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The Performance of Multiple Imputation for Likert-type Items with Missing Data 
 

Walter Leite S. Natasha Beretvas 
University of Florida The University of Texas at Austin 

 
 
The performance of multiple imputation (MI) for missing data in Likert-type items assuming multivariate 
normality was assessed using simulation methods. MI was robust to violations of continuity and 
normality. With 30% of missing data, MAR conditions resulted in negatively biased correlations. With 
50% missingness, all results were negatively biased. 
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Introduction 
Missing values introduce several 

problems to statistical analyses and researchers 
have tried many methods to ameliorate these 
problems. A few popular methods have become 
popular and have been implemented in statistical 
software, which has boosted their usage. These 
methods include listwise deletion, pairwise 
deletion, mean substitution, regression 
imputation, maximum-likelihood methods and 
multiple imputation. Among these procedures, 
multiple imputation (MI), together with 
maximum likelihood estimation, is becoming 
one of the preferred techniques for dealing with 
missing data; due to its increasing popularity, 
this study focuses on the performance of MI. 

MI was first proposed by Rubin (1987) 
as a way to handle missing data in public survey 
datasets. Research about MI in the statistical 
literature is abundant, however, only a handful 
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of studies apply MI to missing data in datasets 
consisting of Likert-type items. This may be 
partially explained by the fact that MI depends 
on the extensive use of computer software and 
specialized software has only recently become 
easily accessible. 

The MI method that best fits a set of 
data depends on the distribution assumed for the 
variables in the dataset. MI is most often 
performed under the assumption that the 
variables are multivariate normally distributed; 
cases exist, however, where this assumption may 
not be appropriate. In particular, surveys or 
scales used in organizational research frequently 
contain dichotomous or Likert-type items whose 
responses are not normally distributed. Very 
little research has been done concerning missing 
data in Likert-type scales and there are no 
studies evaluating the use of MI under a 
multivariate normal model with ordinal 
variables. Although Schafer (1997) argued that 
MI under the multivariate normal model is 
robust to departures from normality, extensive 
investigation of this issue does not currently 
exist in the literature. Thus, the objective of this 
study is to examine the performance of MI with 
datasets composed of Likert-type items. 
 
Types of Missing Data 

The existence of missing data in a 
dataset can result in loss of statistical power and 
biased parameter estimates. Causes of missing 
values in data are varied, for example: the 
refusal of some subjects to answers certain 
questions, data-entry errors and attrition (Little 
& Rubin, 1989). Missing data can be classified 
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according to its pattern within the dataset. Little 
and Rubin (1989) adopted four classifications 
for patterns of missing data: general pattern of 
missingness, univariate missing data, unit non-
response and monotone missing data. A general 
pattern of missingness is characterized when 
values are missing in many variables without 
any special arrangement. If the data are missing 
in just one variable of the dataset, the missing 
data are univariate. Unit non-response is a 
pattern where a block of variables has missing 
values for the same set of cases, but data for 
those cases for all other variables is complete. 
Monotone missing data describe a pattern where 
complete cases in a variable that has X missing 
values will also be complete in a variable that 
has (X – 1) values. 

Whether a procedure to deal with 
missing data will result in unbiased estimates of 
parameters depends on the relationships between 
the missing values, the incomplete variable and 
the other variables in the dataset. These 
relationships allow classification of missing data 
into three types (Rubin, 1976; Little & Rubin, 
1987; Sinharay, Stern & Russell, 2001) 
commonly referred to as missing data 
mechanisms: data missing completely at random 
(MCAR), data missing at random (MAR) and 
data missing not at random (MNAR) or non-
ignorable missingness.  

Data are MCAR for a variable X when 
the missing values in this variable are 
independent of both the variable X and the other 
variables in the dataset. In this case, the 
observed variables can be considered a random 
sub-sample of the hypothetical complete data. 
Missing values for a variable are considered 
MAR when they depend on the other variables 
in the dataset, but not on the variable itself. 
MNAR or non-ignorable missingness occurs 
when the probability of the missing values for a 
variable X is dependent on the underlying value 
of X (Little & Rubin, 1987; Sinharay, Stern & 
Russell, 2001). 
 
