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On Exact 100(1-α)% Confidence Interval of Autocorrelation Coefficient in 
Multivariate Data When the Errors are Autocorrelated 

 
Madhusudan Bhandary 

Columbus State University 
 

 
An exact 100(1 )%α−  confidence interval for the autocorrelation coefficient ρ  is derived based on a 
single multinormal sample. The confidence interval is the interval between the two roots of a quadratic 
equation in ρ . A real life example is also presented. 
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Introduction 
The autocorrelation coefficient ρ is frequently 
used to measure the autocorrelation in a time 
series model. Weather patterns throughout the 
year change month by month and there is 
autocorrelation in the weather pattern from one 
month to the next. Similarly, the behavior of the 
stock-market pattern from day to day has an 
autocorrelation effect. 

Statistical inference concerning ρ for a 
single sample problem has been studied by 
Durbin and Watson (1950, 1951, 1971); some 
discussions are also given in Morrison (1983). 
Cochrane and Orcutt (1949) include a discussion 
about estimating the regression parameters when 
the errors are autocorrelated. Bhandary (2005) 
derived a likelihood ratio test for the equality of 
two autocorrelation coefficients based on two 
independent multinormal samples. Bhandary and 
Doetkott (in review) derived a likelihood ratio 
test for the equality of more than two 
autocorrelation coefficients based on more than 
two independent multinormal samples. 

In this article, the problem of developing 
a method of obtaining an exact 100(1 )%α−  
confidence interval for the autocorrelation 
coefficient ρ  based on a single multinormal  
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sample is considered. A confidence interval for 
ρ  is found using the distributional property of a 

statistic. The confidence interval for ρ  is the 
interval between the two roots of a quadratic 
equation in ρ . 
 

