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This Monte Carlo simulation study assessed the degree of classification success associated with 
resubstitution methods in latent class analysis (LCA) and compared those results to those of the leave-
one-out (L-O-O) method for computing classification success. Specifically, this study considered a latent 
class model with two classes, dichotomous manifest variables, restricted conditional probabilities for each 
latent class and relatively small sample sizes. The performance of resubstitution and L-O-O methods on 
the lambda classification index was assessed by examining the degree of bias. 
 
Key words: Resubstitution methods, multivariate classification, latent class analysis, leave-one-out, 
lambda classification index. 
 
 

Introduction 
Classifying individuals into groups is a popular 
multivariate technique, methods for which 
include: logistic regression analysis and 
discriminant function analysis with manifest 
group membership and cluster analysis and 
latent class analysis (LCA) with latent group 
membership (Everitt, Landau & Leese, 2001). 
Measures of classification success, however, can 
be biased in the positive direction because the 
data used for model estimation are also used to 
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evaluate the success of classification (Hand, 
1986). Measures of classification success based 
on the same data used to fit the model are 
referred to as resubstitution measures (Huberty, 
1994; Clancy, 1997). The leave-one-out method 
(L-O-O), initially proposed by Lachenbruch 
(1967) to obtain approximately unbiased 
classification success measures, may be a viable 
alternative to the resubstitution method. Huberty 
(1994) also provides an illustration of the L-O-O 
method compared to other methods in the 
context of discriminant function analysis. 

Two common measures for 
classification success in LCA are proportion 
correctly classified, Pc, and the statistic, λ 
(lambda), which adjusts Pc for chance level 
classification into the largest latent class 
(Goodman & Kruskall, 1954). Investigation of 
this bias in small samples sizes was suggested in 
Dayton (1998) but has yet to be widely 
addressed in the latent class literature. In order 
to assess the degree of bias, the traditional 
resubstitution computation of λ and the λ 
computed using the L-O-O method were 
compared to a theoretical value for λ. 
 
Latent Class Analysis 

Latent Class Analysis (LCA) is a 
statistical technique for multivariate categorical 
data that is used to discover subtypes of 
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individuals or to confirm hypothesized subtypes 
of individuals (see Dayton, 1998, for more latent 
class model details). LCA is useful for: (1) 
estimating latent class proportions (class sizes) 
for two or more latent classes and conditional 
probabilities for the manifest variables; and (2) 
assigning individuals to the latent classes using 
Bayes’ theorem. An example of LCA is locating 
distinctive cognitive diagnostic categories from 
examinees’ answers to achievement test items in 
an educational context. Subsequently, Bayes’ 
theorem can be used to assign examinees to the 
diagnostic categories that are most likely based 
on their observed responses. 
 
Theoretical Framework 

Successful classification of individuals 
into latent classes is a fundamental component to 
LCA. Following Dayton (1998), Bayes’ theorem 
is used to determine the posterior probability of 
membership in each latent class, t, given a 
specific response vector, ys: 
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where tπ  is the latent class proportion, X is the 

latent variable with levels (classes) t in T, and 

])y|([ X
tstP π×Σ  is the unconditional (across 

all latent classes) probability for the response 
vector ys. All individuals with the same response 
pattern are classified into the latent class, t, with 
the largest posterior probability corresponding to 
its response vector, ys. The following formula 
expresses the proportion correctly classified, Pc: 
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where max P(t| ys) is the largest posterior 
probability for response ys across all latent 
classes T , ns is the number of cases 
corresponding to the response vector ys, and N is 
the total number of cases. Note that the number 
of possible response vectors is 2v, where v is the 
number of manifest variables; thus, 2v elements 
would be in the summation at the population 

level and, for sample based analyses, up to 2v 
elements. 

