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Model Based vs. Model Independent Tests for Cross-Correlation 
 

H. E. T. Holgersson Peter S. Karlsson 
Jönköping International Business School, 

Sweden 
 

 
This article discusses the issue of whether cross correlation should be tested by model dependent or model 
independent methods. Several different tests are proposed and their main properties are investigated 
analytically and with simulations. It is argued that model independent tests should be used in applied 
work. 
 
Key words: Cross correlation, residuals, lag window, hypothesis tests. 
 
 

Introduction 
Statistical analysis frequently involves the 
problem of whether two variables are related to 
each other. One of the most popular approaches 
is correlation analysis, initially proposed by 
Galton (1888) and refined by Fisher (1915, 
1921). Later on correlations became popular also 
in time series contexts. When estimated 
correlation coefficients are used to test formal 
hypotheses, a test statistic with a 
(asymptotically) known null distribution is 
needed. In the case of independently distributed 
data (i.i.d.) there are several known standard 
error formulas for the correlation coefficient 
(Stuart & Ord, 1994). If autocorrelation exists in 
the data, however, these null distributions are 
not valid because the variance of the test statistic 
will depend on the unknown autocorrelation. It 
is therefore important to develop tests that take 
this aspect into account.  

Through the last three decades a number 
of articles have been concerned with this issue. 
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Some important works include Haugh (1976) 
and McLeod (1979) both of whom dealt with the 
distributional properties of residual based cross-
correlation coefficients, Koch and Yang (1986) 
extended these methods to include pattern in the 
cross-correlation function, and Hallin and Saidi 
(2001) extended these two methods to the 
general multivariate case. Hong (1996) proposed 
a different approach of using an AR(p) model 
where p is allowed to grow asymptotically with 
the sample size T, and Bouhaddioui and Roy 
(2006) further developed this idea in a more 
general VAR(p) context. 

All of these studies share the property 
that they involve residual based tests, 
constructed by first pre-whitening the data. The 
rationale behind this method is that the variance 
of the cross-correlation coefficient is somewhat 
complicated for autocorrelated data, and 
becomes much easier to handle for variables 
without autocorrelation. Thus, as residuals are 
asymptotically uncorrelated and the main 
interest is in the possible cross-correlation - not 
in the autocorrelation - this approach is 
reasonable. However, there is also an option to 
use some linear function of the sample cross-
correlations and to construct a model 
independent test.  

Model based tests have the disadvantage 
that a misspecified model may lead to an 
inconsistent procedure but also have the 
potential of being more efficient than model 
independent tests because they are more 
parsimonious regarding the number of 
parameters. It may be questioned how model 
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dependent tests perform relative to model 
independent tests, or is the potential efficiency 
gain of model based methods worth the risk of 
using a misspecified model? The aim of this 
article is to examine the properties of five 
different, simple tests of cross-correlation of 
weakly stationary bivariate processes. These 
involve a test dependent on a known model plus 
known parameters, two tests dependent on a 
known model but not of known parameters and 
two model independent tests. The asymptotic 
properties of the tests are established 
analytically and the small sample properties are 
examined by Monte Carlo simulations. 
 

Methodology 
Some properties of the sample correlation 
coefficient calculated from two possibly 
autocorrelated variables are considered; in 
particular, the focus is on the variance of the 
correlation coefficient. A few relevant measures 
must first be defined. Let tX  and tY  be two 

random sequences such that 
 

, ,0t X x i x t ii
X μ ψ ε∞

−=
= +  

and 

, ,0t Y y i y t ii
Y μ ψ ε∞

−=
= + , 

 

where { }∞
=1, ttxε  and { }∞

=1, ttyε  are two sequences 

of zero mean i.i.d. random variables and xψ  and 

yψ  are absolutely summable, that is, 

∞<∞

=0 ,i ixψ  and ∞<∞

=0 ,i iyψ , 

[ ]XV ε < ∞  and [ ]YV ε < ∞ . Letting 2
Xσ  and 

2
Yσ  be the variance of tX  and tY  respectively, 

the cross correlation coefficient is defined by 
 

( ) [ ]

( )

2 2

t x t k y
XY

X Y
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E X E Y
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k
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ρ

σ σ
ρ

− − − =

= −
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The main thrust of this article is the following 
hypothesis: 

( )
( )

0

A

H : 0 
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XY
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ρ
ρ

= ∀ ∈

≠ ∃ ∈




              (2) 

 
where X  and Y  are covariance stationary but 
possibly autocorrelated. In order to test this 
hypothesis, a proper test statistic with an 
asymptotically known null distribution is 

needed. The population correlation ( )xy kρ  may 

be estimated by 

( ) ( )
2 2

ˆ
ˆ

ˆ ˆ

XY
XY

X Y

k
k

σ
ρ

σ σ
= , 

where 

( ) ( )22

1
ˆ 1

=
= −T

y tt
T Y Yσ , 

 

