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Beyond Alpha: Lower Bounds for the Reliability of Tests 
 

Nol Bendermacher 
Radboud University, 

Nijmegen, The Netherlands 
 

 
The most common lower bound to the reliability of a test is Cronbach’s alpha. However, several lower 
bounds exist that are definitely better, that is, higher than alpha. An overview is given as well as an 
algorithm to find the best: the greatest lower bound. 
 
Key words: test reliability; Cronbach’s alpha. 
 
 

Introduction 
The concept of reliability is based on the notion 
of accuracy or precision of a measurement. This 
article is confined to the reliability of tests - 
psychological or other - consisting of a number 
of items and to the situation where a test is 
administered only once. A person’s score on 
such a test is the sum of his/her scores on the 
individual items. 

According to classical test theory, the 
score xij of person i on item j consists of two 
parts: the true score τij and an error component 
εij: xij = τij + εij. Moreover, classical test theory 
assumes that the error components are 
uncorrelated with the true parts as well as with 
each other. As a consequence the covariance 
matrix Γ of the items is the sum of two 
components: the covariance matrix (Γτ) of the 
true parts and the covariance matrix (Γε) of the 
error components: 
 

Γ = Γτ + Γε 
 
The assumption of uncorrelated errors implies 
that Γε is a diagonal matrix; thus the off-
diagonals of Γ and Γτ are identical. The 
assumption of independent errors is essential for 
all measures discussed herein. Many conditions 
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exist which lead to the violation of the 
assumption of independent errors, for example: 
in a test with a time limit where an unanswered 
item results in a minimum score, the errors of 
the last items may correlate, or in a long or 
difficult test errors may become correlated due 
to the effect of fatigue or declining motivation 
during the test administration. 

The reliability of a test consisting of v 
items is defined as: 
 

ρtt = 
2
t

2
e1

σ
σ

−                          (1) 

 

where 2
eσ  is the error variance and 2

tσ  is the 

total variance of the test scores: 
 

2
tσ  =  Γ

= =

v

1i

v

1j
ij                       (2) 

 

2
eσ  = TR(Γe) = Γ

=

v

1i
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Based on these formulae the definition of 
reliability can be rewritten as: 
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It should be noted that this definition leaves 
undecided whether the unique variances (item 
variance components not correlated with any 
other item) are treated as error or as true 
variance. The lower bounds discussed herein are 
lower bounds according to both definitions. 
 
Lower Bounds 

If no other assumptions are added to 
those of the classical model it is impossible to 
assess the reliability of a test from a single 
administration; only lower bounds can be 
derived. From (4) it is clear that - given 
covariances Γ - the reliability is maximal if the 
trace of the error covariance matrix Γe is 
minimal. As Jackson and Agunwamba (1977) 
remarked, the only restrictions that the classical 
model imposes on the elements of Γε are 
 

(1) 0 ≤ Γeii ≤ Γii, and 
 
(2) Γτ = Γ - Γe is non-negative definite. 

 
Thus, if the set of values Γe that 

maximizes its trace Γ
=

v

1i
eii  under these 

restrictions can be located, the result would give 
the smallest possible value for the reliability 
given the covariance matrix Γ; this value is the 
greatest possible lower bound to the reliability. 
Jackson and Agunwamba (1977) and ten Berge, 
Snijders and Zegers (1981) described algorithms 
to find this largest lower bound; however, 
several well-known lower bounds are first put 
forth. 

Guttman (1945) introduced a series of 
lower bounds called λ1 through λ6. 
 

λ1:  
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This λ1 is the sum of the off-diagonal cells in Γ 
divided by the sum of all cells. The larger the 
item covariances, as compared to the variances, 
the larger λ1. 
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             (6) 

 
Because λ2 ≥ λ1, λ2 should always be 

preferred over λ1.  

