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The Small-Sample Efficiency of Some Recently Proposed 
Multivariate Measures of Location 

 
Marie Ng Rand R. Wilcox 

University of Hong Kong University of Southern California 
 

 
Numerous multivariate robust measures of location have been proposed and many have been found to be 
unsatisfactory in terms of their small-sample efficiency. Several new measures of location have recently 
been derived, however, nothing is known about their small-sample efficiency or how they compare to the 
sample mean under normality. This research compared the efficiency for p = 2, 5, and 8 with sample sizes 
n = 20 and 50 for p-variate data. Although previous studies indicate that so-called skipped estimators are 
efficient, this study found that variations of this approach can perform poorly when n is small and p 
exceeds 5. One of the best estimators was found to be a skipped estimator where outliers detected by a 
projection method are eliminated. The TBS, OGK and RMBA estimators were included and; in some 
cases, they performed well, however, serious exceptions were identified suggesting that a skipped 
estimator based on a projection-type outlier detection method is preferable based on efficiency. 
 
Key words: Robust methods, OGK estimator, TBS estimator, median ball algorithm, minimum 
generalized variance technique, projection methods, skipped estimators of location. 
 
 

Introduction 
A fundamental goal of this research is estimating 
some appropriate measure of location based on a 
random sample from some p-variate distribution. 
From basic principles, the sample mean has 
various optimal properties under normality; 
however, slight departures from normality can 
render it highly atypical and relatively 
inefficient. This has led to a variety of robust 
estimators, many of which are known to have 
relatively poor small-sample efficiency (Masse 
& Plante, 2003); thus study expands on Masse 
and Plante in several ways. First, recently 
proposed estimators are considered, next so-
called skipped estimators are included, and lastly 
the present study is not limited to the bivariate 
case. In particular, the small-sample efficiency 
of the OGK estimator proposed by Maronna and 
Zamar (2002), the TBS (translated biweight) 
estimator derived by Rocke (1996) and the 
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RMBA (median ball algorithm) suggested by 
Olive (2004, 2007) are examined. Skipped 
estimators simply mean that some appropriate 
multivariate outlier detection method is applied, 
any outliers found are removed and the mean of 
the remaining values is used as a measure of 
location.  

This study considered two types of 
outlier detection methods. The first is based on a 
robust analog of Mahalanobis distance where the 
usual mean and covariance matrix are replaced 
by some robust measure of location and scale, 
respectively; in this case, the OGK, TBS and 
RMBA are considered. The second type does 
not use the Mahalanobis distance. One of the 
alternative strategies is based on a particular set 
of data projections in which a point is declared 
an outlier if it is flagged as an outlier by any 
projection. The other method, called the MGV 
method, belongs to this second class of 
techniques and assigns a measure of depth to 
points based in part on generalized variances of 
subsets of the data. 
 
Multivariate Outlier Detection Methods 

Multivariate outlier detection methods 
play an integral role when using some of the 
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location estimators. Some basic concerns and 
results about multivariate outlier detection 
techniques are reviewed, and a description of the 
methods used in this research is provided. (See 
Wilcox (2008) for a more detailed comparison 
of the outlier detection methods.) 

When choosing a multivariate outlier 
detection technique method at least two 
fundamental properties are of interest. The first 
is the outside rate per observation, which is the 
expected proportion of outliers among a sample 

of size n, for example, np . When sampling from 

a multivariate normal distribution, it is generally 

desirable to have a reasonably small np , for 

example 0.05; often methods are tuned to 
achieve this goal, at least when n is large 
(Rousseeuw & van Zomeren, 1990). 

A second fundamental goal is to avoid 
masking. Roughly, a method is said to suffer 
from masking if the very presence of outliers 
causes them to be missed. Let M be some 
multivariate measure of location based on data 
randomly sampled from some p-variate 
distribution and let C be some measure of 
scatter. If M is the usual sample mean and C the 

usual covariance matrix based on 1, , nX X , 

then a classic approach is to use the 
Mahalanobis distance 
 

1 '( ) ( )i i iD X M C X M−= − −           (1) 

 

and declare iX  an outlier if iD  is sufficiently 

large. In particular, if the goal is to have  

np α= , then iX  is declared an outlier if 

 
2
1 / 2,i pD αχ −≥ ,                      (2) 

 
the square root of the 1 / 2α−  quantile of a Chi-
squared distribution with p degrees of freedom. 
It is known, however, that this method suffers 
from masking (Rousseeuw & Leroy, 1987), 
roughly because the usual sample mean and 
covariance matrix are not robust, that is, outliers 
can greatly influence their values thus causing 

iD  to be small even when iX  is highly atypical. 