( ) ( ) ( )( )1
ˆ 1

−
+=

= − −T k
xy t t kt

k T X X Y Yσ  

 
and T  is the number of observations. For 
identically independently distributed data it is 

well known that, if ( ) 0XY kρ = , then 

 

( ) ( )ˆ 0,1XY k N Tρ →


            (3) 

 
where   denotes convergence in law. An 
improvement of (2.3) is given by Fisher’s z-
transformation (Fisher, 1921; Stuart & Ord, 
1994). In cases when the data is not independent 
this variance is no longer valid. Using the well-
known Bartlett approximation (for example, see 
Box, et al., 1994) the variance of the sample 
cross correlation is given by 
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where ( )XYρ τ  is the correlation between tX  

and tY τ− . Equation (4) gives the variance of the 

sample cross-correlation coefficient between X 
and Y with a lag shift of k steps. Hence, under 

the simple null hypothesis that ( ) 0xy kρ =  the 

equation (4) reduces to 
 

( ) ( )
( ) ( )
( ) ( )

1

ˆ 0XY XY

XX YY

x y y x

Var k k

T
k kτ

ρ ρ

ρ τ ρ τ
ρ τ ρ τ

∞−
=−∞

 = ≈ 
 
 
+ + −  


.  (5) 

 
Furthermore, under the null hypothesis that all 
cross covariances are zero (as in (2)), results in 
 

( ) ( )
( ) ( )1

ˆ: 0 

∞−
=−∞

 = = ∀ ∈ ≈ 

  
XY XY

XX YY

Var k k k

T
τ

λ ρ ρ

ρ τ ρ τ


. (6) 

 
Accordingly, if a consistent estimate of λ  can 

be obtained (for example, λ̂ ), it follows that 
 

( ) ( )( ) ( )
ˆ 0 

0,1 .
ˆ

XY XYk k k
N

ρ ρ

λ

= ∀ ∈
→


  

(7) 

                                                
From these formulas it is apparent that several 
possible ways exist with which to test for zero 
cross-correlation.  

Firstly, one may test if a particular 
cross-correlation at lag k is zero while allowing 
for non-zero cross-correlations at other lags; 
then an estimate of (5) is sufficient to form a 
proper test statistic. Secondly, one might like to 
test whether there are any non-zero cross-
correlations above a certain lag. Thirdly, one 
may test whether there are any non-zero cross-
correlations at all. This is the hypothesis 
expressed in (2) and is the main issue here. The 
question is how to construct a test that is both 
consistent and also reasonably simple to 
perform. Observably, equation (7) can be used to 

form a consistent test if ( ) 0XY kρ ≠ . However, 

the null hypothesis states that the cross-
correlations are zero at all lags. The question is 
then what will happen if the cross-correlation at 

lag k is zero but there is at least one non-zero 

coefficient at some other lag, e.g. if ( ) 0XY kρ =  

but ( ) 0XY k lρ + ≠  for some 0l ≠ . 

To address this question, two things 
should be noted. First, the cross-correlation 
function is, in most cases, exponentially 
decaying so that even if the value of k 
corresponding to the largest cross–correlation is 
not specified there will still be a non-zero cross-
correlation at k. Thus, it is not likely that an 
inappropriately chosen k is specified such that 

( ) 0XY kρ =  under the alternative hypothesis. 

Second, in a comparison of equations (5) and 
(6), there will still be a sense in which the test is 
consistent as the test statistic will diverge from 
its null distribution. In other words, specifying a 
value k that does not correspond exactly to the 
largest cross-correlation is merely a matter of 
optimality rather than consistency. There also 

exists a possibility to involve several ( )xy kρ  

explicitly in the test: one might use the sum of 
squared cross-correlations within a certain 

interval, for example, ( ) ( )2 2ˆ ˆ...XY XYh hρ ρ− + + . 

Unfortunately such an approach will 
introduce additional complications as the sample 
cross-correlations will not be uncorrelated even 
under the null hypothesis (apart from the 
unlikely special case of independent data). 
Therefore, several authors, including Haugh 
(1976), McLeod (1979), Koch and Yang (1986) 
and Hallin and Saidi (2001) proposed model 
dependent tests and then applied this kind of test 
on the asymptotically uncorrelated residuals. For 
example, if ˆ ˆ,  and u v  are residuals from ARMA 
models, a test may be defined by 

( ) ( ) ( )2 2
ˆ ˆ ˆ ˆˆ ˆ...uv uvQ h h hρ ρ= − + + . 