Methodology 
Derivation of the Confidence Interval 

The model for the multivariate data with 

autocorrelated error is as follows: 

~~~
εμ+=x , 

where  
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~
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is a 1×p  vector of observations, 
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′= pμμμ  

is a 1×p  vector of unknown means, and 
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is a 1×p  vector of random errors. 
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and pN  denotes p-variate normal distribution. 

The structure of the covariance matrix in (2.1) 
means that the errors are autocorrelated. The 
autocorrelatedness of the error is common in real 
practice and it can be tested from the data 
whether the error covariance structure is of (2.1) 

or not. In expression (2.1), 2σ  represents the 
variance of each error component and ρ is called 
the autocorrelation coefficient. 

Let 
  ~  ~

2
  ~
1 ,...,, nxxx  be 1×p  vector of n 

observations independently and identically 
distributed as ),(

~
ΣμpN , where Σ  is given by 

(2.1). The following transformation can be 
made: 
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Thus,  

,)1( 22
pITT ρσ −=′Σ        (2.3) 

 
where pI  denotes identity matrix of order 

pp × . Under the transformation (2.2),  
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(2.4) 

where 
~

*

~
μμ T= . 

Next, consider splitting the sample data 
into two parts – one with 1n observations 

11 2
~  ~  ~  

, ,..., nx x x (sample 1) and the other with 2n  

observations 
1 1 1 21 2

~  ~  ~  

, ,...,n n n nx x x+ + + (sample 2) and 

1 2n n n+ = . Using the transformation (2.2), the 

data vector can be transformed from 
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  to ii ux  as 

follows: 
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given by (2.2) 
Consider the following statistic: 
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(using (2.5)), it can be stated that the exact value 

of the constant *C  can be obtained from the 
equation 
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where, 

1 2; ,n nFα is the upper 100 %α  point of the 

F- distribution with d.f. 1 2,n n  respectively and 

2 1n n n= − . 

The inequality inside the probability in 
(2.7) can be written as 
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where T  is given by (2.2). 

From (2.2) it may be observed that 
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Using (2.9) in (2.8), the following inequality 
results: 
 

1

1

1
2 2 2

1 1
2

2

1
1

11
1 *

1
2 2 2

1 1
2

2

1
1

11
1

( ) (1 ) ( )

( )

2 ( )( )

( ) (1 ) ( )

( )

2 ( )( )

p

i ir r
rn

ip p
i p

ir r rir
r

p

i ir r
rn

ip p
i n p

ir r rir
r

x x x x

x x

x x x x
C

x x x x

x x

x x x x

ρ

ρ

ρ

ρ

−

=

= −

++
=

−

=

= +
−

++
=

 
− + + − 

 
 + −
 
 − − −   >
 

− + + − 
 
 + −
 
 − − −  













 

 

1

1

1
2 2 2

1 2

1
1

11
1 *

1
2 2 2

1 2

1
1

11
1

( ) ( )

2 ( )( )

. .,

( ) ( )

2 ( )( )

p p

ir r ir rn
r r

p
i

ir r rir
r

p p

ir r ir rn
r r

p
i n

ir r ri r
r

x x x x

x x x x
i e C

x x x x

x x x x

ρ

ρ

ρ

ρ

−

= =

−
=

++
=

−

= =

−
= +

++
=

 
− + − 

 
 
− − − 
  >
 

− + − 
 
 
− − − 
 

 




 



 

. .i e  2 0a b cρ ρ+ + >               (2.10) 
where 
 

1

1

1 1
2 * 2

1 2 1 2

( ) ( )
n p pn

ir r ir r
i r i n r

a x x C x x
− −

= = = + =

= − − −    

 

1

1

1
*

11
1 1

1

11
1 1

2 ( )( )

    2 ( )( )

pn

ir r rir
i n r

n p

ir r rir
i r

b C x x x x

x x x x

−

++
= + =

−

++
= =

= − −

− − −

 


 

(2.11) 
and 

1

1

2 * 2

1 1 1 1

( ) ( )
n p pn

ir r ir r
i r i n r

c x x C x x
= = = + =

= − − −    

 

and *C is given by (2.7). Note that the data is 
split and called sample 1 and sample 2 in such a 
way that a > 0 i.e., if a < 0 then sample 2 is 
called as sample 1 and sample 1 as sample 2, 
and in that case a > 0, where a is given by 
(2.11).                                                            (*) 

Let the roots of 2a b cρ ρ+ + = 0 be 
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where a, b and c are given by (2.11). Note that in 
(2.12), if 2 4b ac−  happens to be negative, then 
sample 2 is called as sample 1 and sample 1 as 

sample 2 and, in that case, 2 4b ac− becomes 
positive. 
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Therefore, 1 2ˆ ˆ( ) 1P ρ ρ ρ α< < = − , where 1ρ̂  

and 2ρ̂  are given by (2.12). Thus, 100(1 )%α−  

confidence interval for ρ  is 1 2ˆ ˆ( , )ρ ρ  where 1ρ̂  

and 2ρ̂  are given by (2.12). 

 
A Real Life Example 

A real data set from Anderson (1976) 
and Hand, Daly, Lunn, McConway, and 
Ostrowski (1994) containing a sample of the 
monthly average air temperature (°F) from 
January to April at Nottingham Castle for 10 
years - hence the data is autocorrelated over 
months - is used to provide an example. (See 
Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
Data in Table 1 is a p-variate data set for p = 4 

and n = 10; it is split into two parts as 1 5n =  

and 2 5n = , and sample 1 is the first 5 

observations and sample 2 is the remaining 5 
observations. 

The formulas for computing the sum of 
square and sum of products are as follows: 
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Using formula (2.11) results in a = 

4.9997, b = 25.7179 and c = 3.4117 and 
0.05α =  is used, hence 0.05;20,20 2.12F = . 

Using (2.12), results in a 95% confidence 
interval for ρ  as (-5.0076, 0.1363) which is 

approximated as (-1.0, 0.1363) becuase 1.ρ <  
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