A seemingly natural approach to avoid 
masking is to take M and C to be some robust 
measure of location and scatter in equation (1) 
and then use equation (2). Campbell (1980) 
proposed using a particular M-estimator. The M-
estimator Campbell used has a rather 
unsatisfactory breakdown point, however; the 
breakdown point of an estimator is the smallest 
proportion of points that must be altered to make 
it arbitrarily large or small. The M-estimator has 
a breakdown point of only 1/(p+1): this means 
that masking can be a problem - particularly as p 
gets large. Consequently, Rousseeuw and van 
Zomeren (1990) suggested using the minimum 
volume ellipsoid (MVE) estimator introduced by 
Rousseeuw (1985) and discussed in detail by 
Rousseeuw and Leroy (1987). 

It appears that this method performs 

well in terms of achieving .05np ≈  (Wilcox, 

2005); however, serious concerns have been 
expressed by Olive (2004) and Hawkins and 
Olive (2002). In addition, Fung (1993) described 
conditions where MVE can declare too many 
points outliers. Rousseeuw and van Driessen 
(1999) suggested replacing the MVE estimator 
with the fast minimum covariance determinant 
(FMCD) estimator, but with small to moderate 

sample sizes np  becomes unstable and might 

exceed 0.05 by an unacceptable amount 
(Wilcox, 2005). At least three alternatives to the 
MVE and FMCD estimators exist and might be 
used instead. 
 
The OGK Estimator 

In its general form, the orthogonal 
Gnanadesikan-Kettenring (OGK) estimator, 
derived by Maronna and Zamar (2002), is 
applied as follows. Let ( )Xσ  and ( )Xμ  be 
any measures of dispersion and location, 
respectively. The method proposed by 
Gnanadesikan and Kettenring (1972) begins 
with the robust covariance between any two 
variables, for example X and Y, is: 
 

2 21
cov( , ) ( ( ) ( ) )

4
X Y X Y X Yσ σ= + − −  

(3) 
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When ( )Xσ  and ( )Xμ  are the usual standard 
deviation and mean, the usual covariance 
between X and Y results. Following Maronna 
and Zamar (2002), ( )Xσ  is taken to be the tau 
scale of Yohai and Zamar (1988). Let 
 

22

( ) 1 (| | )c
xW x I x c
c

  = − ≤     
 

and 
2 2( ) min( , )c x x cρ = , 

 
where the indicator function (| | ) 1I x c≤ =  if 

| |x c≤  and 0 otherwise. For the univariate 

sample 1, , nX X , let MAD(X) be the median 

of 1| |, ,| |x n xX M X M− − , where xM  is the 

usual median of 1, , nX X , and let 

 

4.5 ( )
i x

i
X Mw W

MAD X
 −=  
 

. 

 
Again, following Maronna and Zamar 

(2002) the location and scale statistics are 
defined as 

( )
i i

i

w X
X

w
μ =




 

and 
 

2
3

( )( )
( )

( )
iX XMAD XX

n MAD X
μσ ρ  −=  

 
  

 
Using the measure of scale in (3), the resulting 
measure of covariance will be denoted by 

( , )v X Y . 
Following the notation in Maronna and 

Zamar (2002), let ix  be the ith row of the n p×  

matrix X , a scatter matrix ( )V X  and a location 

vector ( )t X  are defined as follows: 
 
1. Let 1( ( ),..., ( ))pdiag X Xσ σ=D  and 

i ix−= 1y D , 1,...,i n= . 

2. Compute ( )jkU=U  by applying v  to the 

Y  columns. 
3. Compute the eigenvectors je  of U  and let 

E  be the matrix whose columns are the    

je ’s. 

4. Let =A DE ,  1
i i

−=z A x , in which case 

′= ΓV A A  and ( ) υ=t X A , where 
2

1( ( ) ,..., ( ))pdiag Z Zσ σΓ =  and 

1( ( ),..., ( ))pZ Zυ μ μ= . 

 
Maronna and Zamar (2002) noted that 

the above procedure can be iterated and they 
report results suggesting that a single iteration be 
used. More precisely, compute V  and t  for Z
(the matrix corresponding to iz  computed in 

step 4) and express them in the original 

coordinate system, namely, ( ) ′=2V AV Z A  

and ( ) ( )=2t X At Z . 

Maronna and Zamar showed that the 
estimate can be improved by a reweighting step. 
Let 

( )

( )
ij j

i
j

z Z
d

Z
μ

σ
 −

=   
 

 , 

 

0≤=
ii d dw I , 

and 
2

, 1
0 2

,.5

( ,..., )p n

p

med d d
d βχ

χ
= , 

 

where 2
,p βχ  is the β  quantile of the Chi-

squared distribution with p degrees of freedom 
and med denotes the median. The measure of 
location is now estimated to be 
 

=
x

t i i

i

w
w w , 

 
and the measure of scatter is 
 

( )( )
.

