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The Effectiveness of Stepwise Discriminant Analysis 
as a Post Hoc Procedure to a Significant MANOVA 

 
Erik L. Heiny Daniel J. Mundfrom 

Utah Valley University University of Northern Colorado 
 

 
The effectiveness of SWDA as a post hoc procedure in a two-way MANOVA was examined using 
various numbers of dependent variables, sample sizes, effect sizes, correlation structures, and significance 
levels. The procedure did not work well in general except with small numbers of variables, larger samples 
and low correlations between variables. 
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Introduction 
One common type of research question in 
multivariate analysis involves searching for 
differences between multiple groups on several 
different response variables. Considering 
response variables as a vector of dependent 
variables, a one-way MANOVA can be used to 
test the hypothesis that the mean vectors are the 
same across groups. However, if a significant 
MANOVA has been found, how does the 
researcher determine which of the response 
variables contribute to group differences? 

Currently, most researchers use either 
multiple univariate F-tests, which are simply 
inappropriate, or descriptive discriminant 
analysis (DDA), which has been shown to lack 
power through simulation studies. Hawkins 
(1976) proposed the use of a stepwise 
MANOVA procedure, similar to stepwise 
regression, for selecting the best subset of 
variables to use in the MANOVA analysis. 
Hawkins further advocated for a Bonferroni 
adjustment to the α-level used at each step in the 
stepwise selection to control the overall Type I 
error rate, neither of these suggestions, however,  
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seem to be in much use today. Another approach 
used by some researchers is stepwise 
discriminant analysis (SWDA). Criticisms of 
stepwise methods in general have been well-
documented in the literature, most notably by 
Thompson (1995), which would appear to also 
apply to Hawkins’ stepwise MANOVA 
procedure. 

Essentially the criticisms center on 
stepwise methods being biased towards finding 
significance. Although this is a legitimate 
concern, it should be less prevalent in the 
context of this study; in this study real group 
differences exist on the dependent variables, 
therefore SWDA is not just fishing for 
differences that do not exist. Considering that 
some researchers are currently using SWDA in 
this context and that univariate F-tests and DDA 
are poor alternatives, empirical evidence is 
needed regarding the viability of SWDA as a 
post hoc procedure to a significant MANOVA. 

The purpose of this research is to 
investigate the effectiveness of SWDA in 
distinguishing between significant and non-
significant dependent variables when the 
MANOVA null hypothesis has been rejected. 
Specifically, it examines what the percentage of 
MANOVA dependent variables with means that 
differ between groups that are correctly 
identified as significantly different in a two-
group SWDA (i.e., the power), and the 
percentage of MANOVA dependent variables 
with means that are the same in both groups that 
are incorrectly identified as significantly 
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different in a two-group SWDA (i.e., the Type I 
error). The effect of sample size, n, the number 
of dependent variables in the MANOVA, p, the 
correlation structure among the dependent 
variables, ρ, the effect size, d, and the 
significance level used in the stepwise selection, 
α, were also investigated. 

Rencher and Larson (1980) performed a 
Monte Carlo simulation to examine the bias in 
Wilk’s lambda in SWDA. In SWDA, an F-
statistic can be used to test the significance of 
the reduction in Wilk’s lambda when an 
additional variable is added to the model. The 
larger the reduction in Wilk’s lambda due to the 
additional variable, the larger the F-statistic will 
become. Rencher and Larson note that if an 
arbitrary variable is considered for entry, the F-
statistic follows a true F-distribution.  

However, in SWDA several variables 
are considered for entry at each step and the 
maximum F-statistic from these variables is 
compared to the F-critical value. Because the F-
statistic is maximized at each step, it does not 
follow an F-distribution and the procedure 
becomes biased towards selecting variables that 
do not contain discriminatory information. 
Rencher and Larson conclude that the bias 
becomes most pronounced when there are a 
large number of variables under consideration 
and a relatively small sample size. They write, 
“In the author’s experience, such cases are fairly 
common. Habbema and Hermans (1977, p. 492) 
note that ‘sample sizes of say 10-40 are not 
unusual, with a number of variables ranging 
from 10-200.’” (p. 350). The most drastic case in 
this study will be sample sizes of 50 with the 
number of variables equal to 8. 