Multiple Imputation 

The most common procedure to deal 
with missing data is deleting cases with 
incomplete data, called listwise deletion. 
However, listwise deletion results in unbiased 
parameter estimates only when (1) the data can 

be assumed MCAR, and (2) the fraction of 
missing data is very small (e.g., 5%) (Graham & 
Hofer, 2000). Other methods, such as person and 
item mean imputation, hot-deck imputation 
(Huisman, 2000), regression imputation and the 
expectation maximization algorithm (EM) can 
be used with MAR data, but they reduce the 
variability of the dataset and produce artificially 
small standard errors (McDonald, Thurston & 
Nelson, 2000) Among the many procedures that 
have been developed to cope with missing data, 
full-information maximum likelihood estimation 
and multiple imputation (MI) are the most 
sophisticated methods, and are also the ones 
likely to yield the least biased parameter 
estimates (Sinharay, Stern & Russell, 2001; 
Graham & Hofer, 2000).  

The results of a missing-data procedure 
are affected by the type of missingness (MCAR, 
MAR or MNAR) and also by characteristics of 
the sample and variables being analyzed. These 
characteristics include sample size, scale of 
measurement of the variables, range of data 
points and distribution of the observed variables. 
In the case where the dataset contains scores of a 
psychometric scale, the reliability and validity of 
scores on the instrument are also important 
(Raaijmakers, 1999). 

The MI method consists of creating a 
vector of possible values for every missing value 
in the database. It represents a step forward from 
regression-based single imputation and the EM 
algorithm because the multiply imputed values 
reflect the uncertainty of the imputed values. MI 
restores two sources of variability: the 
variability of each variable and the variability of 
the sample covariance matrix. The variability of 
each variable is restored because the imputed 
values do not fall exactly on the regression line. 
This is accomplished by adding error variability 
to the imputed missing values. These errors are 
sampled from the distribution of known errors. 
The variability of the sample covariance matrix 
is restored by sampling many covariance 
matrices from a simulated population. Due to the 
restoration of these sources of variability, the 
resulting imputed values will include a 
component of within-imputation and a between-
imputation variance. 

Schafer (1997) developed methods to 
execute MI by cycling through two steps. In the 
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first step, missing values are imputed, and in the 
second step unknown parameters are estimated. 
After the second step, the estimated parameters 
are used to impute missing values and the cycle 
is repeated until reaching a criterion of 
convergence. The process begins with an initial 
estimate of the parameters given by the 
expectation maximization (EM) algorithm. 
Schafer (1997) calls the first step of MI the I 
(imputation) step. It consists of replacing 
missing data points by randomly drawn values 
from the conditional distribution of the missing 
data given the observed data and the parameter 
estimates provided by the EM algorithm. The 
second step is termed P (posterior) and consists 
of estimating parameters. The estimated 
parameters are then used in another I step, and 
this process is repeated until the distribution of 
covariance matrices stops changing 
substantially. The EM algorithm is used to 
calculate the initial parameter estimates for the 
first imputation step. After this initial estimate, 
missing values are imputed and parameters are 
estimated using the data augmentation method.  

Data augmentation is an iterative 
procedure that imputes missing data under 
assumed values of the parameters and then 
draws new parameters from a posterior 
distribution based on the complete data (Schafer 
& Olsen, 1998). This process of imputing values 
and estimating parameters creates a Markov 
chain. When the Markov chain stabilizes, the 
data augmentation process has reached 
convergence. This state is characterized by a 
stable distribution of parameters. After 
convergence, multiple imputations are generated 
based on independent draws from this 
distribution. Any number of imputed data-sets 
can be obtained by repeating the data 
augmentation algorithm; consequently, each set 
of imputed values will be different from the 
others. 