A slightly different situation arises in 
cases where there is some sort of a priori 
knowledge of which lag the largest cross-
correlation might be (if any), the null hypothesis 
(2) can be tested by the asymptotic null 
distribution of (7); then one is left with the issue 
of how to estimate the variance λ  of equation 
(6). This approach is followed here because the 
other is fairly well investigated in the literature. 
In particular, two different approaches are 
investigated: (i) tests dependent upon a model, 
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and (ii) tests independent of model assumptions. 
Case (i) may be dealt with as follows: if tX  and 

tY  are known to follow a finite-order ARMA 

process, then the autocorrelations XXρ  and YYρ  
may be expressed as functions of the 
autoregressive parameters. For example, if tX  

and  are given by two ARMA(1,1) processes, 

that is, if 
 

1,,1 −− −=− tXXtXtXt XX εθεφ  

and 

1,,1 −− −=− tYYtYtYt YY εθεφ  

 
then the autocorrelations of tX  are known to be 

given by 

( ) ( )( )
XXX

XXXX
XX θφθ

θφθφρ
21

1
1 2 −+

−−= , 

 
( ) ( )1XXXXX ρφτρ = , 1>τ . 

 
Hence, using obvious notation, 
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results in 
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Thus, if tX  and tY  are two ARMA(1,1) 

processes it follows that 
 

( )
( )( )

( )
( )( )

( )

( )

1

2 2

ˆ

1 1

1 2 1 2

1
.

1

XY

X X X X Y Y Y Y

X X X Y Y Y

X Y

Var k

T

ρ

φ θ φ θ φ θ φ θ
θ φ θ θ φ θ

φ φ

−

≈  
− − − −

+ − + −

 
 
 − 

(8) 
 

From (2.8) the variance for AR(1) or 
MA(1) processes are immediately obtained by 
setting the irrelevant parameter to zero. This 
estimator can easily be generalised to ARMA(p, 
q) processes of arbitrary orders by substituting 

( )τρXX  and ( )τρYY  with the model-based 
autocorrelations. These are acquired by the 
autocorrelation generating function which can be 
found in the time series literature (see, for 
example, Hamilton, 1994). The unknown 
parameters of (8) should be replaced by any 
consistent estimates such as maximum 
likelihood estimates or non-linear least squares 
(see Brockwell & Davis, 1991; Box, et al., 1994 
for further details on estimations of ARMA 
parameters). 

An alternative way to use model based 
tests is to use the asymptotically independent 
residuals: If the parameters of the ARMA model 
were actually known, then the two marginal 
models tX  and tY  could be reformulated 

according to 
 

, 1 , 1X t t X t X X tX Xε φ θ ε− −= − +  

and 

, 1 , 1Y t t Y t Y Y tY Yε φ θ ε− −= − +            (9) 

 
Thus, by replacing the true ARMA parameter by 
consistent estimates the resulting asymptotically 
white noise residuals, ,ˆX tε  and ,Ŷ tε , can be used 

to test for cross-correlations because the 
variance of the cross-correlation may be 
approximated by 1 T , according to equation 
(3). 

Residual based tests have been proposed 
earlier in the literature, including the citations 
above, but will still be considered for 
comparison. The advantage of ARMA based 

tY
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tests is that they are parsimonious, although the 
disadvantage is that they are model-dependent 
and a rough approximation to the true unknown 
functional form may lead to an inconsistent 
variance estimate. Hence, it is of interest to also 
consider a variance estimate that does not rely 
on any model assumptions. In particular, the 

cross correlations ( )ˆXYρ τ  of equation (6) could 

be substituted directly with the sample 
autocorrelations: 
 

( ) ( )( )
( )2

1

1ˆ




=

−=

−

−−
=

T

t t

t
T

t t
XX

XX

XXXX ττρ . 

 
However, as (6) is a sum of infinitely many 
parameters some care needs to be taken: If a 
stochastic process is absolutely summable with 
finite fourth-order moments, then 

( ) ( )( )ˆ ,  XX XXN Wττρ τ ρ τ→


 for some 

∞<ττW  (see Brockwell & Davis, 1991). Hence 

the variance and the bias of ττρ̂  are of the order 

( )αο −T  for any ( )0,1 2α ∈ , and ( )τρττˆ  

converges in mean square to ( )τρττ  at the rate 

( )αο −T , that is, ( ) ( ) ( )αοτρτρ −+= TpXXXXˆ . 

Accordingly it follows that 

( ) ( ) ( ) ( ) ( )αοτρτρτρτρ −+= TpYYXXYYXX ˆˆ , and 

an estimate of (6) can be formulated. In 
particular, absolute summability of the original 
variables X  and Y  implies absolute 
summability of the sequence 

( ) ( ){ }
0XX YY .