Chance level of correct classification, 
which is maximized by classifying all cases into 
the largest latent class, is not accounted for in 
Pc. Goodman and Kruskall (1954) developed the 
λ (lambda) statistic as an adjusted value of Pc. 
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where X
Mπ  represents the largest latent class 

proportion. 
Considering that the parameter 

estimation and classification success for the 
latent class model are based on the same data 
(i.e., resubstitution), Dayton (1998) noted that 
values for Pc and λ tend to be biased upward 
(more so with small sample sizes) and that 
research investigating the magnitude and 
methods to correct for this have yet to be studied 
in great detail; thus, this provided the motivation 
for this study. Work by Dias and Vermut (2006), 
however, used bootstrapping techniques to 
assess classification uncertainty in LCA. Their 
research brought to light the risk of using 
traditional resubstitution methods, especially at 
the individual response vector level. 
 
The Leave-One-Out Method 

A so-called jackknife method for 
determining an unbiased estimate for 
classification accuracy was developed by 
Lachenbruch (1967). His study focused on 
discriminant analysis and his method has been 
named the leave-one-out (L-O-O) method 
(Huberty, 1994). This method involves two 
basic steps. First, the model is estimated in the 
sample with one observation deleted, and then 
the resulting parameter estimates are used to 
classify the single deleted observation. This 
process was carried out N times so that each 
observation was deleted and classified. 
Consequently, the measure of successful 
classification is the proportion of times that the 
deleted observation was correctly classified 
(Huberty, 1994). 

In order to investigate the bias reduction 
property of the L-O-O method, Lachenbruch 
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(1967) conducted a small Monte Carlo 
simulation study with 300 replications for a two 
group discriminant analysis The proportions of 
correct classifications according to both the 
resubstitution and L-O-O methods were 
calculated and empirical 95% confidence 
intervals (CIs) were obtained for those 
proportions. The CIs for the L-O-O method 
contained the true population value 93.3% of the 
time and the resubstitution method contained the 
true value 84.7% of the time. These results 
suggested the appropriateness and usefulness of 
Lachenbruch’s L-O-O technique. Lachenbruch’s 
procedure, with modifications, was employed in 
this LCA study, which involved a greater 
number of replications. 
 

Methodology 
Simulation Conditions 

This study considered a latent class 
model with two classes, dichotomous manifest 
variables, restricted conditional probabilities for 
each latent class and relatively small sample 
sizes. The number of manifest variables 
considered was 4 and 6; this was purposefully 
small due to the small sample size focus of the 
study and the computation complexity 
associated with additional variables. Sample size 
varied in three ways based on the number of 
manifest variables. 

Simulation sample sizes were 3, 5, or 7 
times the number of possible response vectors. 
For example, applying the first weight, 3, to the 
four variable case yields a sample size of 3×24 = 
48. The latent class proportions and conditional 
probabilities for responses to the manifest 
variables followed a structure similar to that 
used in Holt and Macready (1989). The first set 
of latent class proportions had no discrepancy 
(.5, .5), and the second set had a large 
discrepancy, (.8, .2).  

Three sets of conditional probabilities 
were tested; the first set had a small disparity (.7, 
.4), the second set had a moderate disparity (.8, 
.3) and the last had larger disparity (.9, .05). The 
first number in the set corresponded to the 
conditional probability of a positive response to 
all items for the larger latent class (if there was 
one) and the second number applied to the 
smaller latent class (if there was one). Thus, the 
conditional probabilities were homogeneous 

across manifest variables within each latent 
class. In sum, this simulation included the 
following number of cells: 2 (number of 
variables)*3 (sample size cases)*2 (latent class 
proportions)*3 (conditional probability sets) for 
a total of 36 simulation conditions. 
 