MI has been shown to depend on three 
assumptions to generate unbiased parameter 
estimates. The first assumption specifies what 
types of missing data can be addressed using MI. 
The other two assumptions are necessary due to 
the Bayesian nature of MI. The first assumption 
of MI is that the data are MCAR or MAR. This 
assumption is important because using MI with 
MNAR data may result in biased parameter 

estimates (Little & Rubin, 1989). The second 
assumption is the prior distribution; because MI 
is a Bayesian method, a prior distribution is used 
to represent the state of knowledge about the 
data before it is available. Usually a non-
informative prior (Sinharay, Stern & Russell, 
2001) is chosen corresponding to ignorance 
about the distribution of the data. Such a prior is 
ambiguous as to the location of the likelihood’s 
maximum, allowing a wide range of values. In 
some cases, it is adequate to specify an 
informative prior distribution. This distribution 
is chosen from a family of distributions and it is 
combined with the likelihood to generate a 
posterior distribution from the same family. 
These assumptions are essential because 
multiple imputations involve random draws 
from the posterior probability distribution of the 
unknown parameters given the observed values.  

Finally, MI requires an assumption 
about the complete-data model. Each multiple 
imputation method uses a specific probability 
model to generate the imputed values. The 
distribution of the observed values should match 
this imputation model. MI software usually uses 
the multivariate normal model to impute 
numeric data and the loglinear model for 
categorical data. The multivariate normal is the 
most common model for multivariate statistical 
analysis. Schafer (1997) argues that the normal 
model is robust to departures of normality when 
the proportion of missing data is not large. The 
reason for this robustness is that the model only 
affects the missing values, leaving the observed 
values unchanged. In addition, Schafer & Olsen 
(1998) indicate that it is often acceptable to 
impute values of categorical variables under the 
normality assumption and round off the 
continuous imputed values to the nearest 
category. 

MI allows the researcher to improve the 
quality of the imputed values by using 
information from variables that predict the 
missing values or correlate with the variables 
containing missing values. These variables may 
be of no interest for the data analysis itself, 
therefore, they can be included in the dataset 
during the multiple imputation procedure and 
then excluded in the data analysis. The variables 
that may help with the imputation process can be 
detected through an examination of correlations 
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and contingency tables between these variables 
and the variables that have missing values. 
However, the inclusion of an exaggerated 
number of variables may result in 
multicollinearity problems and variance inflation 
(Wayman & Swaim, 2002). 

Five to ten imputations are typically 
recommended because this number has been 
found to provide adequate estimates (Rubin, 
1987; Collins, Schafer & Kam, 2001). After 
multiple imputed datasets are obtained the 
analysis of interest to the researcher should be 
conducted with each imputed data set. For 
example, a researcher might be interested in 
conducting a multiple regression analysis. 
Assume the researcher obtained ten multiply 
imputed datasets containing imputations 
replacing each missing value. The researcher 
would run the regression analysis using each 
data set, and the resulting parameter estimates 
(the regression coefficient estimates, for 
example) can then be combined across the m = 
10 imputed datasets to obtain the single best 
estimate of the relevant parameter (Rubin, 
1987). Specifically, the mean of the parameter 
estimates across the m imputed datasets, q , can 
be calculated as: 
 

m

i
i 1

1 ˆq q
m =

=                          (1) 

 
where iq̂ is the parameter estimate from the ith 

imputed dataset and m represents the number of 
imputed datasets being combined. 

To calculate the variance of each 
parameter estimate, two sources of variability 
should be combined (Schafer & Olsen, 1998): 
the variability within and between imputed 
datasets. The within-imputation variance, u , is 
the mean of the variance estimates from each 
imputed dataset: 
 

m

i
i 1

1 ˆu u
m =

=                          (2) 

 
where iû  is the variance estimate for the 

relevant parameter estimated for imputed dataset 
i. In the example described in which multiple 

regression analyses were conducted with each of 
the ten imputed data sets, the square of the 
standard error estimated for one of the 
predictor’s unstandardized regression 
coefficients for imputed dataset i would provide 
that imputation’s iû . 

The between-imputations variance, B, is 
the variance of the parameter estimates across 
the set of imputations: 
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where iq̂  represents the parameter estimate for 

imputation i. 
The total variance, T, associated with 

the multiply imputed parameter estimate, q , is 
the sum of the within- and the between-
imputations variances. This sum is corrected to 
account for the simulation error in q  (Schafer & 
Olsen, 1998) using the formula: 
 

B
m

uT 





 ++= 1
1                   (4) 

 
This total variance provides the 

advantage of MI over other methods for dealing 
with missing data. The within-imputations 
variance component represents sampling 
variability while the between-imputations 
variance represents missing data uncertainty. 
These two components prevent the missing 
values from creating an artificial precision in the 
parameter estimates, resulting in negatively 
biased standard errors and associated test 
statistic p-values that are too low (Schafer, 
1997). 

