied Statistical
Methods

Volume 9 | Issue 1 Article 4

5-1-2010

The Influence of Data Generation on Simulation
Study Results: Tests of Mean Differences
Tim Moses
Educational Testing Service, Princeton, NJ, tmoses@ets.org

Alan Klockars
University of Washington, klockars@u.washington.edu

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Moses, Tim and Klockars, Alan (2010) "The Influence of Data Generation on Simulation Study Results: Tests of Mean Differences,"
Journal of Modern Applied Statistical Methods: Vol. 9 : Iss. 1 , Article 4.
DOI: 10.22237/jmasm/1272686580

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9/iss1/4?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2010 JMASM, Inc. 
May 2010, Vol. 9, No. 1, 15-27                                                                                                                                 1538 – 9472/10/$95.00 

15 
 

REGULAR ARTICLES 
The Influence of Data Generation on Simulation Study Results: 

Tests of Mean Differences 
 

Tim Moses Alan Klockars 
Educational Testing Service, 

Princeton, NJ 
University of Washington 

 
 
Type I error and power of the standard independent samples t-test were compared with the trimmed and 
Winsorized t-test with respect to continuous distributions and various discrete distributions known to 
occur in applied data. The continuous and discrete distributions were generated with similar levels of 
skew and kurtosis but the discrete distributions had a variety of structural features not reflected in the 
continuous distributions. The results showed that the Type I error rates of the t-tests were not seriously 
affected, but the power rate of the trimmed and Winsorized t-test varied greatly across the considered 
distributions. 
 
Key words: Nonnormality, independent samples t-test, trimming, Winsorizing. 
 
 

Introduction 
Monte Carlo simulation studies are commonly 
used to assess the performance of statistical 
strategies under defined and controlled 
conditions. Often the question of interest 
involves the performance of one or more 
strategies under violations of the assumptions 
associated with the mathematical model on 
which a procedure is based. While simulation 
studies are informative, their conditions and 
results may be generated in ways that are not 
relevant for applied research settings. Of 
particular concern is the accuracy of simulation 
studies’ recommendations about the impact of 
assumption   violations   in   continuous    and  
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unbounded distributions for applied distributions 
that are primarily discrete and bounded. 

A number of traditional statistical 
procedures assume a normal distribution for the 
underlying population from which scores were 
drawn (e.g., t-test, ANOVA). In simulation 
studies that evaluate the robustness of statistical 
significance tests of mean differences, 
nonnormality is usually created in smooth, 
continuous and theoretically unbounded 
distributions. Several methods exist for 
transforming normally distributed random 
numbers into nonnormal distributions, including 
Hoaglin’s (1985) g and h method, Fleishman’s 
(1978) power method, and the use of Chi-square 
distributions with varying degrees of freedom.  

The nonnormality generated with these 
methods can primarily be defined in terms of 
skew and kurtosis. In contrast to simulated data, 
applied distributions of psychometric tests and 
achievement tests are usually discrete with 
bounded score ranges and are noted to have 
features such as lumps, bimodalities, or popular, 
unpopular or impossible scores (Holland & 
Thayer, 2000; Micceri, 1989). While these 
discrete distributions can be described in terms 
of their skew and kurtosis, a complete 
description would require more attention to their 
structural features. Continuous and discrete 
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distributions with similar skew and kurtosis can 
reflect very different shapes. 

Simulation studies that have evaluated 
significance tests of mean differences for 
nonnormal continuous distributions have 
produced different recommendations than 
simulation studies that consider nonnormal 
discrete distributions. Studies based on 
nonnormal continuous distributions have 
recommended that standard tests of mean 
differences be abandoned in favor of robust tests 
of trimmed mean differences (Keselman, 
Othman, Wilcox & Fradette, 2004; Lix & 
Keselman, 1998). In contrast, Sawilowsky and 
Blair (1992) used a variety of discrete 
distributions as population distributions and 
found that the standard t-test’s Type I error rate 
was relatively unaffected by their populations. 