′− −
= 


x t x t

V i w i wi
w

i

w
w
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When using the OGK estimator to check for 
outliers in this study (2) was used. Results 
reported by Maronna and Zamar (2002) suggest 
using .9β = , but Wilcox (2008) found that this 

can result in np  exceeding 0.05 by a 

considerable amount when n is small, moreover, 

np  is unstable as a function of n. Thus, 

 
max(.95, min(.99,1/ .94))nβ = + , 

 
was found to be more satisfactory and was 
therefore used in this research. 
 
The TBS Estimator 

Rocke (1996) proposed an estimator 
known as the translated-biweight S (TBS) 
estimator. Generally, S-estimators of 

multivariate location and scatter are values for θ̂  
and S  that minimize | |S , the determinant of S , 
subject to 
 

/
0

1 ˆ ˆ((( ) ( )) )i i b
n

ξ θ θ−′− − = 1 1 2X S X ,    (4) 

 

where 0b  is some constant, and ξ  is a non-

decreasing function. However, Rocke (1996) 
showed that S-estimators can be sensitive to 
outliers even if the breakdown point is close to 
0.5. He suggested an alternative approach where 
the function ( )dξ  is defined as follows: let m 
and c be values to be determined, then when 
m d m c≤ ≤ + , 
 

2 2 4 2 2 4

4

4 2 3
2 3

4 2 2 4

2 5 6
4

4 2 4 4

( 5 15 )
( )

2 30

4 4
          .5

2 3 3

3 1 4
          

2 2 5 6

− += −

   
+ + − + −   

   
 

+ − − + 
 

m m m m c cd
c

m m m md d
c c c c

m md dd
c c c c

ξ

 
for 0 d m≤ <  

2

( )
2

ddξ = ; 

and for d m c> + , 

2 (5 16 )
( )

2 30

m c c mdξ += + . 

 
The values for m and c can be chosen to achieve 
both the desired breakdown point and the 
asymptotic rejection probability, roughly 
referring to the probability that a point will get 
zero weight when the sample size is large. If the 
asymptotic rejection probability is γ , for 
example, then m and c are determined by 
 

2 0( ( ))
p

E d b
χ

ξ =  

and 
2

,1pm c γχ −+ = . 

 
An iterative estimation method was used 

to compute the measures of location and scatter 
(Rocke & Woodruff, 1993) which requires an 
initial estimate of location and scatter. Here the 
initial estimate is the FMCD estimator which 
was computed with the R function cov.mcd, but 
some results on using an alternative initial 
estimate are also mentioned herein. As with the 
OGK estimator, when using TBS checks for 
outliers are based on (2). 
 
Median Ball Algorithm 

Following Olive (2004, 2007), the 
median ball algorithm (RMBA) begins with two 
initial estimates of location and scatter, both of 
which are based on an iterative algorithm. The 
strategy is as follows. For the jth estimator (j = 1, 
2), let 0, 0,( , )j jT C  be some starting value. 

Compute all n Mahalanobis distances 

0, 0,( , )i j jD T C  based on this measure location 

and scatter. Next estimate the usual mean and 

covariance matrix based on the / 2nc n≈  cases 

corresponding to the smallest distances, this 
yields 1, 1,( , )j jT C . Repeating this process, which 

is based on 1, 1,( , )i j jD T C , yields an updated 

measure of location and scatter, 2, 2,( , )j jT C ; 

following Olive (2005, 2007) 5, 5,( , )j jT C  was 

used.  
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The first of the two starting values used 
by Olive takes 1 0,1( , )T C  to be the usual mean 

and covariance matrix. The other starting value, 

0,2 0,2( , )T C , is the usual mean and covariance  

based on the nc  cases that are closest to the 

coordinatewise median in Euclidean distance. 
Let 5, 5,( , ) ( , )A A i iT T=C C , where i = 1 if the 

determinant 5,1 5,2| | | |≤C C , otherwise i = 2. The 

MBA estimator of location is AT  and the 

measure of scatter is 
 

2

2
,.5

( ( , ))i A A
A

p

MED D T
χ

=MBA

C
C C  

 
To compute the RMBA estimate, first compute 

2 ( , )i MBA MBAD T C , then 

 
1. Compute the classical estimator ( , )T C  for 

the cases with 2 2
,.975i pD χ≤ . 

2. Scale for normality: let 1T T=  and 

 
2

1 2
,.5

( ( , ))i

p

MED D T
χ

= C
C  

 

Repeat steps 1 and 2 to obtain ( , )RMBA RMBAT C . 