In addition, Rencher and Larson (1980) 
write, “we have restricted out attention to the 
null case of no difference between groups so as 
to provide some indication of the levels Wilks’ 
lambda may reach when there is no real 
separation from group to group” (p. 351). In this 
study, SWDA was used when the null 
hypothesis is false, that is, real separation exists 
from group to group. Therefore, the bias in 
Wilk’s lambda was not expected to be as severe 
in this study, but Type I errors in excess of alpha 
were likely and were watched closely. 
 
 

Methodology 
A Monte Carlo simulation was run using SAS 
PROC Interactive Matrix Language (IML). Two 
p-dimensional multivariate normal populations 
were created with characteristics that varied 
according to pre-set levels of the number of 
MANOVA dependent variables, p, which varied 
across the values, 2, 3, 4, 5, 6, 7, and 8, and a 
correlation structure among the p variables. In 
one population, the mean vector contained all 
zeros, whereas in the other population mean 
vector had half of the values set at 0 while the 
other half differed from 0 by an effect size, d, 
that varied across 0.2 (small), 0.5 (medium), and 
0.8 (large). When the value of p was odd, the 
mean of the extra variable was set at 0; for 
example, with p = 5 and a small effect size, the 
two mean vectors were: 
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Both populations were generated with the same 
correlation matrix, ρ.  

Six different correlation structures were 
examined. In each structure, variables were 
divided into set A, those that had the same mean 
in both groups, and set B, those that had means 
that differed between the groups. The within-set 
correlations, those between pairs of variables in 
set A (and between pairs of variables in set B), 
were varied across the values 0.20, 0.40 and 
0.60. Initially, the across-set correlations, those 
between pairs of variables in which one variable 
came from set A and the other came from set B, 
was set at 0.20. For example, with p = 5, the 
three correlation matrices used were: 
 

ρ1 = 
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ρ2 = 
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and 

ρ3 = 
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Because many of the scenarios examined with 
these correlation structures had large Type I 
error rates, the across-set correlations were 
reduced to 0.10 in order to see how this change 
would affect the results. Again for the p = 5 
case, the three additional correlation matrices 
were: 

ρ4 = 
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Additionally, sample sizes were varied across 
50, 100, 250, and 500 (although n = 500 was the 
only sample size used for the last three 

correlation structures), and the significance level 
used for variable selection in the SWDA was 
varied across 0.01, 0.05 and 0.10. 

For each of 945 scenarios determined by 
the values of p, d, n, ρ and α, 5,000 replications 
were performed. Each replication consisted of 
selecting a random sample of size n from each 
population described above, which led to two 
sample mean vectors. A SWDA was performed 
on each sample using SAS PROC STEPDISC 
with the stepwise selection method and the F-
test criterion for a chosen level of α. The 
percentage of correctly identified significant 
variables (power) and the percentage of non-
significant variables incorrectly identified as 
significant (Type I error) were computed for 
each sample. Averaging these values across the 
5,000 replications produced power and Type I 
error estimates for each scenario. Successful 
results were defined to be those situations for 
which power was maintained at 0.80 or higher 
and the Type I error rate did not exceed 0.10. 
 

Results 
Scenarios with Correlation Structure One, Two 
or Three 

For correlation structures one, two and 
three, SWDA was only successful for certain 
situations when p was small, 2 or 3. As long as p 
was not larger than 3, varying the correlation 
structure between levels one, two and three had 
almost no effect on the results. The larger p 
became, however, the more the results changed 
for different correlation structures (see Tables 1 
and 2). For p = 2 or 3 and a small sample size, n 
= 50, SWDA worked well for large effect sizes, 
d = 0.8, and α = 0.01 (Table 2). Type I errors 
were inflated above α but only to 0.03, and 
power was above 0.90. 

As n increased to 100, and p was set 
equal to 2 or 3, SWDA was still successful for 
large effect sizes, but only when α was set to 
0.01 (see Table 2). Power was over 0.99 and 
Type I error was 0.06. Additionally, for the same 
levels of n and p, SWDA worked well for 
medium effect sizes, d = 0.5, as long as α was 
set to 0.05 or 0.01 (see Table 1). For α = 0.01, 
power was around 0.82 and Type I error was 
near 0.025. For α = 0.05, power was 0.94 and 
Type I error was around 0.09. 
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Table 1: Power and Type I Error for α = 0.01, d = 0.5, Across-Set ρ = 0.2 

p 

Within-Set ρ = 0.2 
n 

Within-Set ρ = 0.4 
n 

Within-Set ρ = 0.6 
n 

50 100 250 500 50 100 250 500 50 100 250 500 

2 
0.4554 0.8214 0.9988 1.0000 0.4666 0.8268 0.9980 1.0000 0.4520 0.8190 0.9990 1.0000 