τ
ρ τ ρ τ ∞

=
 Thus, for some 

monotonically increasing function ( )q q T= , 

 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

ˆ ˆ

ˆ ˆ 1

q
XX YY XX YY

q
XX YY XX YY

q

τ τ

τ

δ

ρ τ ρ τ ρ τ ρ τ

ρ τ ρ τ ρ τ ρ τ ο

∞

= =

=

= −

= − −  

 


(10) 
 

The literature concerning the 

convergence of sequences of the type ( )qδ  is 

extensive, one of the most cited being Newey 
and West (1987). If 

( ) ( ) ( )1 2ˆXX XX p T ερ τ ρ τ ο − += +  for all 0ε >  

(which is the convergence rate met in most 
linear estimates) but the convergence of 

( )ˆXXρ τ  cannot be assumed to hold uniformly 

in τ , then q  must be restricted to values below 
1 4T  in order to ensure that ( ) ( )1pqδ ο= .  

However, for linear processes with finite 
fourth moments, i.i.d. innovations and absolute 
summable coefficients, q  may be relaxed to 

values below 1 2T , ( ) ( )1 2 1pT εδ ο− + = . 

Moreover, recent results (e.g., Lobato & 
Velasco, 2004; Robinson, 1998) have shown 
that, in many cases, sequences of the above type 
may converge for values up to T , 

( ) ( )1 1pT εδ ο− + = . This is mainly a 

consequence of operating with sums containing 
stochastic down weighting such as 

( ) ( )ˆ ˆXX YYτ
ρ τ ρ τ  herein; ( )ˆXXρ τ  down 

weights ( )ˆYYρ τ  and vice versa and both 

decrease individually in τ . These properties 

indicate that restricting q  to values below 1 4T  
might be unnecessarily stringent; therefore the 

compromise ( )1 2T εδ − +  is used in this article so 

that the proposed model-free estimate of (6) 
takes the form 
 

( ) ( )
( )

1

1 2

ˆ ˆ ˆ ,  

where int

q
XX YY

q T
τ

ε

λ ρ τ ρ τ
=

− +

=

≤


.       (11) 

 
Hence, the variance estimate of (11) consistently 
estimates the variance component of (6). But, 
this estimate is not guaranteed to be positive in 
small samples, for this reason another variance 
estimate which is strictly non-negative is also 
considered: 
 

( )( ) ( ) ( ) =
+−= q

YYXXq
0

ˆˆ11
~

τ
τρτρτλ .  (12) 
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The non-negativeness of (12) is easily 
established: When tX  and tY  are two absolutely 

summable stochastic processes with finite fourth 

moments and ,
ˆ

X TΓ  and ,
ˆ

Y TΓ  are the matrices of 

the sample autocorrelations, it is well known 

that ,
ˆ

X TΓ  and ,
ˆ

Y TΓ  are both non-negative 

matrices (Brockwell and Davis, 1991). 
Moreover, because direct products (symbolized 
by  ) of non-negative matrices are also non-
negative (Schott, 1997), it follows that 

, ,
ˆ ˆ

X T Y TΓ Γ  is non-negative as well. Hence 

there exists an L  such that 

, ,
ˆ ˆ 0X T Y T ′= ≥Γ Γ L L , then if 

( )0..100...1 1 1=′
q1  such that qqq =′11 , it 

follows that: 
 

( )( ) ( ) ( )

( ) ( )

0

, ,

ˆ ˆ1 1

ˆ ˆ

0

=
= − +

′=
′ ′=

′
= ≥

q
T XX YY

q X T Y T q

q q

q q

q
τ

λ τ ρ τ ρ τ

1 Γ Γ 1

1 L L1

L1 L1




. 

 
In other words, if ,X Y  are two linear 

processes with finite fourth order moments and 
absolute summable coefficients and 

( )1 2intq T ε− +≤ , then λ  is a non-negative and 

consistent estimate of (6). Truncating the sample 
autocorrelation function at a certain point, as in 
(11), is sometimes referred to as a rectangular 
lag window, and estimates of the kind in (12) are 
referred to as a triangular window. That 
terminology is adopted later, even though here 
work with products of correlations is employed 
as opposed to individual correlations (which is 
the usual case). 

To sum up, four estimates of the 
variance of equation (6) have been proposed, 
two model-independent and two model-based 
estimates. The first two use the same 
information set, namely the ARMA model and 
its parameter estimates; the other two depend 
only upon the truncation point and the choice of 
lag window. Of particular interest is the 

potential difference between the model based 
and the model independent tests; how much gain 
is there in knowing the true model? It is also of 
interest to investigate the possible difference 
within each type of test, asking the questions: 
Does it matter how one makes use of the known 
model and does the choice of lag window make 
a difference? 
 