Recently, many computer programs 
have become available to perform MI (e.g., 
NORM, S-Plus, R, SAS). NORM 2.02 is a 
stand-alone multiple imputation program 
developed by Schafer (1999) that executes MI 
under the multivariate normal model. The freely-
available R software (R development core team, 
2008) contains the norm library, which is an 
implementation of MI similar to the NORM 
software. Different implementations of MI in the 
R software can be found in the CAT, Mix, 
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Amelia and Mice packages. S-Plus (Insightful 
Corp., 2001) has a library that performs MI 
under the Gaussian, loglinear and conditional 
Gaussian models. The statistical package SAS 
Version 8.2 incorporated functions for MI but it 
has the disadvantage of allowing little control 
over the imputation model (Horton & Lipsitz, 
2001). 
 
Multiple Imputation of Likert-Type Items 

Little research has been conducted 
concerning missing data in Likert-type scales. 
For example, Downey and King (1998) 
investigated missing data in Likert-type 
variables but only evaluated mean substitution 
methods (person mean and item mean). Roth, 
Switzer and Switzer (1999) investigated missing 
data in multiple item scales, but only examined 
listwise deletion, regression imputation, hot-
deck imputation, person mean substitution and 
item mean substitution. 

MI has been most frequently conducted 
under the assumption that the variables are 
multivariate-normally distributed. However, 
surveys and scales commonly contain non-
normally distributed Likert-type items, whose 
distributions may only approximate normality. 
Although Schafer (1997) developed a MI 
method for categorical data based on the 
loglinear model, he argued that multivariate 
normal MI could be used for categorical 
variables. However, evaluation of this claim has 
yet to be conducted. If MI, under the assumption 
of normality, works sufficiently well with 
typically non-normal Likert-type (ordinal) 
variables/items, the analysis of this type of data 
would be simplified. 
 

Methodology 
The performance of MI wasassessed using 
simulation methods assuming multivariate 
normality in the commonly occurring scenario in 
which some of the responses to Likert-type 
items are missing. The impact of the following 
factors on the performance of MI were assessed: 
the underlying distribution of the item responses 
(normal versus non-normal), the magnitude of 
the variables’ inter-correlations (ρ = 0.2, ρ = 
0.8), the bluntness of the categorization of the 
data into discrete item scores (3, 5 and 7), the 
missing data mechanism (MCAR and MAR) and 

the degree of missingness (10%, 30% and 50%). 
Recovery of the true correlations will be used in 
the evaluation of MI’s performance. 

Responses to a set of 10 items were 
generated to fit either multivariate normal or 
non-normal distributions with a known 
correlational structure. To simplify the 
generating correlation matrix, each variable was 
modeled to have the same correlation with each 
of the others (0.8 or 0.2). Next, each interval-
scaled item score was discretized to match the 
Likert-scale format of relevance to the condition 
(3, 5 or 7), and the condition’s pattern (MCAR 
or MAR) and degree of missingness were built 
into the generated data. Three degrees of 
missingness were investigated (10%, 30%, 50%) 
and MI was used to impute missing data. For 
each iteration (and condition), the imputed 
datasets were summarized using Equations 1 - 4 
to assess recovery of the generating correlation 
values. Due to their importance in methods such 
as multiple regression and factor analysis, 
correlations were the parameters of interest in 
this study. 
 
Simulation of Item Data 

The software, S-Plus (Insightful, 2001) 
was used to conduct the simulation. To represent 
items on a 10-item scale or survey, 10 
continuous random variables were generated 
with normal and non-normal distributions. Each 
variable was sampled from a multivariate 
normal distribution with a mean of zero and 
standard deviation of one. The multivariate 
normal random values were created using the 
function RMVNORM of S-Plus, which 
generates pseudo-random numbers given a 
correlation matrix, vector of means and standard 
deviations and a random seed. 