0.0126 0.0266 0.0662 0.1616 0.0132 0.0282 0.0710 0.1560 0.0156 0.0246 0.0588 0.1218 

3 
0.4510 0.8326 0.9978 1.0000 0.4550 0.8226 0.9980 1.0000 0.4466 0.8280 0.9986 1.0000 

0.0153 0.0256 0.0665 0.1447 0.0140 0.0245 0.0653 0.1315 0.0141 0.0242 0.0588 0.1218 

4 
0.3615 0.6393 0.9715 0.9999 0.3236 0.5100 0.8472 0.9947 0.3012 0.4613 0.6063 0.9083 

0.0143 0.0457 0.1990 0.4206 0.0160 0.0312 0.1094 0.2720 0.0148 0.0275 0.0754 0.1804 

5 
0.3653 0.6388 0.9705 0.9999 0.3196 0.5088 0.8522 0.9953 0.2953 0.4601 0.6106 0.9077 

0.0203 0.0462 0.1805 0.3631 0.0157 0.0327 0.1039 0.2196 0.0124 0.0275 0.0656 0.1430 

6 
0.3039 0.5242 0.9134 0.9990 0.2501 0.3790 0.6610 0.9062 0.2292 0.3215 0.4527 0.6637 

0.0196 0.0664 0.2840 0.5677 0.0179 0.0373 0.1203 0.2646 0.0176 0.0282 0.0696 0.1586 

7 
0.3059 0.5315 0.9194 0.9996 0.2521 0.3763 0.6618 0.9135 0.2302 0.3193 0.4558 0.6677 

0.0239 0.0618 0.2589 0.5055 0.0177 0.0330 0.1070 0.2200 0.0145 0.0248 0.0615 0.1361 

8 
0.2622 0.4622 0.8529 0.9970 0.2055 0.3072 0.5421 0.7793 0.1839 0.2458 0.3654 0.5203 

0.0260 0.0844 0.3364 0.6519 0.0190 0.0374 0.1184 0.2383 0.0155 0.0275 0.0641 0.1388 

Table 2: Power and Type I Error for α = 0.01, d = 0.8, Across-Set ρ = 0.2 

p 

Within-Set ρ = 0.2 
n 

Within-Set ρ = 0.4 
n 

Within-Set ρ = 0.6 
n 

50 100 250 500 50 100 250 500 50 100 250 500 

2 
0.9146 0.9994 1.0000 1.0000 0.9158 0.9990 1.0000 1.0000 0.9074 0.9992 1.0000 1.0000 

0.0328 0.0662 0.1836 0.4286 0.0294 0.0602 0.1906 0.4310 0.0312 0.0600 0.1900 0.4278 

3 
0.9180 0.9984 1.0000 1.0000 0.9160 0.9992 1.0000 1.0000 0.9162 0.9986 1.0000 1.0000 

0.0321 0.0622 0.1656 0.3547 0.0304 0.0587 0.1555 0.3119 0.0262 0.0542 0.1455 0.2880 

4 
0.6908 0.9575 1.0000 1.0000 0.5509 0.8083 0.9985 1.0000 0.4894 0.5855 0.9495 1.0000 

0.0529 0.1698 0.4612 0.7833 0.0361 0.0979 0.3072 0.5063 0.0312 0.0645 0.2189 0.3919 

5 
0.6909 0.9612 1.0000 1.0000 0.5444 0.8162 0.9984 1.0000 0.4872 0.5874 0.9511 1.0000 

0.0565 0.1530 0.4060 0.6827 0.0371 0.0867 0.2470 0.3790 0.0281 0.0563 0.1693 0.2840 

6 
0.5708 0.8580 0.9997 1.0000 0.4020 0.6227 0.9427 0.9995 0.3351 0.4275 0.6946 0.9328 

0.0753 0.2309 0.5992 0.8669 0.0397 0.1097 0.2889 0.4639 0.0296 0.0602 0.1801 0.3013 

7 
0.5711 0.8704 0.9998 1.0000 0.4089 0.6258 0.9447 0.9996 0.3347 0.4313 0.6957 0.9379 

0.0713 0.2092 0.5294 0.8123 0.0410 0.0972 0.2391 0.3765 0.0267 0.0562 0.1533 0.2334 