The interest of this study is to 
investigate how the data generation method and 
population distributions used in a simulation 
study influence the results and recommendations 
of statistical strategies. Data were generated 
from the continuous distributions commonly 
considered in simulation studies and from 
various discrete and bounded distributions noted 
to occur in applied data (Holland & Thayer, 
2000; Micceri, 1989; Sawilowsky, & Blair, 
1992). The continuous and discrete distributions 
were generated with similar levels of skew and 
kurtosis but the discrete distributions had 
structural features not reflected in the continuous 
distributions. 

Type I error and power were assessed in 
the standard independent samples t-test and one 
of its most recommended alternatives for 
nonnormal data, Yuen’s (1974) trimmed and 
Winsorized t-test (Keselman, et al., 2004). In 
addition, this article considers the relevance of 
simulation studies’ recommendations of 
statistical strategies for applied data. 
 

Methodology 
The objective of this study was to compare the 
Type I error and power rates for the standard t-
test and the trimmed and Winsorized t-test when 
used to compare means in discrete distributions 
noted to occur in applied data and in continuous 
distributions of equal skew and kurtosis 
typically considered in simulation studies. The 
Type I error and power rates were computed 

from 10,000 replications where in each 
replication two random samples of size 30 were 
drawn from one of nine population distributions 
and the groups’ means were compared using the 
standard t-test and the trimmed and Winsorized 
t-test. The nine population distributions included 
one continuous distribution and three discrete 
distributions of symmetric shape and one 
continuous distribution and four discrete 
distributions of asymmetric shape. 
 
Population Distributions 

The population distributions reflected 
two basic shapes, asymmetric and symmetric. 
The two shapes were modeled with bounded and 
discrete distributions and one accompanying 
continuous distribution. The asymmetric shape 
is skewed (approximately −1.75) and leptokurtic 
(kurtosis approximately 3.75). The asymmetric 
continuous and unbounded population 
distribution is shown in Figure 1. One of the 
asymmetric discrete distributions is smooth 
(Figure 2), and the others have structures such as 
teeth (Figure 3), a lump at score zero (Figure 4) 
and favorite scores (Figure 5). The means, 
standard deviations, skews and kurtosis of these 
five distributions are summarized in Table 1. 

The symmetric distributions included 
three discrete and bounded distributions and one 
continuous and unbounded distribution (Table 2, 
Figures 6-9). All four symmetric distributions 
have skews of 0. The symmetric continuous 
distribution is shown in Figure 6. One of the 
symmetric discrete distributions is smooth 
(Figure 7); the others have peaks (Figure 8) and 
bimodality (Figure 9). 
 
Data Generation Methods 

The first data generation method 
produced data (i.e., Y scores for two groups) that 
reflected the discreteness and shapes of the 
discrete distributions where only the integer 
scores in defined score ranges were possible and 
where each possible score had a corresponding 
population probability (Figures 2-5 & 7-9). 
Samples of 30 scores were randomly drawn 
from these population distributions with the 
scores’ population probabilities defining the 
probabilities of those scores appearing in the 
sample datasets. 
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Table 1: Summary Statistics for Four 
Negatively Skewed Discrete Distributions 

and One Continuous Distribution 

Distribution Mean 
Std. 
Dev. 

Skew Kurtosis

Continuous 15.00 4.00 -1.75 3.75 

Smooth & 
Discrete 

15.73 2.90 -1.85 3.88 

Teeth 14.46 3.45 -1.81 3.94 

Lump at 
Zero 

12.08 3.79 -1.97 3.85 

Favorite 
Scores 

17.36 4.13 -1.92 3.73 

 

Figure 1: Asymmetric Continuous Distribution 

 
 
 

Figure 2: Asymmetric Smooth & Discrete Distribution 
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Table 2: Summary Statistics for Three 
Symmetric Discrete Distributions 
and One Continuous Distribution 

Distribution Mean 
Std. 
Dev. 