(The R function rmba available at 
www.math.siu.edu/olive/rpack.txt, computes the 
RMBA estimate of location and scatter and was 
used in the simulations.) 

Wilcox (2008) found that if the 
Mahalanobis distance is computed using the 
RMBA estimator, and points are declared 
outliers using (2) with α  = 0.975, the outside 
rate per observation is reasonably close to 0.05 
under normality, provided that / 10n p ≥ , at 

least for 2 12p≤ ≤ ; otherwise the outside rate 
per observation can be very unsatisfactory. For 
example, with n = 20 and p = 5 it was estimated 
to exceed 0.24 regardless of the correlation 
among the variables. 

Thus, this approach is not as satisfactory 
compared to the OGK and TBS methods, but it 
was included for two reasons. First, the 

efficiency of the RMBA estimate of location, 
relative to the other methods considered, is 
unknown. Second, when applying the MGV 
method, an initial estimate of the center of a data 
cloud is required, and using RMBA appears to 
have a practical advantage in terms of 
controlling the outside rate per observation. 
 
The Minimum Generalized Variance Method 

From basic multivariate techniques, the 
generalized variance is the determinant of the 
usual covariance matrix; it reflects how tightly a 
cloud of points is clustered together. The 
minimum generalized variance (MGV) method 
is based on the fact that the generalized variance 
is not robust; a single unusual point can greatly 
inflate its value. The MGV method is applied as 
follows: 
 
1. Initially, all n points are described as 

belonging to set A.  
2. Find the p points that are most centrally 

located (many options exist to accomplish 
this). Based on results in Wilcox (2008), the 
approach used here takes the p most 
centrally located points to be the p points 
having the smallest Mahalanobis distance 

based on the RMBA estimators, AT  and 

RMBAC . 

3. Remove the p centrally located points from 
set A and put them into set B. At this step, 
the generalized variance of the points in set 
B is zero. 

4. If among the points remaining in set A, the 
ith point is placed in set B, then the 
generalized variance of the points in set B 

will be changed to some value labeled 2
gis , 

that is associated with every point remaining 

in A. The value 2
gis , is the resulting 

generalized variance when it - and it only - 

is placed in set B. Compute 2
gis  for every 

point in A. 

5. Among the 2
gis  values computed in the 

previous step, permanently remove the point 

associated with the smallest 2
gis  value from 

set A and put it in set B. That is, find the 
point in set A which is most tightly clustered 
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together with the points in set B; after this 
point is identified, permanently remove it 
from A and place it in B. 

6. Repeat steps 4 and 5 until all points are now 
in set B. 

 
The first p points removed from set A 

have a generalized variance of zero, this is 

labeled 2 2
(1) ( ) 0g g ps s= = = . When each point 

is removed from A and put into B (using steps 3 
and 4), the resulting generalized variance of set 

B is labeled 2
( 1)g ps + , as this process continues 

each point has associated with it some 
generalized variance when it is put into set B. 
Based on this process, the ith point has associated 
with it one of the generalized variances 
computed. For convenience, this generalized 

variance associated with the ith point, 2
( )g js , is 

labeled iC . 

The p deepest points have C  values of 
zero. Points located at the edges of a scatterplot 
have the highest C  values meaning that they are 
relatively far from the center of the cloud of 
points. A strategy for detecting outliers is simply 
applying some good univariate outlier rule to the 

iC  values. Note that a point would be declared 

only if an outlier iC  is large. 

In terms of maintaining an outside rate 
per observation that is both stable as a function 
of n and p, and approximately equal to 0.05 
under normality, a boxplot rule for detecting 
outliers seems best when p = 2, and for p > 2 a 
slight generalization of Carling’s (2002) 
modification of the boxplot rule appears to 
perform well. In particular, if p = 2, then the ith 
point is declared an outlier if 
 

2 2 11.5( )iC q q q> + − ,                (5) 

 

where 1q  and 2q  are the ideal fourths based on 

the iC  values. For p > 2 variables, the ith point is 

declared an outlier if 
 

2

2
.975, 1( )i C pC M q qχ> + − ,          (6) 

 

where CM  is the usual median of the iC  values. 

(Thus, the inverse of a covariance matrix and 
Mahalanobis distance do not play a role when 
checking for outliers.) 

A criticism, when detecting outliers 

among the iC  values, is that the interquartile 

range has a breakdown point of 0.25. Ideally, a 
univariate outlier detection method would have a 
breakdown point of 0.5, the highest possible 
value. This can be achieved with a commonly 
used MAD-median rule. When p = 2, for 

example, it means that a point iX  is declared an 

outlier if 
| |

2.24i C

C

C M
MAD

− > ,            (7) 

 

where CMAD  is the value of MAD based on the 

C  values. The concern with this approach is 
that the outside rate per observation is no longer 
stable as a function of n and no method for 
correcting this problem is available at this time. 
 