8 
0.4906 0.7726 0.9978 1.0000 0.3318 0.5055 0.8111 0.9866 0.2545 0.3454 0.5533 0.7617 

0.0850 0.2610 0.6603 0.9231 0.0430 0.1033 0.2565 0.4191 0.0299 0.0595 0.1593 0.2369 
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As n increased to 250 while p remained 
equal to 2 or 3, the procedure was successful for 
medium effect sizes and α = 0.01 (see Table 1). 
Power was over 0.99 and Type I error was less 
than 0.07. The procedure became too aggressive 
for large effect sizes, with observed Type I error 
going as high as 0.50 in some situations. 

When n increased to 500 while p was 
still limited to 2 or 3, SWDA was only 
successful for small effect sizes, d = 0.20, and α 
= 0.05. Power was approximately 0.89 and Type 
I error was near 0.09. When α was lowered to 
0.01, Type I error dropped to 0.02 but power 
went down to 0.72. When α was increased to 
0.10, power increased to 0.94 but Type I error 
was high, 0.15. Due to the aggressive nature of 
SWDA, the procedure did not work well for 
medium or large effect sizes when n = 500. The 
power was very high, but Type I error increased 
well above 0.10. 
 
Scenarios with Correlation Structure Four, Five 
or Six 

As noted, correlation structures four, 
five  and  six  were  simulated  with  n = 500 to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

investigate the increase in Type I error which 
accompanied any increase in effect size. Recall 
that in correlation structures one, two and three, 
the across-set correlations were kept constant at 
0.20. In correlation structures four, five and six, 
these correlations were reduced to 0.10. In 
comparison, SWDA was much more successful 
under correlation structures four, five and six. 
The procedure worked well for many scenarios 
when p was equal to 2 or 3, and it also worked 
well under certain conditions for p as high as 7 
(see Table 3). When p was 2 or 3, alternating 
between correlation structures four, five and six 
produced almost identical results (see Table 3). 

When p was equal to 2 or 3, SWDA 
worked well for small effect sizes, d = 0.20 and 
α = .05. Power was equal to 0.89 and Type I 
error was 0.06. For α = 0.01 power decreased to 
0.71, and for α = 0.10 Type I error increased to 
0.11. For medium and large effect sizes, d = 
0.50 and d = 0.80 respectively, SWDA worked 
well if α = 0.01. Power was equal to 1.00 in both 
cases, and Type I error was 0.04 and 0.08 
respectively (see Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Power and Type I Error for α = 0.01, n = 500, Across-Set ρ = 0.1 

p 

Within-Set ρ = 0.2 
d 

Within-Set ρ = 0.4 
d 

Within-Set ρ = 0.6 
d 

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

2 
0.7158 1.0000 1.0000 0.7234 1.0000 1.0000 0.7198 1.0000 1.0000 

0.0116 0.0354 0.0804 0.0122 0.0354 0.0824 0.0122 0.0392 0.0786 

3 
0.7128 1.0000 1.0000 0.7292 1.0000 1.0000 0.7222 1.0000 1.0000 

0.0143 0.0353 0.0737 0.0123 0.0331 0.0702 0.0110 0.0308 0.0624 

4 
0.5581 0.9999 1.0000 0.4551 0.9921 1.0000 0.4197 0.8966 0.9995 

0.0159 0.0857 0.2103 0.0126 0.0662 0.1443 0.0108 0.0444 0.0972 

5 
0.5621 0.9999 1.0000 0.4563 0.9916 1.0000 0.4519 0.8933 0.9995 

0.0153 0.0796 0.1884 0.0138 0.0578 0.1194 0.0124 0.0380 0.0840 

6 
0.4601 0.9963 1.0000 0.3390 0.8811 0.9991 0.3002 0.6499 0.9062 

0.0179 0.1391 0.2933 0.0135 0.0689 0.1622 0.0138 0.0402 0.0986 

7 
0.4641 0.9961 1.0000 0.3424 0.8791 0.9987 0.2991 0.6527 0.9120 

0.0188 0.1229 0.2564 0.0134 0.0654 0.1413 0.0118 0.0365 0.0813 

8 
0.4025 0.9746 0.9999 0.2757 0.7325 0.9664 0.2305 0.5070 0.7395 

0.0222 0.1646 0.3248 0.0146 0.0683 0.1553 0.0128 0.0377 0.0869 
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For values of p greater than 3, 
alternating between correlation structures four, 
five and six begins to make a difference. For 
correlation structure four, the within-set 
correlations were set equal to 0.20. For 
correlation structures five and six, these 
correlations were increased to 0.40 and 0.60 
respectively. SWDA worked well for p = 4 or 5 
when d = 0.50 and α = 0.01 (see Table 3). Power 
and Type I error values were very similar for 
both p = 4 or 5, but were different for different 
correlation structures. Under correlation 
structures four, five and six, power was equal to 
0.9999, 0.9920, and .8950 respectively, and 
Type I error was equal to 0.08, 0.06, and 0.04 
respectively. 