Skew Kurtosis

Continuous 15.00 4.00 0.00 0.00 

Smooth & 
Discrete 

15.00 4.00 0.00 -0.15 

7 Peaks 10.50 4.88 0.00 0.06 

Bimodal 15.00 6.42 0.00 -1.18 

 



DATA GENERATION ON SIMULATION STUDIES: TESTS OF MEAN DIFFERENCES 

18 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Asymmetric Teeth Distribution 

 
 
 

Figure 4: Asymmetric Lump at Zero Distribution 

 
 
 

Figure 5: Asymmetric Favorite Scores Distribution 
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Figure 6: Symmetric Continuous Distribution 

 
 
 

Figure 7: Symmetric Smooth & Discrete Distribution 

 
 
 

Figure 8: Symmetric 7 Peaks Distribution 
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The second data generation method was 
a continuous data generation method. The 
continuous data generation method used in this 
study is known as Fleishman’s (1978) power 
method. Sample datasets of 30 standard normal 
deviates (Z) were generated and these normal 
deviates were transformed into samples from the 
desired population distributions, 
 

2 3( )Y a bZ cZ dZμ σ= + + + + .       (1) 
 
Sets of μ , σ , a, b, c, and d values were used to 
produce Y values that had means, standard 
deviations, skews and kurtoses that reflected the 
symmetric and asymmetric discrete 
distributions. 

For the Asymmetric Continuous 
distribution (Figure 1), μ  and σ  were 15 and 
4, respectively, and constants of a, b, c, and d 
values of 0.3995, 0.9297, −0.3995 and −0.0365 
were used to achieve the asymmetry and non-
normality (skew = −1.75; kurtosis =3.75). For 
the Symmetric Continuous distribution (Figure 
6), μ and σ were 15 and 4, and a, b, c, and d 
values of 0, 1, 0 and 0 were used to achieve the 
symmetry and normality (skew = 0; kurtosis = 
0). 
 
Statistical Strategies for Testing Mean 
Differences 

Two statistical tests were considered for 
evaluating the mean differences in Y for groups j 
= 1 and 2. The standard independent samples t- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test assuming homogeneous variances is defined 
as, 
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used to compute the pooled variance, 2s , 
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The statistical significance of Standardt  is 

determined by computing its percentile on a t 
distribution with 1 2 2n n+ −  degrees of 

freedom. 
Yuen’s (1974) trimmed and Winsorized 

t-test was also considered. First the Y scores are 
ordered within each treatment group, 

Figure 9: Symmetric Bimodal Distribution 
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1, 2, ,...
jj j n jY Y Y≤ ≤ ≤ , j jg nγ=  is then defined 

where γ  indicates the proportion of individuals 

trimmed in each tail of the distribution (γ  = 0.1 
& 0.2 in this study) and the effective sample size 
for group j is 2j j jh n g= − . The trimmed mean 

for group j is computed as, 
 

., ,
1

1 j j
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The data for group j are Winsorized as, 
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and the Winsorized data are used to compute 
group j’s Winsorized mean, 
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1
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and variance, 
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Finally, the t-test for comparing groups’ 

trimmed means is computed as, 
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The statistical significance of the trimWinsorizedt  

statistic is determined by computing its 
percentile on a t distribution with 
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degrees of freedom. 

Both the standard and the trimmed and 
Winsorized t-tests were implemented as two-
tailed significance tests with nominal Type I 
error rates of 0.05. The trimmed and Winsorized 
t-test was based on symmetric trimming and 
Winsorizing of 10% and 20% of the most 
extreme lowest and highest observations of the 
two groups’ Y distributions. 
 
Type I Error and Power Evaluations 

The standard and trimmed and 
Winsorized t-tests were used to evaluate the 
statistical significance of the differences in 
means of two groups whose scores were 
generated as samples from one of the nine 
population distributions. The t-tests were 
evaluated with respect to their Type I error 
(where the population difference in groups’ 
means was zero) and power (where the 
population difference in groups’ means was not 
zero).  