A Projection Method 

Consider any projection of data onto a 
straight line. A projection-type method for 
detecting outliers among multivariate data is 
based on the idea that, if a point is an outlier, 
then it should be an outlier for some projection 
of the n points. Thus, if it were possible to 
consider all possible projections and, if for some 
projection a point is an outlier, then the point is 
declared an outlier. Not all projections can be 
considered, hence, following Wilcox (2005), the 
strategy is to orthogonally project the data onto 
all n lines formed by the center of the data cloud, 

as represented by ξ̂ , and each iX . Here, ξ̂  was 

taken to be the RMBA measure of location. 

(Checks suggest that other choices for ξ̂  have 
no practical value for the problem considered 
herein.) 

The computational details are as 

follows. Fix i, and for the point iX , 

orthogonally project all n points onto the line 

connecting ξ̂  and iX , and let ijD  be the 
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distance between ξ̂  and jX  based on this 

projection. Let 
ˆ

i i ξ= −A X , 

and 
ˆ

j j ξ= −B X , 

 

where both iA  and jB  are column vectors 

having length p. Next let 
 

j
j

j

′
=

A B
C

B
, 

 
where 1, ,j n=  . Then when projecting the 

points onto the line between iX  and ξ̂ , the 

distance of the jth point from ξ̂  is 
 

|| ||ij jD = C , 

where 
2 2

1|| || p jpC C= +C  . 

 
Here, an extension of Carling’s modification of 
the boxplot rule (similar to the modification used 
by the MGV method) is used to check for 
outliers among ijD  values. Let 

[ ]/ 4 5 /12n= + , where [.] is the greatest 

integer function and let 
 

5

4 12

nh = + −  . 

 
For fixed i, let (1) ( )i i nD D≤ ≤  be the n 

distances written in ascending order. 
If the ideal fourths associated with the 

ijD  values are 

1 ( ) ( 1)(1 ) i iq h D hD += − +   

and 

2 ( ) ( 1)(1 ) i k i kq h D hD −= − + , 

 
where 1k n j= − + , then the jth point is 
declared an outlier if 
 

2
.975, 2 1( )ij D pD M q qχ> + − ,        (8) 

 

where DM  is the usual sample median based on 

1, ,i inD D . 

The process described is for a single 
projection; for fixed i, points are projected onto 

the line connecting iX  to ξ̂ . Repeating this 

process for each i, 1, ,i n=  , a point is 
declared an outlier if for any of these 
projections, it satisfies equation (8). This will be 
called method OP, which has certain similarities 
with a projection method suggested by Pena and 
Prieto (2001). One important difference is that 
the method used Pena and Prieto is based on the 
usual sample mean, which is not robust and 
could result in masking. 

As was the case with the MGV method, 
a simple and seemingly desirable modification 
of the method described is to replace the 
interquartile range with the median absolute 
deviation (MAD) measure of scale based on the 

values 1, ,i inD D . Thus, if MAD is the median 

of the values 1| |, ,| |i D in DD M D M− − , 

which is denoted by iMAD , then the jth point is 

declared an outlier if for any i, 
 

2
.95, .6745

i
ij D p

MADD M χ> +          (9) 

 
(Similar to the MGV method, equation (2) is not 
used when checking for outliers.) Equation (9) 
represents an approximation of the method given 
by Donoho and Gasko (1992). 

An appealing feature of MAD is that it 
has a higher finite sample breakdown point than 
the interquartile range; however, a negative 
feature of equation (9) is that the outside rate per 
observation appears to be less stable as a 
function of n. In the bivariate case, for example, 
it is approximately 0.09 with n = 10 and drops 
below 0.02 as n increases. For the same 
situations, the outside rate per observation using 
equation (9) ranges, approximately, between 
0.043 and 0.038. 
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Summary of the Estimators 
In summary, eight alternatives to the 

sample mean were considered. The first three 
were RMBA, OGK and TBS. The remaining 
five are skipped estimators where outliers are 
removed after which the mean of the remaining 
data is computed. Three of these five estimators 
use (2) in conjunction with MVE, MCD and 
TBS and are denoted by MVE(S), MCD(S) and 
TBS(S); the other two use the MGV and OP 
outlier detection methods with the initial 
measure of location given by RMBA. For 
convenience, the estimators RMBA, OGK, 
MCD(S), OP, MVE(S), MGV and TBS(S) are 

labeled 1 8ˆ ˆ, ,η η , respectively. The usual 

sample mean is labeled 0η̂ . 