The skewness and kurtosis was 
introduced into the data using the method 
originated by Valle and Maurelli (1983), which 
produces multivariate non-normal distributions 
with a given value of skewness and kurtosis by 
combining Kaiser and Dickman’s method (1962) 
with one proposed by Fleishman (1978) to 
simulate univariate non-normal distributions 
with specified degrees of skewness and kurtosis. 
Fleishman’s method uses the transformation 
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32 dXcXbXaY +++=  
 
where a, b, c, and d are constants, to convert 
variable X into variable Y with the desired 
degree of skewness and kurtosis. Fleishman 
(1978) provides equations and tables detailing 
values for these constants along with their 
associated skewness and kurtosis levels. When 
applied together, Kaiser and Dickman’s and 
Fleishman’s methods interact such that the 
correlations between the simulated non-normal 
variables differ from those specified in the 
population correlation matrix. Vale & Maurelli 
(1983) solved this problem by adjusting the 
values of the population correlations using the 
formula: 
 

y1y2 x1x2 1 2 1 2 1 2 1 2

2 3
x1x2 1 2 x1x2 1 2

r (b b 3b d 3d b 9d d )

          + (2c c ) (6d d )

= ρ + + +

ρ + ρ
 

(5) 
 
where 21xxρ  is the population correlation 

between variables X1 and X2, 21yyr  is the 

adjusted correlation between the non-normal 
variables Y1 and Y2, and b1, b2, c1, c2, d1, d2, are 
Fleishman’s coefficients for Y1 and Y2. After 
adjusting the population correlations, non-
normal random variables are obtained by first 
executing Kaiser and Dickman’s method and 
then using Fleishman’s method. The resulting 
variables will have the desired degrees of 
skewness, kurtosis and inter-correlations. 
However, with Likert-type variables this method 
has the limitation that the transformation of 
continuous variables into categorical variables 
results in a slight change of the degrees of 
skewness and kurtosis originally simulated. 

For each of the conditions, 1,000 
samples of 400 cases were generated and the 
variables were converted into Likert-type scores. 
Datasets with three types of Likert-type items 
were created (with scales ranging from 1 to 3, 1 
to 5, and 1 to 7) by dividing the total range of 
the scores into k segments of equal size, where k 
is the desired number of categories. This 
resulted in discrete distributions that better 
approximated the shape of their continuous, 
generating distributions. The correlation 

matrices for each replication sample and 
condition were also calculated to allow an 
assessment of the change resulting from the 
categorization process and to serve as a baseline 
for later evaluations. 
 
Simulation of Missing Data 

Two types of missing data were 
introduced: MCAR and MAR. Three overall 
proportions of missing values were simulated 
(10%, 30% and 50%). MCAR missing data was 
obtained through random deletion of values 
from the datasets. To simulate the MAR 
condition, one variable in the dataset, Z, was 
used to predict the missing values in the other 
nine variables. The predictor Z was the only 
variable in the dataset with no missing values. 
Data points were deleted according to the MAR-
linear condition described by Collins, Schafer 
and Kam (2001). In the MAR-linear condition 
(perhaps better described as monotonically 
increasing rather than linear), the proportion of 
missing values is approximately linearly related 
to the value of Z. To simulate this condition, the 
cases were grouped according to the value of Z, 
and subgroups of cases with larger values of Z 
were assigned a higher probability of being 
missing. 
 
Analyses 

Values for the missing data were 
imputed assuming the multivariate normal 
model using the functions of the missing library 
(Schimert, et al., 2000) implemented in S-PLUS 
version 6.0 (Insightful, 2001). Ten imputations 
were created for each dataset and the correlation 
between each pair of variables was calculated 
for each imputed data set. When correlation 
estimates are the unit of analysis, Fisher’s 
(1928) normalizing and variance-stabilizing r-
to-Zr transformation is frequently used to correct 
the non-normality of the sampling distribution of 
r. This transformation was used; specifically, 
each correlation was transformed to a Zr using 
the formula: 
 







−
+=

r
rZr 1

1
ln)2/1( .                (6) 
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These 10 transformed correlations (one 
per imputation) for each pair of variables were 
combined using Rubin’s (1987) rules as outlined 
in Equation 1 to provide an overall transformed 
correlation estimate, q  combined across 
imputations for each sample and condition. (This 
was repeated for each of the transformed 
correlations between the variables). In addition, 
the between-imputations variance, B, of the 
transformed correlation estimates (see Equation 
3) was also calculated for each multiply imputed 
estimate, q . 