Data Generation and LCA Parameter Estimation 

Monte Carlo simulation methods were 
used to generate data consistent with the 
parameters described above. MATLAB (The 
MathWorks Inc., 2007) was used to conduct the 
simulation. Following guidelines in Holt & 
Macready (1989), there were 500 replications 
per cell. The flexible Expectation-Maximization 
(EM) (Dempster, Laird & Rubin, 1977; 
McLachlan & Krishnan, 1997) algorithm was 
programmed in MATALB to provide the 
maximum-likelihood estimates (MLE) of the 
parameters in the latent class model. The 
iterative EM algorithm is a popular parameter 
estimation technique in LCA because there is no 
closed form formulation for their MLE 
computation (Dayton, 1998). It is the default 
estimation method in LEM (Vermut, 1997) or 
Mplus (Muthén & Muthén, 2004) and, typically, 
LEM or MPlus would be the program of choice, 
but MATLAB offers more advanced and useful 
data manipulation options. The accuracy of the 
costume MATALB code was compared the 
estimates obtained in Mplus. 
 
Resubstitution and L-O-O Methods for Lambda 
Computation 

The performance of resubstitution and 
L-O-O methods on the lambda (λ) classification 
index was assessed by examining the degree of 
bias. Thus, for each replication in each 
simulation cell, the L-O-O and resubstitution 
lambda was computed and compared to the 
theoretical λ value. The calculation of the 

sample based resubstitution '
cP  and λ´, followed 

equations (2) and (3), respectively, but used the 
MLE parameter estimates obtained from the 
LCA estimation from the sample data associated 
with each replication in each cell. 

The L-O-O method calculation was 
conducted in a similar fashion to that of the 
Lachenbruch (1967) simulation study, but was 
modified for LCA. A description of this 
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procedure is: For each response vector from the 
generated sample data, each unique response 
vector was deleted and the parameters re-
estimated. The max P´(t| ys) for the deleted 
response vector, ys, was determined according to 
equation (1), but based on the re-estimated 
parameters from the N – 1 cases. The deleted 
response vector was placed back in the data set 
and the process was repeated for the next unique 
response vector. 

After this process, each of the (up to) 2v 
max P´(t| ys) values was weighted by the 
appropriate ns, summed, and divided by N 

(equation 2); essentially this is a jackknifed '
cP , 

which will be called *
cP . Alternately the 

equivalent procedure (described above) could be 
conducted by deleting each case instead of each 
unique response vector and equally weighting 
the max P´(t| ys) associated with each deleted 
case. The latter was performed for this study. 
Note that the L-O-O method based estimate for 
this index requires N estimations and the 
possibility exists for not getting a converged 
solution during each of the N estimations. If the 
estimation associated with a given deleted case 
failed to converge, the case was eliminated from 
the analysis and N was adjusted accordingly. 

This value appeared in the numerator of 
the L-O-O method lambda, which will be called 

*λ . The maximum latent class proportion 
estimate used to compute λ´ was also used to 
compute *λ . This provided a means by which to 
be able to directly compare the degree of 
classification success above the chance success 
of classifying all simulees in the largest 
estimated latent class proportion based on the 

entire dataset, X
M
'π . The formula for *λ  is: 

 

)1(

)(
'

'*
*

X
M

X
McP

π
πλ

−
−

= .                       (4) 

 
Simulation Study Outcomes 

The two outcome measures evaluated 
were the degree of bias and the performance of 

95% confidence intervals based on λ´ and *λ  in 
capturing the true value, λ. The true value, λ, 
was computed by applying the true population 
generating parameters to equations (1), (2) and 

(3). First, to evaluate the bias of λ´ and *λ , the 
mean of the estimates, M, was computed and 
compared to the theoretical value for lambda. 
The percent difference between each mean and 
corresponding λ was reported. 

Second, within each cell, up to 500 
(depending on the number of converged 
solutions) 95% CIs were computed for each λ´ 

and *λ . As noted, for the L-O-O method, an 

estimate of *λ  is treated as a converged solution 
unless the N estimations do not converge while 
there is only one estimation required to obtain 
λ´, the resubstitution value. The method for CI 
construction was based on the method for 
computing proportion CIs developed by Wilson 
(1927) and further described by Newcombe 
(1998). The computation of the interval is as 
follows: 
 

)(2

42
2

22

zn
npqzznp
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+±+
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where p is the lambda value, q is 1- p, n is the 
sample size for the given cell, and z is 1.96. The 
degree of bias was measured by subtracting the 
proportion of times the two types (resubstitution 
and L-O-O) of CIs contained the theoretical λ 
from 95%. Note that both of these measures are 
reasonable methods, but not necessarily the only 
ways, to assess the performance of the two 
methods in terms of bias (i.e., comparing the 
observed to statistic to truth). 
 