 
Results 

Simulations were used to compare the efficiency 
of the sample mean to the eight alternative 
estimators. The efficiency of the jth estimator (

1, ,8j =  ) was measured with 
 

0

ˆ( )

ˆ( )
jV

E
V

η
η

= , 

 
where ˆ( )jV η  is the generalized variance 

associated with the sampling distribution of ˆ jη . 

All simulations were conducted using the 
software R. Methods OP and MGV were applied 
with software from Wilcox (2005) that was 
downloaded from http://psychology.usc.edu/ 
faculty\_homepage.php?id=43. (The R function 
smean in Wilcox (2005) defaults to method OP. 
The R code for all estimators is available from 
the author upon request.) 

To describe how data were generated, 
first consider the univariate case. An observation 
X from a g-and-h distribution (Hoaglin, 1985) is 
generated by first generating a value from a 
standard normal distribution yielding Z, for 
example, and computing 
 

2exp( ) 1
exp( / 2)

gZX hZ
g

−=  

 

where g and h are parameters that determine the 
third and fourth moments. When g = 0, this last 
equation is taken to be 
 

2exp( / 2)X Z hZ=  
 

For the multivariate case, data were 
generated from a multivariate normal 
distribution having a common correlation, ρ , 
and the values of the marginal distributions were 
transformed to a g-and-h distribution. The four 
(marginal) g-and-h distributions used were the 
standard normal (g = h = 0), a symmetric heavy-
tailed distribution (g = 0, h = 0.2), an 
asymmetric distribution with relatively light tails 
(g = 0.5, h = 0), and an asymmetric distribution 
with heavy tails (g = 0.5, h = 0.2). (For details 
about these distributions, see Hoaglin, 1985.) 
The values for ρ  were taken to be 0, 0.5 and 
0.8. 

Tables 1-6 show the estimated 
efficiency of the eight estimators based on 1,000 
replications. One method to condense the results 
in a useful way is to determine which robust 
estimator has the best efficiency among each of 
the 72 conditions studied. The OP estimator was 
best for 56 conditions and it was among the top 
two for 62 conditions. Another perspective 
considers which estimator competes best with 
the mean under normality; with two exceptions, 
this is method OP. The two exceptions occur 
when ρ  = 0 and p = 5 or p = 8, in which case 
MGV is best.  

With p = 5 the advantage of OP over 
MGV is not striking but with p=8 (and if ρ =0), 
MGV may have a worthwhile advantage. MGV 
is often among the two best estimators however, 
when sampling from a heavy-tailed distribution 
the mean can have better efficiency - sometimes 
strikingly so - even when other estimators beat 
the mean by a considerable amount. Although, 
RMBA, OGK and TBS do not compete well 
with OP in general, they can offer an advantage 
when p = 8, ρ  = 0.5 or ρ  = 0.8 and sampling 
is from a skewed, heavy-tailed distribution. 
 

Conclusion 
The success of the OP method is not surprising 
considering the results in detecting outliers 
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recently summarized in Wilcox (2008). Also 
based on results from Wilcox (2008), there was 
some anticipation that MGV would compete 
effectively with OP. Under some conditions it is 
a reasonable alternative, but it seems that, in 
terms of efficiency, the skipped estimator based 
on the OP outlier detection method is generally 
preferable, sometimes by a substantial amount. 
The poor performance of MGV when p = 8 and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sampling is from a skewed, heavy-tailed 
distribution, was not expected. The OGK, TBS 
and RMBA estimators compete well with OP, 
particularly when sampling from a skewed, 
heavy-tailed distribution and 5p ≥ , but for 
routine use, OP seems preferable and - for a 
variety of situations - it offers a distinct 
advantage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Estimated Efficiency for First Four Estimators, ρ =0 

n g h p RMBA OGK TBS MCD(S)