The criterion used to judge the 
performance of MI involved an assessment of 
the recovery of the correlations (conducted using 
the transformed correlations). While the original 
generating value for the correlations was either 
0.2 or 0.8, this value applied only to the 
continuous distributions. It should be noted that, 
for the non-normal distributions, although data 
were transformed to have a slight degree of 
kurtosis and skewness, the transformations were 
chosen to maintain the generating correlation 
values. However, the categorization of the 
continuously scaled scores into ordinal-scaled 
data resulted in correlations between pairs of 
variables that differed from the original 
generating values. The values of the correlations 
were compared after categorization - but before 
missingness had been introduced - with the 
correlations estimated after MI had been used to 
compensate for the missingness. The 
correlations after categorization were 
transformed using Fisher’s r-to-Zr 
transformation to provide the average of the 
sampling distribution of Zrs for categorized 
variables. For each dataset simulated, the Zr 
values calculated after MI were compared with 
the values describing the categorized 
distributions without missingness. 

The comparisons were performed using 
relative bias averaged across replications. The 
relative bias (Hoogland & Boomsma, 1998) 
compares the average value of the parameter 
estimated rZ  with the population value, ρζ , 

using the formula: 
 

ˆ
ˆ( ) r

r

Z
B Z ρ

ρ

ζ
ζ
−

= .                        (7) 

The relative bias of the parameter estimate was 
considered acceptable if its magnitude was less 
than 0.05 (Hoogland & Boomsma, 1998). 

Because one of the benefits of using MI 
is that it provides better standard error estimates, 
this study also summarized the efficiency of the 
parameter estimates. Note that the variance 
associated with the multiply imputed parameter 
estimate, q , is a function of the average within-

imputation variance, u , and the between-
imputation variance, B. (see Equations 2, 3 and 
4). When the parameter estimate of interest is 
the Zr-transformed correlation, its within-
imputation variance is solely a function of 

sample size (
3

1
ˆ

−
=

n
u ). Because sample size 

was not varied in any of the conditions of this 
study, the average within-imputation variance, 

u , was consistently equal to 
3

1

−n
, regardless 

of condition and replication. However, the 
between-imputations variance associated with Zr 
did vary across conditions and provided the 
source of resulting differences in the total 
variance associated with q . For this reason, the 
efficiency of the Zr-transformed correlations was 
summarized by calculating the average between-
imputation variances by condition. 
 

Results 
The relative biases of correlation estimates with 
normally and non-normally distributed data are 
presented in Table 1. This table shows that that 
MI of Likert-type data assuming continuous 
multivariate-normal data can yield acceptable 
parameter estimates with different types of 
missing data (MCAR and MAR) if the 
percentage of missing data is approximately 
10%. However, with 30% of missing data, only 
the MCAR conditions resulted in acceptable 
relative bias. With 50% of missing data, 
acceptable relative biases were not obtained in 
any of the conditions. MI, assuming continuous 
data, showed robustness to categorization. Only 
slight differences in relative biases were 
identified between the three types of Likert 
scales. MI was also found to be robust to 
violations of normality. The relative biases of 
the skewed and normal conditions were similar. 
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The magnitude of correlations between variables 
(i.e., 0.8 or 0.2) also did not affect the 
performance of MI. The biases of parameter 
estimates obtained with MI were found to be 
consistently negative across all conditions. This 
leads to the conclusion that the presence of 
imputed data in datasets results in systematic 
reduction of the values of correlation coefficient 
estimates. 