For values of p greater than 5, SWDA 
was effective in a couple of scenarios: for p = 6 
or 7, the procedure worked well for medium and 
large effect sizes when α = .01. Power was 
around 0.88 and 0.90 respectively, and Type I 
error was around 0.07 and 0.09 respectively. 
Lowering the across-set correlations from 0.20 
to 0.10 appeared to improve the effectiveness of 
SWDA, specifically with respect to Type I error. 
However, even with the across-set correlations 
reduced, SWDA still appeared to enjoy limited 
success when values of p increased above 3. 
 
Effect of Independent Variables on Power and 
Type I Error 
p – The Number of MANOVA Dependent 
Variables 

SWDA appeared to become less 
effective as the number of MANOVA dependent 
variables increased. Generally, as p increased, 
the power decreased and Type I error increased. 
Power and Type I error tended to be very similar 
when results are grouped by p = 2 or 3, then by 
p = 4 or 5, by p = 6 or 7 and finally by p = 8. It 
should be noted that for each of these groupings, 
the number of variables with means that differed 
between the two groups is the same. Satisfactory 
results were usually obtained for only p = 2 or 3, 
this may be largely due to having only one 
variable whose mean is different between the 
two groups. Satisfactory results might still be 
obtained for values of p greater than 3, as long 
as only one of the variables has a mean that 
differs between the groups. 

When the sample size was large, 
especially if the within-set correlation was low, 
SWDA became too aggressive resulting in Type 
I errors that were too high. This problem was 
exacerbated as p increased. In some cases, Type 
I error increased from 0.30 to 0.80 as p increased 
from 2 to 8. These results support the claim by 
Thompson (1995) that stepwise methods tend to 
increase the likelihood of Type I errors, 
especially for larger values of p. Thompson 
suggests that because several variables are 
considered for entry at each step, more degrees 
of freedom should be charged to the numerator 
from the denominator of the F-statistic. This 
technique will produce a smaller value for the F-
statistic, making Type I errors less likely. 
However, Thompson mentions as a caveat that 
this outcome is less likely to be an issue when 
the number of dependent variables is small. 

Less favorable results regarding power 
were also observed when p increased. The F-
statistic used in SWDA is described by Klecka 
(1980) as “the F-to-enter is a partial multivariate 
F-statistic which tests the additional 
discrimination introduced by the variable being 
considered after taking into account the 
discrimination achieved by the other variables 
already entered (Dixon, 1973, p. 241)” (p. 57). 
For certain variables, when only the additional 
contribution to discrimination is considered, 
problems can arise if these variables share 
information with other variables that are already 
in the model. “…two or more of the variables 
may share the same discriminating information 
even though individually they are good 
discriminators. When some of these are 
employed in the analysis, the remainder are 
redundant” (Klecka, p. 52). 

For this study, if multiple variables 
differ between the two groups the power can be 
reduced if SWDA considers one or more of 
these variables as redundant, thus, when p 
increased, the number of variables that differed 
between the two groups also increased. With 
respect to power in SWDA, it could be that 
increasing p by itself does not reduce power, but 
increasing the number of variables whose means 
differ between the two groups does reduce 
power because SWDA may consider some of 
these to be redundant. This effect can be 
observed in Tables 1, 2 and 3. 
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n – Sample Size 
Results based on sample size were as 

expected: as n increased, both power and Type I 
error increased as well. Unfortunately, SWDA 
appears to be too aggressive when the sample 
size gets large. Under correlation structures one, 
two or three, when n was 250 or 500, Type I 
error was too high except under certain 
conditions. High enough power was not an issue 
when n got large, but in order to keep Type I 
error below 0.10 the effect size needed to be 
small (d = 0.20) and α = 0.01. When the across-
set correlation was reduced from 0.20 to 0.10, 
the Type I error rate was controlled much better 
(see Table 3). For correlation structures four, 
five and six, there were situations for medium 
and large effect sizes, as well as small effect 
sizes, where the Type I error stayed below 0.10. 
Lower levels of across-set correlation enables 
SWDA to perform more efficiently but caution 
should be used by the researcher when using 
SWDA with large sample sizes; at the very least, 
small levels of α should be used in this situation. 
 