20 0 0 2 1.84 1.84 2.84 2.93 

50 0 0 2 1.47 1.98 2.87 2.7 

20 0 0 5 10.06 4.2 8.42 11.08 

50 0 0 5 2.73 3.73 3.25 10.13 

20 0 0 8 112.25 9.14 33.97 33.97 

50 0 0 8 13.2 7.19 5.99 57.52 

20 0 0.2 2 0.61 0.71 0.72 0.76 

50 0 0.2 2 0.64 0.74 0.67 0.67 

20 0 0.2 5 1.03 0.87 1.19 1.36 

50 0 0.2 5 0.52 0.6 0.53 0.77 

20 0 0.2 8 2.65 0.83 1.91 1.91 

50 0 0.2 8 1.18 0.87 0.71 2.02 

20 0.5 0 2 1.49 1.58 1.57 1.94 

50 0.5 0 2 1.39 1.33 1.31 2.04 

20 0.5 0 5 5.15 3.68 5.7 6.65 

50 0.5 0 5 3.38 2.86 3.44 6.92 

20 0.5 0 8 16.34 12.19 19.63 19.58 

50 0.5 0 8 17.32 11.71 13.98 54.34 

20 0.5 0.2 2 0.27 0.36 0.27 0.33 

50 0.5 0.2 2 0.13 0.15 0.12 0.16 

20 0.5 0.2 5 0.08 0.16 0.13 0.13 

50 0.5 0.2 5 0.06 0.07 0.68 0.1 

20 0.5 0.2 8 0.09 0.15 0.27 0.27 

50 0.5 0.2 8 0.03 0.04 0.05 0.06 
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Table 2: Estimated Efficiency for First Four Estimators, ρ =.5 

n g h p RMBA OGK TBS MCD(S) 

20 0 0 2 1.76 1.99 2.85 2.82 

50 0 0 2 1.39 1.88 2.51 2.38 

20 0 0 5 8.46 3.7 8.32 10.53 

50 0 0 5 3.15 4.05 3.42 12.06 

20 0 0 8 126.95 11.09 41.53 1.49 

50 0 0 8 13.73 7.89 6.5 65.62 

20 0 0.2 2 0.62 0.73 0.7 0.76 

50 0 0.2 2 0.56 0.69 0.62 0.61 

20 0 0.2 5 0.67 0.51 0.64 0.69 

50 0 0.2 5 0.31 0.38 0.3 0.41 

20 0 0.2 8 1.88 0.57 1.53 1.52 

50 0 0.2 8 0.49 0.34 0.28 0.75 

20 0.5 0 2 1.13 1.14 1.11 1.42 

50 0.5 0 2 1.17 1.1 0.94 1.54 

20 0.5 0 5 1.51 1.43 1.95 2.05 

50 0.5 0 5 1.91 1.39 1.63 2.8 

20 0.5 0 8 2.5 1.57 3.78 3.8 

50 0.5 0 8 1.72 0.97 1.34 2.42 

20 0.5 0.2 2 0.18 0.24 0.18 0.21 

50 0.5 0.2 2 0.18 0.2 0.15 0.18 

20 0.5 0.2 5 0.01 0.02 0.02 0.02 

50 0.5 0.2 5 0.01 0.02 0.02 0.02 

20 0.5 0.2 8 <.01 <.01 <.01 <.01 

50 0.5 0.2 8 <.01 <.01 <.01 <.01 
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Table 3: Estimated Efficiency for First Four Estimators, ρ =.8 

n g h p RMBA OGK TBS MCD(S)

20 0 0 2 1.94 2.02 2.88 2.97 

50 0 0 2 1.42 2.14 2.73 2.46 

20 0 0 5 11.47 4.18 9.33 12.15 

50 0 0 5 2.64 3.74 3.03 10.33 

20 0 0 8 119.43 9.11 36.34 36.31 

50 0 0 8 11.69 6.39 6.07 63.91 

20 0 0.2 2 0.52 0.69 0.59 0.59 

50 0 0.2 2 0.54 0.69 0.56 0.61 

20 0 0.2 5 0.5 0.36 0.45 0.51 

50 0 0.2 5 0.22 0.3 0.2 0.29 

20 0 0.2 8 0.56 0.2 0.42 0.42 

50 0 0.2 8 0.17 0.13 0.1 0.27 

20 0.5 0 2 1.18 1.29 1.16 1.33 

50 0.5 0 2 1.18 1.28 0.96 1.53 

20 0.5 0 5 0.87 0.85 1.14 1.17 

50 0.5 0 5 0.74 0.55 0.77 1.08 

20 0.5 0 8 0.61 0.39 0.79 0.7 

50 0.5 0 8 0.54 0.23 0.52 0.7 

20 0.5 0.2 2 0.09 0.14 0.09 0.11 

50 0.5 0.2 2 0.11 0.15 0.09 0.11 

20 0.5 0.2 5 0.01 0.01 0.01 0.01 

50 0.5 0.2 5 <.01 <.01 <.01 <.01 

20 0.5 0.2 8 <.01 <.01 <.01 <.01 

50 0.5 0.2 8 <.01 <.01 <.01 <.01 

 



NG & WILCOX 
 

39 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Estimated Efficiency for Four Skipped Estimators, ρ =0 

n g h p OP MVE(S) MGV TBS(S) 