All t-tests’ Type I error and power rates 
were rates at which the t-tests indicated that the 
groups’ mean differences were statistically 
significant across 10,000 replications (i.e., 
10,000 statistical significance tests of groups’ 
mean differences). The t-tests’ Type I error rates 
were computed in conditions where the sample 
datasets for the two groups were drawn from one 
population distribution and were not altered 
prior to their analyses with the t-tests. The 
robustness of the t-tests’ Type I error rates were 
considered with respect to two criteria, the Type 
I error range defined as ±2 standard errors of the 
nominal 0.05 rate for a simulation study based 
on 10,000 replications (i.e., 

(0.05)(0.95)
0.05 2 0.0456 to 0.0544),

10,000
= ± =

and a wider robustness criterion proposed by 
Bradley (= 0.025 to 0.075, 1978). The t-tests’ 
power rates were computed in the simulated 
conditions where the sample datasets for the two 
groups were drawn from one population 
distribution and then 1/2 of the population 
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distribution’s standard deviation was added to 
one of the groups’ scores. 
 

Results 
Type I Error 

Table 3 presents the t-tests’ Type I error 
rates across this study’s nine population 
distributions. Comparisons of the standard and 
trimmed and Winsorized t-tests for the two 
continuous distributions pertain to the t-test 
evaluations of interest in most simulation 
studies. Comparisons of the t-tests across the 
discrete distributions are unconsidered in most 
simulation studies. 

The Type I error rates of the three t-tests 
across all population distributions were within 
the 0.025 to 0.075 range defined by Bradley’s 
(1978) criterion, but several fell outside of the 
±2 standard error range (0.0456 to 0.0544). The 
nonrobust Type I error rates were conservative 
(less than 0.05) rather than the liberal (greater 
than 0.05) Type I error rates that would prompt 
the greatest concern of the t-tests’ robustness. 
The trimmed and Winsorized t-test had more 
nonrobust, conservative Type I error rates than 
the standard t-test across the continuous and 
discrete distributions. 

The extent of trimming had distribution-
dependent influences on Type I error, where 
20% trimming versus 10% trimming reduced 
Type I error for some distributions (i.e., the 
Asymmetric Continuous, Asymmetric Smooth 
& Discrete, and the Symmetric 7 Peaks 
distributions) and increased Type I error for 
other distributions (i.e., the Asymmetric Favorite 
Scores, Asymmetric Lump at Zero, Asymmetric 
Teeth, Symmetric Continuous, Symmetric 
Smooth & Discrete and the Symmetric Bimodal 
distributions). 
 
Power 

Table 4 presents the t-tests’ power rates 
across this study’s nine population distributions. 
The t-tests’ power rates were most clearly 
affected by whether the distributions were 
symmetric or asymmetric. For the asymmetric 
distributions, the trimmed and Winsorized t-test 
was more powerful than the standard t-test. The 
greater power of the trimmed and Winsorized t-
test held across the asymmetric continuous and 
asymmetric discrete distributions, and was 

especially apparent in the Asymmetric Teeth and 
Asymmetric Lump at Zero distributions. For the 
Asymmetric Teeth and Asymmetric Lump at 
Zero distributions, 20% trimming resulted in 
increased power relative to 10% trimming. For 
most of the symmetric distributions, the trimmed 
and Winsorized t-test was less powerful than the 
standard t-test. For all but the Symmetric 7 
Peaks distribution, 20% trimming reduced 
power relative to 10% trimming. 
 

Conclusion 
In simulation research considerable attention has 
been devoted to the effects of nonnormality on 
the accuracy of statistical significance tests for 
groups’ mean differences (Glass, Peckham & 
Saunders, 1972; Keselman, et al., 2004; Lix, & 
Keselman, 1998; Lix, Keselman & Keselman, 
1996). In this research nonnormality is 
predominantly characterized in terms of the 
level of skew and kurtosis of continuous and 
theoretically unbounded distributions.  