Results 
When investigating the properties of a test 
procedure, two aspects are of prime importance. 
First it is necessary to determine whether the 
actual size of the test - the probability of 
rejecting the null hypothesis when it is true - is 
close to the nominal size. Given that the actual 
size is a reasonable approximation to the 
nominal size, it is then necessary to investigate 
the actual power of the test - the probability of 
rejecting the null hypothesis when it is false - for 
a number of different parameter settings. The 
number of replicates in the computer simulations 
is 100,000 for each size and power simulation.  

In this study the relevant factor is first 
and foremost the choice of test. Five different 
tests are considered based on the statistic (7) but 
with different estimates of the standard error λ , 
namely (i) the ARMA based test using the 
asymptotically white noise residuals (so that 

1 Tλ = ), (ii) standard error obtained from (8) 
using the true ARMA parameters, (iii) standard 
error obtained by (8) using maximum likelihood 
estimate of the ARMA parameters, (iv) standard 
error using the rectangular lag window (11) with 

truncation point 0.45intq T − =   , and finally (v) 

the test based on the standard error using the 
triangular lag window (12), again with 

truncation point 0.45intq T − =   . 

It is critical to identify possible 
differences between these five tests, and in order 
to do so some different autocorrelation patterns 
must be considered. For that purpose the AR(1) 
process, MA(1) process and ARMA(1,1) 
processes are used with different values of 
autoregressive parameters, ranging from white 
noise (independent data) up to high 
autocorrelation. Moreover, two different sample 
sizes are used: 30 observations (which is usually 
considered as a small sample in time series 
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analysis) and 200 observations (medium-sized 
sample). Finally, in order to investigate the tests’ 
power to detect correlation, cross-correlations 
ranging from 0 (no correlation) up to 0.9 (very 
strong correlation) are considered. The 
significance level is set to the 0.05 level in all 
models so that the critical values are −1.96 and 
1.96 in all tests. 

By counting the number of rejections 
the empirical significance level is identified for 
each test conducted. The results are presented in 
Tables 1-8. According to Table 1, which deals 
with the special case of two independent white 
noise processes, it is observed that all tests have 
an almost perfect size relative to their nominal 
sizes, except perhaps the residual test for the 
smallest samples. Although this is not an 
unexpected result (because the sample 
autocorrelations converge rapidly for white 
noise) it is still interesting because it reveals that 
the choice of test is almost irrelevant for white 
noise data. Unfortunately, the choice of test 
becomes less obvious when considering the size 
properties of autocorrelated data. 

As shown in Table 2, there are some 
notable differences between the various tests. In 
particular, the rejection frequencies of the 
model-based tests (as functions of true 
respectively estimated parameters) reveal that 
there is no obvious gain in knowing the true 
ARMA parameters. Even though the under-
rejection of both these tests seems to worsen for 
larger values of the autocorrelation parameter, 
the test of estimated ARMA parameters 
underestimates less when compared with the 
corresponding test of the true parameters. 
Moreover, there is also a somewhat drastic 
difference between the two model-independent 
tests. In fact, the test of the rectangular lag 
window seems to uniformly outperform that of 
the triangular lag window. Although the test of 
the rectangular lag window slightly over rejects 
for high autocorrelation, the effect is not that 
serious in contrast to that of the triangular lag 
window which shows a rejection frequency of 
0.11 at high autocorrelation and small T. It is 
noteworthy that the residual-based test behaves 
satisfactorily at all sample sizes and 
autocorrelations. 

Table 3 shows some interesting 
differences compared to Table 2. The residual-

based test no longer maintains its good size 
properties, no difference exists between the two 
model-based tests and, additionally, the 
difference between the two model-independent 
tests is now very small (they both stay fairly 
close to the nominal size though the rectangular 
window is slightly closer). 

Not unexpectedly, the rejection 
frequencies shown in Table 4 are a mixture of 
the results shown in Tables 2 and 3. Hence it is 
not easy to select a test that is generally better 
than another when it comes to size properties, 
though the residual-based test and the model-
free test using the rectangular lag window may 
be said to have good overall properties. 

The power simulations in Tables 5 and 6 
present rejection frequencies for AR(1) 
properties at two sample sizes, 30 and 200 
observations respectively. It is striking that the 
differences of the various tests are negligible for 
white noise, irrespective of whether the sample 
size is 30 or 200. Conversely, there appears to be 
a difference when the autoregressive parameter 
is 0.7. 

The general pattern is that the model-
based tests have surprisingly low power 
although the residual-based test has higher 
power than any other test. In fact, the difference 
is even more accentuated for the large sample 
size. The two model-independent tests have 
power properties between the model-based test 
and the residual-based one. The residual-based 
test maintains its superior power for the MA 
process (Tables 7 and 8) even if the difference to 
the other tests is now less drastic. 