d – Effect Size 

As expected, when effect size increased, 
power increased. This pattern was observed 
regardless of sample size, but was more apparent 
with smaller values of n. When the sample size 
became large the power of SWDA was high 
even for small effect sizes. Discrepancy in 
power for different effect sizes can be observed 
in Table 3. 

Surprisingly, Type I error increased as 
well as power when effect size increased. It was 
believed that with higher effect sizes it would be 
easier for SWDA to distinguish between 
variables with means that differed between the 
groups and variables with means that were the 
same in both groups. However, this outcome 
was not the case and the pattern became even 
more apparent as n and p increased. This pattern 
is shown when comparing Tables 1 and 2. In 
some cases, for large n, large p and large d, Type 
I errors in excess of 0.90 were observed - 
SWDA becomes more aggressive as effect size 
increases. 

The only connection between variables 
whose means are different in the two groups and 
variables whose means are the same in the two 
groups is the across-set correlation. Increasing 

the effect size did nothing to change the across-
set correlation, but when the effect size became 
larger, a variable with the same mean in both 
groups was now correlated with a variable 
whose mean had an even larger difference 
between the two groups. This relationship 
appeared to increase the likelihood of the 
variable with the same mean in both groups, 
being incorrectly identified by SWDA. 

To examine this relationship further, 
additional simulations were run at n = 500 and 
with the across-set correlation reduced to 0.10. 
Results for these scenarios (see Table 3) show 
that the same pattern was still observed. As 
effect size increased, the likelihood of Type I 
error increased as well. However, the Type I 
error rate was reduced significantly under 
correlation structures four, five and six. With the 
across-set correlation reduced from 0.20 to 0.10, 
a variable with the same mean in both groups 
now had a smaller correlation with a variable 
whose mean differed between the two groups. 
When the effect size was increased, therefore, 
the variable with the same mean in both groups 
was less likely to be incorrectly identified by 
SWDA. 

It is difficult to explain why this 
happens in SWDA, but it appears that the 
across-set correlation is the key. Apparently, 
when a variable with the same mean in both 
groups is correlated to a degree with a variable 
with a high level of discriminatory power, 
SWDA has a tendency to select both variables. 
There appears to be a guilty-by-association 
factor present. The likelihood of incorrectly 
selecting the variable with the same mean in 
both groups increases as the correlation between 
the two variables increases. 
 
ρ – Correlation 

Within-set correlations varied among 
levels 0.20 (correlation structures one and four), 
0.40 (correlation structures two and five) and 
0.60 (correlation structures three and six). With 
all other independent variables held constant, as 
the within-set correlations increased, power and 
Type I error both decreased. This result indicates 
that SWDA becomes more conservative as 
correlations among MANOVA dependent 
variables increases; this pattern became more 
apparent as p increased. When one variable with 
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means that differed between the groups had been 
correctly selected by SWDA, the likelihood of 
selecting another variable with means that 
differed between the groups went down as the 
correlation between these two variables 
increased. The higher the correlation between 
these two variables, the less unique 
discriminatory information was offered by the 
second variable.  

The same pattern was observed among 
variables with the same mean in both groups. 
Once one of these variables had been incorrectly 
selected by SWDA, the likelihood of incorrectly 
selecting a second variable went down as the 
correlation between the two variables increased. 
Again with higher correlation between these two 
variables, any imagined discriminatory 
information detected by SWDA, appeared to be 
redundant for the second variable. 

Across-set correlations varied among 
levels 0.20 (correlation structures one, two and 
three) and 0.10 (correlation structures four, five 
and six). As across-set correlations increased, 
the likelihood of Type I error also increased. For 
a variable with the same mean in both groups, 
any correlation it shared with a variable with 
means that differed between the groups, made it 
more likely to be incorrectly selected by SWDA 
(this outcome is the same guilty-by-association 
factor previously mentioned). 