Recent results and proposals from 
simulation research have suggested that standard 
significance tests should be abandoned in favor 
of alternative significance tests that are designed 
to be robust to nonnormality (Lix, Keselman & 
Keselman, 1996; Wilcox, 1995). However, a 
somewhat unique simulation study found that 
the standard t-test can be quite robust with 
respect to the types of nonnormality noted to 
occur in real world distributions of psychometric 
and achievement tests, where score ranges are 
discrete and bounded and where nonnormality 
cannot be completely characterized with respect 
to skew and kurtosis (Sawilowsky & Blair, 
1992). This study was designed to reconsider the 
Type I error and power of standard and trimmed 
and Winsorized t-tests of mean differences with 
respect to the types of distributions considered in 
the majority of simulation studies and the types 
of distributions noted to occur in applied 
psychometric and achievement test data. 

In terms of Type I error, the results 
show that the standard and trimmed and 
Winsorized t-tests did not exhibit extreme lack 
of robustness for any of the considered 
distributions. Type I error rates obtained for the 
continuous distributions considered in 
simulation studies were reasonably 
representative of the Type I error rates obtained  
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Table 3: Type I Error Results 

Symmetry Distribution 
Standard 

t-test 

Trimmed & 
Winsorized t-test 
(10% trimming) 

Trimmed & 
Winsorized t-test 
(20% trimming) 

Asymmetric 

Continuous 0.0424* 0.0431* 0.0393* 

Favorite Scores 0.0454* 0.0360* 0.0502 

Lump at Zero 0.0476 0.0333* 0.0460 

Smooth & Discrete 0.0471 0.0435* 0.0431* 

Teeth 0.0473 0.0364* 0.0455* 

Symmetric 

Continuous 0.0447* 0.0450* 0.0452* 

7 Peaks 0.0493 0.0451* 0.0379* 

Smooth & Discrete 0.0494 0.0469 0.0498 

Bimodal 0.0478 0.0477 0.0495 

*The Type I error rate is outside of the +/- 2 standard error range (0.0456 to 0.0544) 
 
 
 

Table 4: Power Results 

Symmetry Distribution 
Standard 

t-test 

Trimmed & 
Winsorized t-test 
(10% trimming) 

Trimmed & 
Winsorized t-test 
(20% trimming) 

Asymmetric 

Continuous 0.4910 0.5241 0.5135 

Favorite Scores 0.5001 0.6144 0.5012 

Lump at Zero 0.4980 0.6698 0.7437 

Smooth & Discrete 0.5014 0.5352 0.5254 

Teeth 0.5030 0.6511 0.7543 

Symmetric 

Continuous 0.4810 0.4527 0.4213 

7 Peaks 0.4756 0.4590 0.5849 

Smooth & Discrete 0.4813 0.4391 0.4104 

Bimodal 0.4746 0.3805 0.2813 
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from different types of discrete distributions. 
The Type I error rates of the t-tests were more 
likely to be slightly conservative rather than 
liberal. The trimmed and Winsorized t-test had a 
Type I error that was usually more conservative 
than that of the standard t-test. 

This study’s power results were more 
extreme than the Type I error results, and varied 
by the type of t-test, by whether the population 
distribution was symmetric or asymmetric, and 
by the specific features of the population 
distribution. To assess the power results in more 
detail, this study’s power simulations were re-
run and analyzed with respect to issues such as 
the expected mean differences in the samples, 
the standard error of the mean differences in the 
samples, and the accuracy of the estimated 
standard error of the mean differences. To 
simplify the analyses, all of the simulated data 
were transformed so that all population standard 
deviations were four, all population mean 
differences were two and the standard errors of 
these population untrimmed mean differences 
were about 1.03 (given the group sample sizes of 
30). The score transformations had negligible 
effects on the power rates reported in Table 4 
and no effect on the discreteness and structures 
of the distributions. 