For most parameter values and sample 
sizes the model-free tests are not far behind 
those of the residual test. If one or two winners 
of the 5 tests are to be selected, one should start 
by considering tests that have fairly acceptable 
size properties - even for strong autocorrelation. 
This rules out the model-based tests (i) and (ii) 
as well as the model-independent test using a 
triangular lag window. The remaining two tests 
both have their own pros and cons; the residual-
based test uniformly outperforms the model-
independent test, but at the same time it should 
be noted that it is somewhat difficult to assume 
the model to be known. For this reason, and 
because the model-independent test is clearly 
consistent and not much weaker in power than 
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the residual-based test, one might want to 
recommend the test of the rectangular window  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for an applied situation unless the true model is 
known. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Estimated Size for White Noise Process 
Sample 
Size T 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated Parameters 

Model-Free, 
Rectangle Window 

Model-Free, 
Triangle Window 

20 0.060 0.052 0.052 0.050 0.052 
30 0.058 0.049 0.049 0.048 0.048 
40 0.056 0.050 0.050 0.048 0.049 
50 0.054 0.050 0.050 0.048 0.049 
70 0.054 0.051 0.051 0.049 0.050 

100 0.052 0.052 0.052 0.051 0.051 
200 0.052 0.052 0.052 0.053 0.052 
500 0.050 0.051 0.051 0.052 0.051 

Table 2: Estimated Size for AR(1) Process 

Sample 
Size T 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated Parameters 

Model-Free, 
Rectangle Window 

Model-Free, 
Triangle Window 

Phi = 0.2 
20 0.057 0.050 0.051 0.052 0.055 
30 0.057 0.051 0.051 0.054 0.055 
40 0.055 0.049 0.051 0.053 0.055 
50 0.057 0.051 0.051 0.054 0.055 
70 0.054 0.050 0.049 0.050 0.053 

100 0.056 0.050 0.049 0.051 0.052 
200 0.053 0.053 0.053 0.055 0.056 
500 0.050 0.054 0.054 0.054 0.055 

Phi = 0.5 
20 0.056 0.028 0.034 0.057 0.069 
30 0.056 0.035 0.039 0.057 0.066 
40 0.056 0.038 0.039 0.056 0.065 
50 0.057 0.041 0.042 0.055 0.062 
70 0.054 0.043 0.045 0.055 0.063 

100 0.056 0.046 0.047 0.055 0.061 
200 0.052 0.050 0.050 0.054 0.060 
500 0.050 0.052 0.052 0.053 0.057 

Phi = 0.8 
20 0.057 0.001 0.006 0.071 0.114 
30 0.056 0.003 0.011 0.070 0.111 
40 0.055 0.009 0.015 0.068 0.110 
50 0.059 0.016 0.020 0.065 0.104 
70 0.053 0.027 0.031 0.064 0.097 

100 0.056 0.033 0.037 0.065 0.093 
200 0.053 0.041 0.043 0.059 0.081 
500 0.050 0.049 0.049 0.056 0.072 
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Table 3: Estimated Size for MA(1) Process 

Sample 
Size T 

Residual-
Based Test 

Model-Based 
True Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Theta = 0.2 

20 0.056 0.054 0.054 0.052 0.055 

30 0.054 0.052 0.052 0.052 0.055 

40 0.054 0.054 0.053 0.054 0.057 

50 0.055 0.057 0.056 0.058 0.058 

70 0.057 0.058 0.058 0.059 0.061 

100 0.057 0.057 0.057 0.059 0.059 

200 0.053 0.054 0.054 0.055 0.056 

500 0.051 0.052 0.052 0.052 0.053 

Theta = 0.5 

20 0.058 0.052 0.051 0.053 0.059 

30 0.054 0.051 0.051 0.054 0.061 

40 0.054 0.054 0.054 0.057 0.063 

50 0.054 0.058 0.058 0.059 0.064 

70 0.058 0.057 0.058 0.061 0.064 

100 0.058 0.058 0.057 0.058 0.061 

200 0.053 0.055 0.055 0.056 0.060 

500 0.051 0.053 0.053 0.053 0.055 

Theta = 0.8 

20 0.105 0.051 0.049 0.054 0.066 

30 0.091 0.051 0.051 0.055 0.063 

40 0.080 0.053 0.052 0.058 0.065 

50 0.072 0.056 0.054 0.059 0.067 

70 0.065 0.058 0.057 0.063 0.067 

100 0.061 0.058 0.057 0.059 0.064 

200 0.054 0.056 0.056 0.057 0.061 

500 0.051 0.052 0.052 0.052 0.054 
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Table 4: Estimated Size for ARMA(1,1) Process 