20 0 0 2 1.36 2.48 1.47 1.92 

50 0 0 2 1.32 1.91 1.5 1.53 

20 0 0 5 2.22 6.98 1.49 8.03 

50 0 0 5 1.86 3.48 1.36 2.39 

20 0 0 8 3.54 12.64 2.21 34.25 

50 0 0 8 2.74 9.55 1.93 4.63 

20 0 0.2 2 0.56 0.64 0.61 0.59 

50 0 0.2 2 0.56 0.67 0.56 0.56 

20 0 0.2 5 0.45 0.84 0.91 0.84 

50 0 0.2 5 0.49 0.71 0.93 0.58 

20 0 0.2 8 0.52 2.55 2.09 3.28 

50 0 0.2 8 0.39 0.87 1.18 0.58 

20 0.5 0 2 1.02 1.86 1.12 1.46 

50 0.5 0 2 1.21 2.22 1.35 1.55 

20 0.5 0 5 1.56 4.36 1.66 5.49 

50 0.5 0 5 0.45 0.66 0.8 0.5 

20 0.5 0 8 0.51 2.27 1.87 2.95 

50 0.5 0 8 0.39 0.7 1.05 0.57 

20 0.5 0.2 2 0.2 0.25 0.26 0.22 

50 0.5 0.2 2 0.21 0.25 0.24 0.23 

20 0.5 0.2 5 0.06 0.19 1.21 0.18 

50 0.5 0.2 5 0.05 0.11 1.18 0.09 
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Table 5: Estimated Efficiency for Four Skipped Estimators, ρ =.5 

n g h p OP M VE(S) MGV TBS(S) 

20 0 0 2 1.31 2.55 1.36 0.174 

50 0 0 2 1.32 2.1 1.63 1.56 

20 0 0 5 1.43 6.12 1.52 8.28 

50 0 0 5 1.33 3.27 1.42 2.27 

20 0 0 8 1.3 11.32 2.5 38.73 

50 0 0 8 1.18 7.73 1.97 3.77 

20 0 0.2 2 0.52 0.65 0.54 0.54 

50 0 0.2 2 0.47 0.52 0.5 0.47 

20 0 0.2 5 0.33 0.69 1.07 0.71 

50 0 0.2 5 0.26 0.43 0.79 0.3 

20 0 0.2 8 0.26 1.16 1.83 1.15 

50 0 0.2 8 0.22 0.44 1.12 0.29 

20 0.5 0 2 0.98 1.46 1.09 1.3 

50 0.5 0 2 0.98 1.5 1 1.22 

20 0.5 0 5 0.69 1.55 0.142 1.69 

50 0.5 0 5 0.74 1.76 1.56 1.45 

20 0.5 0 8 0.84 3.31 1.86 3.65 

50 0.5 0 8 0.7 1.84 1.93 2.18 

20 0.5 0.2 2 0.16 0.2 0.18 0.17 

50 0.5 0.2 2 0.12 0.13 0.14 0.13 

20 0.5 0.2 5 0.02 0.04 1.19 0.03 

50 0.5 0.2 5 0.01 0.01 0.92 0.01 

20 0.5 0.2 8 <0.01 0.03 2.2 0.01 

50 0.5 0.2 8 <0.01 0.02 1.36 <0.01 
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Table 6: Estimated Efficiency for Four Skipped Estimators, ρ =.8 

n g h p OP MVE(S) MGV TBS(S) 

20 0 0 2 1.21 2.48 0.14 1.8 

50 0 0 2 1.3 2.23 1.62 1.59 

20 0 0 5 1.16 7.26 1.72 8.7 

50 0 0 5 1.21 3.3 1.48 2.4 

20 0 0 8 11.11 14.55 2.68 39.5 

50 0 0 8 1.04 8.88 2.31 4.77 

20 0 0.2 2 0.49 0.64 0.53 0.54 

50 0 0.2 2 0.52 0.63 0.58 0.54 

20 0 0.2 5 0.27 0.45 0.94 0.46 

50 0 0.2 5 0.2 0.24 0.75 0.19 

20 0 0.2 8 0.21 0.9 1.93 0.62 

50 0 0.2 8 0.14 0.17 1.03 0.11 

20 0.5 0 2 0.94 1.34 1.01 1.18 

50 0.5 0 2 0.98 1.41 1.06 1.15 

20 0.5 0 5 0.61 1.1 1.35 1.02 

50 0.5 0 5 0.51 0.87 1.03 0.69 

20 0.5 0 8 0.43 1.64 1.98 1.32 

50 0.5 0 8 0.35 0.45 1.46 0.54 

20 0.5 0.2 2 0.13 0.14 0.14 0.13 

50 0.5 0.2 2 0.12 0.13 0.01 0.12 

20 0.5 0.2 5 0.02 0.01 0.79 0.01 

50 0.5 0.2 5 0.01 0.01 0.82 0.01 

20 0.5 0.2 8 <.01 <.01 2.11 <.01 

50 0.5 0.2 8 <.01 <.01 1.37 <.01 
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