The results of the re-run power analyses 
are presented in Table 5, where the 27 power 
rates corresponding to the nine population 
distributions and three t-tests are sorted from 
highest to lowest. Along with the power rates, 
the standard errors of the mean differences are 
shown (i.e., the standard deviation of the 
differences in the means evaluated by the t-tests 
across the 10,000 replications of the 
simulations). These 27 standard errors correlated 
−0.97 with the 27 power rates and provide a 
useful basis for understanding how power was 
affected by the population distributions and t-
tests considered in this study. The major power 
results can be described as follows, 
 
• Power was highest for the distributions and 

t-tests where the standard error of mean 
differences was lowest. Power was lowest 
for the distributions and t-tests where the 
standard error of mean differences was 
highest.  

• The trimmed and Winsorized t-test had high 
power and a low standard error when used 
with all of the asymmetric distributions. The 
trimmed and Winsorized t-test had low 
power and a high standard error when used 
with all of the symmetric distributions 
except for the Symmetric 7 Peaks 
distribution.  

• The extent of trimming had mixed results, in 
that for some distributions increased 
trimming resulted in increased power and 
decreased standard errors while for other 
distributions increased trimming resulted in 
decreased power and increased standard 
errors.  

• The issue of continuous and discrete 
distributions had an influence on the power 
of the trimmed and Winsorized t-test such 
that power rates were less extreme for the 
continuous distributions of comparable 
levels of skew. That is, the power for the 
Asymmetric Continuous distribution was 
lower than the power for the asymmetric 
discrete distributions while the power for the 
Symmetric Continuous distribution was 
greater than the power for the symmetric 
discrete distributions. 

• The standard t-test’s power and standard 
errors were less influenced than the trimmed 
and Winsorized t-test across the 
distributions, being less powerful than the 
trimmed and Winsorized t-test for the 
asymmetric distributions and more powerful 
than the trimmed and Winsorized t-test for 
the symmetric distributions. In contrast to 
the trimmed and Winsorized t-test, the 
standard t-test was slightly less powerful for 
the symmetric distributions than for the 
asymmetric distributions. 

 
Implications for Practice 

This study’s findings regarding how a 
data generation method affects the relative 
power of different t-tests have implications for 
practice. The trimmed and Winsorized t-test is 
more complexly affected by the type of 
distribution than the standard t-test. Some of the 
power issues with the trimmed and Winsorized 
t-test could be anticipated with careful 
examination of the data at hand. Specifically, for  
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datasets that have structures and asymmetry 
resulting in only a small number of the possible 
scores being observed (i.e., the Asymmetric 
Teeth and Asymmetric Lump at Zero 
distributions), trimming and Winsorizing of 
these observed scores will produce a dataset 
with even fewer unique scores, a standard error 
of the trimmed mean that is relatively small, and 
a power rate that may be large relative to the 
standard t-test.  

For datasets where many of the possible 
scores   are  observed   (i.e.,   the   Symmetric 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bimodal distribution), trimming and 
Winsorizing of the observed scores will produce 
a dataset with a large range of unique scores, a 
standard error of the trimmed mean that is 
relatively large, and a power rate that is small 
relative to the standard t-test. If the data at hand 
are so skewed and/or are based on a sample size 
that is extremely small, trimming and 
Winsorizing could remove all of the scores from 
the data and make a significance test of mean 
differences impossible. 