λ3: 11v

v λ
−

 = 



















 Γ

Γ
−

−
= =

=
v

1i

v

1j
ij

v

1i
ii

1
1v

v
      (7) 

 
This λ3 is better known as Cronbach’s alpha. 
Guttman (1945) remarked “λ3 is easier to 
compute than λ2, since only the total variance 
and the item covariances are required. If the 
covariances are all positive and homogeneous, 
then λ3 will not be much less than λ2 and may be 
an adequate lower bound. If the covariances are 
heterogeneous, and in particular, if some are 
negative, then λ2 will be definitely superior to 
λ3. λ2 can be positive and useful when λ3 is 
negative and useless” (pp. 274-275). In brief,   
λ1 ≤ λ3 ≤ λ2. Therefore, with modern 
computational facilities, λ2 should always be 
preferred over λ3. In actual practice, however, 
researchers tend to use λ3, which is better known 
as Cronbach’s alpha or, with dichotomous items, 
the Kuder-Richardson 20 (KR20). 

Ten Berge and Zegers (1978) showed 
that λ3 and λ2 are members of a series of bounds 
μ0, μ1, μ2, ..., defined by the following general 
formula: 
 
μr =  

( )

1
1 2

1 2
1 2
2

0 1 2 r 1 r2
t

1
p p p ... p p ... ,−

 
       + + + +    σ      
  

 
(8) 

where r = 0, 1, 2, .... 
 

ph = ( )
≠ ji

ij
h2σ , h = 1, 2, ..., r-1 
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ph = ( )σ
− ≠ ji

2
ij

h

1v

v
, h = r 

 
From this formula it is observed that μ0 = λ3 = 
Cronbach’s alpha = KR20 and μ1 = λ2. The 
differences between μr+1 and μr rapidly converge 
to zero, thus, there is not much use in going 
further than μ3. 
 

λ4: 










σ
σ+σ

−
2
t

2
2

2
112                     (9) 

 

where 2
1σ  and 2

2σ  are the variances of two test 
halves: 

2
1σ  = Γ

i j
ij  

 
where i and j run over the items in the first test 
half and similarly, 
 

2
2σ  = Γ

i j
ij  

 
with i and j running over the items in the second 
test half. 

A problem with λ4 is that many ways 
exist by which to split a test into two parts, 
meaning that there are many different values for 
λ4: the most interesting of them is the largest. In 
the statistical package SPSS (release 15.0.0) the 
value of λ4 depends on the order of the items in 
the scale: it assigns the first v/2 items (with odd 
v the first (v+1)/2) to the first test half and the 
remaining items to the second half. 

A simple algorithm to find a good split 
is based on the following: Imagine that the rows 
and columns of the covariance matrix are 
rearranged such that the items of the first test 

half come first, 2
1σ  and 2

2σ  are the sums of the 
upper left and the lower right quarter of the 
covariance matrix Γ respectively. Because the 

sum ( 2
tσ ) of the entire matrix is fixed, λ4 is 

maximal if the sum of the lower left (and the 
upper right) quarter is maximal. This leads to the 
following algorithm: 
 

1) Locate the pair of items with the highest 
covariance and assign one of them to test 1 
and the other to test 2. 

2) Try each ordered pair (i, j) of items not yet 
assigned. Compute the covariance between 
the two test parts if item i is assigned to test 
1 and item j to test 2. After all pairs are tried, 
make the assignment that resulted in the 
highest covariance between the tests. 

3) Repeat step 2 until all items have been 
assigned to one of the test-halves. In the case 
of an odd number of items, the last item is 
added to the group for which the mean 
covariance with the item is the smallest. 

 
Given a specific split, Jackson and 

Agunwamba (1977) described a method to 
determine whether the resulting value of λ4 is 
the greatest possible lower bound. Define: b = a 
vector with v-elements, with bi = 1 if item i 
belongs to test half 1 and bi = -1 if it belongs to 
test half 2; A = Γb; θi = biAi, i = 1, v (this θ is 
the vector with error variances); and 
Γt = Γ − diag(θi). If Γt is non-negative definite 
and all θi ≥ 0, λ4 is the greatest possible lower 
bound. 
 

λ5: 
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2
ij Γ−Γ
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(10) 
 
As Guttman (1945) noted, this measure will be 
larger than λ2 if one item has large covariances 
with the other items compared with the 
covariances among those items. Otherwise λ5 is 
less than or equal to λ2. 
 