A final observation was made on the 
effect of correlations among MANOVA 
dependent variables on SWDA due to a 
programming error early in the simulation 
process. The error in the simulations produced 
correlation matrices that were identity matrices 
so that all MANOVA dependent variables were 
statistically independent. The results for power 
and Type I error were very good using SWDA in 
this context. It should be noted that complete 
statistical independence between all dependent 
variables is not a realistic correlation structure, 
but it gives a little more insight into the 
effectiveness of SWDA as a post hoc procedure 
to MANOVA. For situations in which there is 
little correlation among the MANOVA 
dependent variables, SWDA may be an effective 
post hoc procedure to a significant MANOVA. 
The sample correlation matrix can help 
researchers estimate the level of correlations 
among the dependent variables. 

α – Level of Significance 
As expected, when α increased, power 

and Type I error increased as well. For small n 
and small d, observed values of Type I errors 
were very close to the set level α. This 
relationship was consistent regardless of p or the 
level of correlation among the MANOVA 
dependent variables. However, as n and/or d 
increased, the observed value of Type I error 
tended to increase to well above the set level of 
α. In some extreme cases the observed Type I 
error exceeded 0.90 and Type I error values in 
the 0.40 to 0.50 range were commonplace for 
large values of n or d. 

Inflated Type I error levels were 
expected in this study but the actual inflation in 
the Type I error rates were much larger than 
expected. Rencher and Larson (1980) observed 
that the F-statistic used in SWDA is biased 
towards including variables that should not be 
selected. However, Rencher and Larson only 
considered the case where the MANOVA null 
hypothesis was true. In this study, the 
MANOVA null hypothesis was false, therefore 
it was expected that Type I errors would not be 
drastically inflated since SWDA wasn’t fishing 
for significant results. Inflated Type I errors 
were observed, however, suggesting that 
researchers using SWDA should set α to lower 
than desired values of Type I error, especially 
for larger sample sizes (n = 250 or 500). 
 

Conclusion 
Although SWDA appears to be a very powerful 
procedure, it seems to be too aggressive in 
general. The biggest issue in this study was 
inflated Type I error; researchers who are using 
SWDA need to be aware of this problem. 
However, researchers may be able to use the 
procedure quite successfully under certain 
conditions. First, researchers should keep the 
number of dependent variables small, probably 
no more than three or four according to this 
study. Secondly, SWDA will be most successful 
when the correlations among the dependent 
variables are small. This condition is very 
important and researchers should check the 
sample correlation matrix before using SWDA. 
Finally, researchers may be able to interpret the 
order in which variables are selected, albeit with 
some caution. Although there is no empirical 
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evidence offered in this study, it was observed 
that when SWDA became too aggressive and 
selected too many variables, the variables with 
means that differed between the groups were 
generally selected first. If researchers are aware 
of this pattern, they can compare sample mean 
vectors on the variables that were selected later 
by SWDA, and make some tentative conclusions 
on the discriminatory power of these variables. 

Inflation of Type I error was a serious 
issue in this study when sample size increased. 
Because the order in which the variables were 
selected was generally correct, future 
researchers should look for ways to make 
SWDA stop in time, especially for larger sample 
sizes. One possible solution would be to use the 
squared partial correlation criterion, rather than 
the F-test criterion used in this study. The 
squared partial correlation criterion and the F-
test criterion select variables in the same order, 
but the F-test criterion tends to select more 
variables as the sample size increases (SAS 
Institute Inc., 2004). Future researchers can also 
conduct simulations using Thompson’s (1995) 
adjustment for degrees of freedom to determine 
how well this method controls Type I error. 

Another possibility could be to make a 
Bonferroni-type adjustment to the α-level that is 
used to select the significant variables, similar to 
what Hawkins (1976) advocated with his 
stepwise MANOVA procedure. When SWDA is 
used in this context, it can be reasonably viewed 
as a multiple comparison-type procedure, similar 
to how the Scheffe’ and Bonferroni procedures 
are used as a follow-up to a significant ANOVA. 
In that context, it is common practice to adjust 
the significance level for each of the multiple 
follow-up tests to control the family-wise error 
rate. 

Because SWDA is also performing 
multiple tests on several variables at each step of 
the selection process, using some type of 
adjustment for each test at each step would seem 
like a reasonable step to take. This study did not 
address the utility of making a Bonferroni-type 
adjustment, so further research would be needed 
in order to determine the effectiveness of doing 
so, as well as how much of an adjustment to the 
α-level for each test would be needed to control 
the overall Type I error rate at the nominal level. 
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