With MI, the variance associated with 
the multiply imputed parameter estimate is a 
function of the variability between estimates 
from each multiply imputed dataset as well as 
the variance of each estimate. (see Equations 2 - 
4). This accounts for the extra amount of error 
introduced by the imputation process. Table 2 
shows the average between-imputations variance 
summarized across generating conditions. The 
proportion of missing data had the strongest 
effect on the between-imputation variance. More 
specifically, as the overall proportion of 
missingness increased so did the between-
imputation variance. A smaller effect was also 
identified: With the exception of conditions with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10% of missing data, the between-imputation 
variances were larger with correlation equal to 
0.8 than 0.2. Furthermore, the conditions with 
50% of missing data and correlation of 0.8 
produced somewhat higher between-imputation 
variances, which increased as the number of 
points in the Likert scale increased. It is possible 
that this is the result of a three-way interaction 
between percentage of missing data, correlation 
between variables and number of points of the 
Likert scale. Additional studies expanding the 
levels of these three conditions would be needed 
to confirm the interaction. 
 

Conclusion 
Study results show that multiple imputation is 
robust to violations of both continuity and 
normality. This supports the assertion by Schafer 
(1997) that multiple imputation assuming the 
normal model works well even with ordered 
categorical data. However, it seems that 
resulting statistical tests will be less powerful 
because the sampling variance of the correlation 
estimates tends to increase and the values of the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Relative Bias of the Zr Estimates 

Percentage of Missing Data 
Likert Scale 

Type 
Correlation = 0.8* Correlation = 0.2 

k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 

Normally-Distributed Data 

10% 
MCAR -0.002 -0.006 -0.004 -0.002 -0.001 0.003 

MAR -0.003 -0.007 -0.005 -0.004 -0.002 0.002 

30% 
MCAR -0.032 -0.037 -0.039 -0.044 -0.031 -0.041

MAR -0.041 -0.053 -0.052 -0.054 -0.046 -0.042

50% 
MCAR -0.118 -0.129 -0.134 -0.156 -0.157 -0.137

MAR -0.163 -0.183 -0.176 -0.202 -0.207 -0.182

Non-Normally Distributed Data 

10% 
MCAR -0.003 -0.007 -0.004 -0.001 0.007 -0.002

MAR -0.016 -0.012 -0.009 -0.004 -0.008 -0.009

30% 
MCAR -0.035 -0.038 -0.040 -0.040 -0.026 -0.036

MAR -0.057 -0.064 -0.063 -0.058 -0.053 -0.039

50% 
MCAR -0.118 -0.130 -0.139 -0.160 -0.154 -0.164

MAR -0.200 -0.212 -0.179 -0.212 -0.224 -0.170

*Bold numbers indicate unacceptable bias 
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correlations themselves tend to be negatively 
biased as the proportion of missing data 
increases. It should be noted that this decrease in 
power is a somewhat desirable feature of 
multiple imputation given that it adds a suitable 
degree of uncertainty to the resulting imputed 
datasets. Consequently, significance tests 
performed after MI will tend to be conservative 
compared with tests using complete data. Table 
2 presents the average between-imputations 
variances for each condition in which missing 
data had been introduced. When no missingness 
exists, the between-imputations variance is zero 
and the resulting total variance for an estimate 
based on a dataset without missingness will be 
smaller with a concomitant increase in power.  

For multiply imputed datasets, although 
the significance tests have less power, they will 
also meet the desired nominal α-levels; this is 
not the case when other missing data procedures 
such as mean and/or regression imputation are 
used. While the power of associated statistical 
tests under mean or regression imputation is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

maintained at the level of a complete data set, 
inflated Type I error rates can occur. Alternative 
missing data procedures such as listwise and/or 
pairwise deletion, similar to MI, are also known 
to result in decreased power. In addition, these 
deletion procedures have also been known to 
result in biased estimates given large degrees of 
missingness and non-MCAR patterns of 
missingness (Roth, Stwitzer & Switzer, 1999). 

Based on results of the many different 
conditions simulated herein, it is possible to 
conclude that MI can be safely used to estimate 
parameters if the overall proportion of missing 
data is small (i.e., approximately 10%). If the 
data is missing completely at random, it was 
observed that as much as 30% of missing data 
does not result in inadequate parameter 
estimates. However, the major difficulty for 
applied researchers dealing with missing data is 
that it is not possible to know with certainty 
whether the missing values in a dataset are 
missing completely at random. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Average Between-Imputation Variance of the Zr Estimates For Normally Distributed Data 