Sample 
Size T 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Phi = 0.1, Theta = 0.1 

20 0.065 0.043 0.050 0.051 0.054 

30 0.062 0.042 0.048 0.050 0.052 

40 0.059 0.039 0.045 0.048 0.049 

50 0.055 0.040 0.048 0.050 0.051 

70 0.052 0.041 0.051 0.051 0.054 

100 0.052 0.043 0.051 0.054 0.053 

200 0.051 0.047 0.051 0.051 0.052 

500 0.049 0.046 0.047 0.048 0.049 

Phi = 0.25, Theta = 0.25 

20 0.068 0.035 0.041 0.053 0.059 

30 0.057 0.037 0.044 0.054 0.061 

40 0.057 0.041 0.049 0.056 0.063 

50 0.051 0.037 0.045 0.052 0.056 

70 0.055 0.044 0.050 0.053 0.058 

100 0.051 0.044 0.048 0.050 0.054 

200 0.052 0.049 0.050 0.052 0.056 

500 0.054 0.052 0.053 0.053 0.056 

Phi = 0.5, Theta = 0.5 

20 0.075 0.029 0.026 0.061 0.084 

30 0.061 0.037 0.037 0.060 0.076 

40 0.055 0.042 0.042 0.061 0.081 

50 0.055 0.042 0.043 0.060 0.072 

70 0.053 0.043 0.045 0.055 0.067 

100 0.049 0.045 0.047 0.054 0.064 

200 0.046 0.042 0.042 0.047 0.055 

500 0.052 0.049 0.049 0.050 0.056 
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Table 5: Estimated Power for AR(1) Process 
Sample Size = 30 

Underlying 
Cross-

Correlation 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Phi = 0 

0 0.058 0.054 0.054 0.052 0.054 

0.1 0.093 0.090 0.088 0.086 0.087 

0.2 0.191 0.194 0.193 0.188 0.192 

0.3 0.365 0.382 0.380 0.369 0.376 

0.4 0.589 0.619 0.616 0.606 0.613 

0.5 0.802 0.833 0.829 0.822 0.828 

0.6 0.945 0.959 0.957 0.954 0.957 

0.7 0.992 0.994 0.995 0.994 0.994 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 

Phi = 0.3 

0 0.058 0.050 0.047 0.053 0.057 

0.1 0.091 0.076 0.076 0.083 0.088 

0.2 0.192 0.160 0.162 0.175 0.183 

0.3 0.366 0.323 0.326 0.346 0.357 

0.4 0.590 0.542 0.548 0.568 0.583 

0.5 0.804 0.765 0.767 0.780 0.792 

0.6 0.946 0.922 0.923 0.929 0.934 

0.7 0.992 0.988 0.988 0.989 0.990 

0.8 1 0.999 0.999 0.999 0.999 

0.9 1 1 1 1 1 

Phi = 0.7 

0 0.058 0.017 0.023 0.063 0.087 

0.1 0.091 0.025 0.032 0.086 0.112 

0.2 0.192 0.049 0.063 0.144 0.180 

0.3 0.367 0.100 0.124 0.248 0.288 

0.4 0.596 0.196 0.223 0.387 0.436 

0.5 0.810 0.336 0.363 0.563 0.614 

0.6 0.949 0.541 0.549 0.756 0.791 

0.7 0.992 0.758 0.753 0.906 0.923 

0.8 1 0.928 0.898 0.983 0.987 

0.9 1 0.994 0.968 1 1 
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Table 6: Estimated Power for AR(1) Processes 
Sample Size = 200 

Underlying 
Cross-

Correlation 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Phi = 0 

0 0.052 0.051 0.051 0.051 0.051 

0.1 0.292 0.290 0.291 0.289 0.290 

0.2 0.811 0.815 0.816 0.815 0.816 

0.3 0.990 0.991 0.990 0.991 0.991 

0.4 1 1 1 1 1 

0.5 1 1 1 1 1 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 

Phi = 0.3 

0 0.053 0.051 0.051 0.053 0.054 

0.1 0.291 0.252 0.254 0.257 0.260 

0.2 0.810 0.744 0.745 0.749 0.753 

0.3 0.990 0.979 0.980 0.981 0.982 

0.4 1 1 1 1 1 

0.5 1 1 1 1 1 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 

Phi = 0.7 

0 0.053 0.045 0.047 0.056 0.069 

0.1 0.291 0.123 0.126 0.143 0.166 

0.2 0.810 0.383 0.384 0.417 0.454 

0.3 0.990 0.732 0.737 0.760 0.785 

0.4 1 0.943 0.946 0.953 0.962 

0.5 1 0.996 0.996 0.997 0.998 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 
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Table 7: Estimated Power for MA(1) Process 
Sample Size = 30 