Results 
The simulation outcome measures described 
above are summarized in Tables 1 and 2 for the 
4 and 6 variables cases, respectively. Note that, 
except for the confidence interval coverage for 
one cell of the study, the difference between 
both simulation outcome measures associated 
with resubstitution and L-O-O methods was very 
small; i.e., less than .02 in absolute value. 
Figures 1 and 3 provide a graphical display of 
the outcome measures for the 4 variable case 
and Figures 2 and 4 provide a graphical display 
for the six variable case. While the results for 
the resubstitution and L-O-O methods mirrored 
each other, trends emerged from the various 
factors manipulated. 
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Table 1: Simulation Results when ν = 4 

N LC Max Cond. Prob. %RE %LOO .95-%RE .95-%LOO MRE - λ MLOO - λ 

48 0.500 (.7,.4) 0.330 0.274 0.620 0.676 0.204 0.200 

48 0.500 (.8,.3) 0.682 0.680 0.268 0.270 0.066 0.068 

48 0.500 (.9,.05) 0.992 0.994 -0.042 -0.044 0.009 0.009 

48 0.800 (.7,.4) 0.010 0.018 0.940 0.932 0.531 0.526 

48 0.800 (.8,.3) 0.164 0.154 0.786 0.796 0.242 0.233 

48 0.800 (.9,.05) 0.964 0.962 -0.014 -0.012 0.014 0.014 

80 0.500 (.7,.4) 0.356 0.344 0.594 0.606 0.091 0.094 

80 0.500 (.8,.3) 0.728 0.736 0.222 0.214 0.027 0.028 

80 0.500 (.9,.05) 0.986 0.986 -0.036 -0.036 0.004 0.004 

80 0.800 (.7,.4) 0.032 0.036 0.918 0.914 0.419 0.413 

80 0.800 (.8,.3) 0.262 0.248 0.688 0.702 0.164 0.163 

80 0.800 (.9,.05) 0.930 0.930 0.020 0.020 0.007 0.007 

112 0.500 (.7,.4) 0.360 0.344 0.590 0.606 0.016 0.016 

112 0.500 (.8,.3) 0.756 0.758 0.194 0.192 0.006 0.006 

112 0.500 (.9,.05) 0.982 0.982 -0.032 -0.032 0.002 0.002 

112 0.800 (.7,.4) 0.042 0.050 0.908 0.900 0.317 0.312 

112 0.800 (.8,.3) 0.356 0.356 0.594 0.594 0.117 0.116 

112 0.800 (.9,.05) 0.928 0.926 0.022 0.024 0.003 0.003 

Note: LC MAX is the first latent class population proportion; Cond. Prob. is the population conditional 
probability for all responses; %RE is the percentage of the resubstitution method CIs containing λ; %RE 
is the percentage of the resubstitution method CIs containing λ; MRE is the mean of the λ estimates based 
on the resubstitution method; MRE is the mean of the λ estimates based on the L-O-O method. 
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Table 2: Simulation Results when ν = 6 