Percentage of Missing Data 
Likert Scale 

Type 
Correlation = 0.8 Correlation = 0.2 

k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 

Normally Distributed Data 

10% 
MCAR 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 

MAR 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 

30% 
MCAR 0.0033 0.0050 0.0063 0.0021 0.0021 0.0021 

MAR 0.0045 0.0081 0.0096 0.0022 0.0023 0.0023 

50% 
MCAR 0.0150 0.0235 0.0290 0.0046 0.0048 0.0049 

MAR 0.0188 0.0311 0.0369 0.0049 0.0053 0.0052 

Non-Normally Distributed Data 

10% 
MCAR 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 

MAR 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 

30% 
MCAR 0.0032 0.0051 0.0070 0.0021 0.0021 0.0021 

MAR 0.0038 0.0050 0.0063 0.0021 0.0019 0.0019 

50% 
MCAR 0.0148 0.0237 0.0318 0.0046 0.0048 0.0050 

MAR 0.0140 0.0237 0.0283 0.0045 0.0050 0.0047 
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For MAR conditions, this study did not 
omit the variable that caused the missing data 
(i.e., variable Z) from the datasets, which 
improves the performance of MI (Collins, 
Schafer & Kam, 2001). However, in real 
datasets, it is common that the researcher does 
not know or does not include the variables 
causing the missing data in the dataset. It can be 
expected that biases in the parameter estimates 
due to missing data would be larger if the 
variable causing missingness was omitted. A 
limitation of this study is that all datasets had a 
sample size of 400; different results might be 
obtained if smaller or larger sample sizes were 
used. 

The datasets used in this study contained 
10 inter-correlated variables. This type of dataset 
approximates a measurement situation where 
there is a scale or survey containing similar 
items. MI can benefit from the presence of inter-
correlated variables, because the inter-
correlations provide some of the missing 
information. The results of this study may have 
been different if uncorrelated variables were 
used; however, datasets containing uncorrelated 
variables are unlikely in measurement settings. 
Conversely, this study used some conditions 
where variable inter-correlations were probably 
weaker (i.e., 0.2) or stronger (i.e., 0.8) than those 
that would be found for responses to real scales 
or surveys. Items correlated at 0.2 would be 
realized in surveys, but would be somewhat 
lower that what would be expected for a 
psychometric scale measuring a single construct. 
These correlations were used in order to 
simulate distinct conditions. 

Many unknowns exist regarding the 
ability of MI to generate acceptable estimates 
with large amounts of missing data. The 
question: What is the maximum amount of 
missing data that can be adequately imputed? 
has no easy solution, due to the interaction 
between the proportion of missing data and the 
pattern of correlations between variables in the 
dataset. Future research should address the 
effects of predictors included in the dataset to 
increase the accuracy of MI estimates in 
situations where the proportion of missing data 
is large. Another point deserving further 
investigation is the quality of correlation 
estimates when MI is used with a large 

imputation model containing several covariates. 
Sinharay, Stern and Russell (2001) found that 
MI of datasets with 20 covariates under the 
MAR assumption resulted in negatively biased 
correlation estimates. Additional research could 
address the effect of the covariates in MI of both 
continuous and categorical data. 

Currently, MI together with full 
information maximum likelihood estimation are 
the frontrunners among missing data methods in 
terms of providing the most adequate estimates 
in the presence of MCAR and MAR missing 
data. Despite the fact that MI is available in 
many statistical programs, it has not become 
common practice in applied research. This may 
be due to the complex specification of the MI 
model that some software require (e.g., S-PLUS 
and R) or to the time consuming task of 
combining multiple imputed datasets. To 
promote an increase in use of MI among applied 
researchers, more automatic handling of imputed 
datasets by software is needed. 

Although it was found that the 
appropriateness of MI to deal with missing data 
depends on whether data is MCAR or MAR as 
well as the proportion of missing data, Schafer 
and Olsen (1998) pointed out that it is 
misleading to classify the missing data in a 
dataset according to just one type of relationship 
between missing values and variables, because 
missing values can occur for many reasons 
within the same dataset. Furthermore, situations 
exist where neither the MCAR nor the MAR 
assumptions are plausible. Unfortunately, 
current missing data methods cannot handle 
MNAR data. Care should be taken to ensure that 
the procedure used to deal with missing data is 
appropriate for the missing data mechanism for a 
particular dataset. 
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