Underlying 
Cross-

Correlation 

Residual-
Based Test 

Model-
Based, True 
Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Theta =0 

0 0.055 0.055 0.055 0.051 0.052 

0.1 0.081 0.083 0.083 0.080 0.082 

0.2 0.179 0.187 0.186 0.179 0.182 

0.3 0.346 0.374 0.371 0.361 0.366 

0.4 0.566 0.607 0.604 0.590 0.598 

0.5 0.788 0.827 0.824 0.812 0.821 

0.6 0.932 0.954 0.953 0.947 0.952 

0.7 0.987 0.995 0.994 0.994 0.995 

0.8 0.998 1 1 1 1 

0.9 1 1 1 1 1 

Theta =0.3 

0 0.053 0.052 0.053 0.055 0.057 

0.1 0.082 0.079 0.079 0.081 0.087 

0.2 0.177 0.166 0.169 0.172 0.178 

0.3 0.347 0.330 0.336 0.336 0.349 

0.4 0.562 0.548 0.551 0.552 0.567 

0.5 0.780 0.769 0.775 0.772 0.787 

0.6 0.925 0.926 0.929 0.928 0.935 

0.7 0.985 0.990 0.990 0.990 0.991 

0.8 0.996 0.999 1 1 1 

0.9 0.999 1.000 1 1 1 

Theta =0.7 

0 0.066 0.053 0.051 0.056 0.063 

0.1 0.094 0.075 0.074 0.079 0.088 

0.2 0.177 0.143 0.139 0.149 0.164 

0.3 0.333 0.271 0.271 0.281 0.307 

0.4 0.532 0.450 0.451 0.465 0.493 

0.5 0.740 0.672 0.673 0.687 0.712 

0.6 0.882 0.853 0.862 0.869 0.883 

0.7 0.956 0.964 0.968 0.971 0.975 

0.8 0.986 0.997 0.998 0.998 0.998 

0.9 0.996 1 1 1 1 
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Table 8: Estimated Power for MA(1) Processes 
Sample Size = 200 

Underlying 
Cross-

Correlation 

Residual-
Based Test 

Model-Based, 
True Parameters 

Model-Based, 
Estimated 
Parameters 

Model-Free, 
Rectangle 
Window 

Model-Free, 
Triangle 
Window 

Theta = 0 

0 0.049 0.049 0.049 0.050 0.049 

0.1 0.282 0.284 0.282 0.283 0.283 

0.2 0.809 0.813 0.814 0.813 0.813 

0.3 0.990 0.991 0.991 0.990 0.990 

0.4 1 1 1 1 1 

0.5 1 1 1 1 1 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 

Theta = 0.3 

0 0.049 0.051 0.051 0.052 0.052 

0.1 0.282 0.260 0.260 0.262 0.265 

0.2 0.809 0.755 0.755 0.757 0.761 

0.3 0.990 0.982 0.982 0.982 0.983 

0.4 1 1 1 1 1 

0.5 1 1 1 1 1 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 

Theta = 0.7 

0 0.049 0.051 0.052 0.051 0.054 

0.1 0.283 0.216 0.218 0.219 0.227 

0.2 0.811 0.657 0.654 0.660 0.669 

0.3 0.989 0.949 0.950 0.952 0.955 

0.4 1 0.999 0.999 0.999 0.999 

0.5 1 1 1 1 1 

0.6 1 1 1 1 1 

0.7 1 1 1 1 1 

0.8 1 1 1 1 1 

0.9 1 1 1 1 1 
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Conclusion 
This study used five tests for cross-correlation 
with the purpose of investing the possible gain 
of knowing the true model, or the true 
parameters, relative to model independent tests. 
The size and power properties of five tests, each 
relying on different amounts of information, 
were investigated via the use of Monte Carlo 
simulations. It was observed that the size 
properties are essentially the same for all tests in 
case of white noise data. For autocorrelated data 
the size properties diverge; for slowly decaying 
autocorrelations the residual based test is 
markedly better than the others, although for 
rapidly decaying autocorrelations the residual 
based test is inferior to the others in that it over 
rejects, thus, none of the tests has uniformly best 
size properties. 

The power properties of the tests are the 
same for white noise data, but in the case of 
autocorrelation there are some apparent 
differences. For slowly decaying 
autocorrelations the residual based test is 
markedly better than the others, but for rapidly 
decaying autocorrelations the power properties 
are about the same for all tests. It was also 
observed that the choice of lag window for the 
model independent estimates is of some 
importance. The size properties are uniformly 
better for the rectangular lag window but the 
power properties are about the same. In general, 
the residual based test dominates the model 
independent test in terms of power, but the 
potency of the residual based test should be 
weighed against the risk of using a misspecified 
model. 
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