N LC Max Cond. Prob. %RE %LOO .95-%RE .95-%LOO MRE - λ MLOO - λ 

192 0.500 (.7,.4) 0.554 0.558 0.396 0.392 -0.021 -0.024 

192 0.500 (.8,.3) 0.878 0.878 0.072 0.072 -0.011 -0.011 

192 0.500 (.9,.05) 0.990 0.990 -0.040 -0.040 0.000 0.000 

192 0.800 (.7,.4) 0.046 0.050 0.904 0.900 0.247 0.240 

192 0.800 (.8,.3) 0.538 0.542 0.412 0.408 0.047 0.047 

192 0.800 (.9,.05) 0.972 0.972 -0.022 -0.022 0.002 0.002 

320 0.500 (.7,.4) 0.494 0.496 0.456 0.454 -0.054 -0.054 

320 0.500 (.8,.3) 0.836 0.836 0.114 0.114 -0.011 -0.011 

320 0.500 (.9,.05) 0.986 0.986 -0.036 -0.036 0.000 0.000 

320 0.800 (.7,.4) 0.092 0.086 0.858 0.864 0.130 0.128 

320 0.800 (.8,.3) 0.636 0.636 0.314 0.314 0.020 0.020 

320 0.800 (.9,.05) 0.968 0.968 -0.018 -0.018 0.000 0.000 

448 0.500 (.7,.4) 0.446 0.446 0.504 0.504 -0.053 -0.054 

448 0.500 (.8,.3) 0.850 0.850 0.100 0.100 -0.010 -0.010 

448 0.500 (.9,.05) 0.994 0.994 -0.044 -0.044 0.000 0.000 

448 0.800 (.7,.4) 0.176 0.178 0.774 0.772 0.099 0.096 

448 0.800 (.8,.3) 0.588 0.588 0.362 0.362 0.009 0.010 

448 0.800 (.9,.05) 0.974 0.974 -0.024 -0.024 0.000 0.000 

Note: LC MAX is the first latent class population proportion; Cond. Prob. is the population conditional 
probability for all responses; %RE is the percentage of the resubstitution method CIs containing λ; %RE is 
the percentage of the resubstitution method CIs containing λ; MRE is the mean of the λ estimates based on the 
resubstitution method; MRE is the mean of the λ estimates based on the L-O-O method. 
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Figure 1: .95 - %RE and 95 - %LOO over Conditional Probabilities when ν = 4 
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Figure 2: .95 - %RE and 95 - %LOO over Conditional Probabilities when ν = 6 
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Figure 3: RE and LOO BIAS over Conditional Probabilities when ν = 4 
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Figure 4: RE and LOO BIAS over Conditional Probabilities when ν = 6 
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Overall, results were largely consistent 
with expectations: Assessing classification 
accuracy improves with increasing samples size, 
larger numbers of variables, more discrepant 
conditional probabilities, and equal (i.e., less 
discrepant) latent class proportions. In terms of 
absolute numbers, the outcome measures from 
the simulation strongly suggested the best results 
across all other conditions occurred when the 
conditional probabilities were the most 
discrepant. In sum: 
• Overall, more bias and less confidence 

interval coverage for the (.8, .2) latent class 
proportions resulted compared to the (.5, .5) 
latent class proportions. 

• Overall, more bias and less confidence 
interval coverage for the 4 variable case was 
observed compared to the 6 variable case. 

• For any given pair of latent class 
proportions, bias decreased and confidence 
interval coverage increased as sample size 
increased. 

• For any given pair of latent class 
proportions, the variability of bias across 
sample sizes decreased as the discrepancy of 
conditional probabilities increased. 

• For any given pair of latent class 
proportions, as the discrepancy of the 
conditional probabilities increased, the bias 
decreased and the confidence interval 
coverage increased. 

 
Conclusion 

The primary purpose of the study was to 
illustrate differences between L-O-O and 
resubstitution methods for assessing 
classification accuracy in latent class analysis. 
Simulation results indicated very little difference 
in the methods based on outcome measures. 
However, the accuracy measures did vary over 
the factors manipulated in this study and should 
provide researchers with a guide regarding what 
to expect in their studies. It is important to note 
that when the conditional probabilities were very 
discrepant, other factors had little influence and 
accuracy was high. 

Generalizing beyond the factors and the 
scope of this study should be approached 
cautiously. As noted earlier, only a two class 
latent class model with restricted conditional 

probabilities and relatively small sample sizes 
was considered. Research comparing and 
evaluating these classification accuracy 
measures applied to more complicated latent 
class models, larger sample sizes and an 
increased number of variables is warranted. This 
research provides a baseline of possible 
outcomes when those future studies are 
conducted. 
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