Table 5: Power Rates Sorted by the Standard Error of the Difference in Means 

Distribution Statistical Method Std. Error Power 

Asymmetric Teeth Trimmed & Winsorized (20%) 0.7273 0.7543 

Asymmetric Lump at Zero Trimmed & Winsorized (20%) 0.7462 0.7437 

Asymmetric Teeth Trimmed & Winsorized (10%) 0.8579 0.6511 

Asymmetric Lump at Zero Trimmed & Winsorized (10%) 0.8817 0.6698 

Asymmetric Favorite Scores Trimmed & Winsorized (10%) 0.8971 0.6144 

Symmetric 7 Peaks Trimmed & Winsorized (20%) 0.9030 0.5849 

Asymmetric Favorite Scores Trimmed & Winsorized (20%) 0.9633 0.5011 

Asymmetric Smooth & Discrete Trimmed & Winsorized (10%) 0.9693 0.5352 

Asymmetric Smooth & Discrete Trimmed & Winsorized (20%) 0.9794 0.5254 

Asymmetric Continuous Trimmed & Winsorized (10%) 0.9800 0.5244 

Asymmetric Continuous Trimmed & Winsorized (20%) 0.9832 0.5137 

Symmetric Smooth & Discrete Standard t-test 1.0258 0.4813 

Symmetric 7 Peaks Standard t-test 1.0260 0.4756 

Symmetric Bimodal Standard t-test 1.0287 0.4746 

Symmetric Continuous Standard t-test 1.0298 0.4811 

Asymmetric Continuous Standard t-test 1.0308 0.4910 

Asymmetric Favorite Scores Standard t-test 1.0309 0.5001 

Asymmetric Teeth Standard t-test 1.0317 0.5030 

Asymmetric Lump at Zero Standard t-test 1.0332 0.4981 

Asymmetric Smooth & Discrete Standard t-test 1.0332 0.5014 

Symmetric 7 Peaks Trimmed & Winsorized (10%) 1.0499 0.4590 

Symmetric Continuous Trimmed & Winsorized (10%) 1.0578 0.4528 

Symmetric Smooth & Discrete Trimmed & Winsorized (10%) 1.0705 0.4390 

Symmetric Continuous Trimmed & Winsorized (20%) 1.0968 0.4216 

Symmetric Smooth & Discrete Trimmed & Winsorized (20%) 1.1168 0.4104 

Symmetric Bimodal Trimmed & Winsorized (10%) 0.9981 0.3805 

Symmetric Bimodal Trimmed & Winsorized (20%) 1.0021 0.2813 
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Note that this study focused on creating 
distributions that reflect structures that have 
been observed in psychometric and achievement 
test data (Holland & Thayer, 2000; Micceri, 
1989). While the discrete distributions 
considered in this study may be more realistic 
than the continuous distributions typically 
created in simulation studies, these discrete 
distributions clearly do not reflect all of the 
possible distributions encountered in applied 
data.  

Important distributions that were not 
considered in this study are distributions of 
counted variables, such as individuals’ income, 
individuals’ total of social connections to other 
individuals, or websites’ numbers of hits. 
Extreme observations are more likely in 
distributions of unbounded counted variables 
than in distributions of psychometric and 
achievement test scores. Simulations based on 
distributions where extreme observations are 
likely may show that the standard t-test has a 
nonrobust Type I error rate whereas the trimmed 
and Winsorized t-test is robust. 
 
Implications for Simulation Research 

This study’s findings of how the data 
generation method affected the relative Type I 
error and power rates of different t-tests have 
implications for simulation research. One issue 
that could be reconsidered is how assumptions 
are violated in simulation studies. For example, 
in simulation studies’ continuous and 
unbounded distributions, the levels of skew and 
kurtosis can be much greater than are possible to 
create in discrete and bounded distributions, 
such as skew values of 120 and kurtosis values 
ranging from 8.9 to beyond 18,000 (Keselman, 
et al., 2004; Wilcox, 1994). The current study 
suggests that simulation studies’ results based on 
extreme levels of assumption violations do not 
always generalize to situations where levels of 
assumption violations are more limited. In 
particular, this study suggests that for the 
relatively limited levels of assumption violations 
that can occur in bounded distributions, the 
robustness of standard tests of mean differences 
is not likely to be as serious a concern as implied 
when robust strategies are promoted. This study 
also showed that more can be learned about 
robust statistical procedures proposed as 

replacements for standard statistical tests. 
Additional simulation studies that consider the 
distributions and assumption violations likely to 
be encountered in applied research are 
encouraged. 
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