λ6: 
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where 1
ii
−Γ denotes the ith diagonal of the inverse 

of Γ. In these formulae 2
iΡ  is the squared 

multiple correlation in the multiple regression of 
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item i on the remaining v-1 items: 2
iΡ  = 

1
ii

1
1 −Ρ

− . ( 1
ii
−Ρ  denotes the ith diagonal of the 

inverse of the correlation matrix from Γ). 
Guttman (1945) explained that λ6 will 

be larger than λ2 if the multiple correlations are 
relatively large as compared to the zero-order 
correlations. Otherwise λ6 will tend to be less 
than or equal to λ2. Jackson and Agunwamba 
(1977) reported that λ6 should be particularly 
advantageous in the fairly typical situation 
where the inter-item correlations are positive, 
moderate in size and somewhat similar. Jackson 
and Agunwamba (1977) added a seventh bound, 
called λ7: 
 

λ7: 2
t

i j

2
ij

v

1i
2
t

2
i
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1v

v

1
σ


−

+
σ
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≠
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where 2
ijd  is defined as follows: 

 

g = the value of j for which 
jj

2
ij

Γ
Γ

 is largest 

 

k = the value of i≠j for which 
ii

2
ij

Γ
Γ

 is largest 

 
rij = the correlation between items i and j 

 
2
ijd  = ( )2

ij
2
kj

2
ig

2
j

2
i r,rrmaxσσ  

 
Jackson and Agunwamba remarked that this 
bound will be substantially better than λ2 when 
there is considerable variation among the 
squared correlations. 

Woodhouse and Jackson (1977) showed 
some partial orders in the bounds λ1 through λ7: 
λ1 ≤ λ3 ≤ λ2 ≤ λ7, λ1 ≤ λ4, λ1 ≤ λ5, λ1 ≤ λ6. Table 1 
shows a covariance matrix of four items and the 
lower bounds discussed for the reliability of 
their sum. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
When Experimental Independence Does Not 
Hold 

Guttman (1953) provided some lower 
bounds for the situation where the assumption of 
independent errors does not hold by introducing 
an additional quantity δ, for which in some 
specific situations upper bounds can be defined. 
Such situations are tests with a time limit and 
more general tests where the completion of an 
item depends on the completion of its 
predecessor. The adjusted measures are: 

 

*
1λ  = 

2
t

1
σ
δ−λ                     (13) 

 

*
2λ  = 

2
t

2
σ
δ−λ                     (14) 

 

*
3λ  = *

11v

v λ
−

                     (15) 

 

*
4λ  = 

2
t

4
2

σ
δ−λ                   (16) 

 
For the situation where the assumption of 
uncorrelated errors is violated only by the fact 
that the completion of an item depends on the 
completion of its predecessor, Guttman (1955) 
gives three upper bounds for δ, assuming that an 
item that is omitted results in the lowest possible 
score. Thus, the assumption of uncorrelated 
errors is weakened to the following: “The basic 
assumption from now on is that, if person i 
attempts item j, then his score on any later item 

Table 1: Variances and Covariances of Four Items 
and Lower Bounds for the Reliability of their Sum 
 5.6 
 0.2 6.7 
 2.8 3.9 8.8 
 -1.2 1.9 3.0 10.8 

λ1 = 0.3992 
λ2 = μ1 = 0.5867 
λ3 = α = μ0 = 0.5323 
λ4 = 0.5574 
λ5 = 0.6125 
λ6 = 0.5817 
λ7 = 0.5904 
μ2 = 0.5936 
μ3 = 0.5957 
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g (g > j) will be experimentally independent of 
his score on this attempted item j. That is, we are 
considering here the case where dependence is 
due solely to omissions, so that if a part is 
attempted, no further experimental dependence 
holds” (Guttman, 1955, p. 119). Defining 
 
v' = the number of items with a non-zero 
variance 
 
li = the minimum score on item i, also the score 
for an unattempted item 
 
hi = the maximum score on item i 
 
mi = hi - li 
 
xi = mean score on item i with  li subtracted 
 
pi = proportion of persons that attempt item i 
 
the (estimates of the) upper bounds for δ are: 
 

d1 = ( ) −
= +=

'v

1i

'v

1ij
jiii mp1xm           (17) 

 
If mi = 1 for all i, this formula reduces to: 
 

d1 = ( ) ( )ii

'v

1i
p1xi'v − −

=
             (18) 

 

d2 =  







−

= +=

'v

1i

'v

1ij
jjii xmp1m2    (19) 

 
If mi = 1 for all i, this formula reduces to: 
 

d2 =  







−

= +=

'v

1i

'v

1ij
ji xp12            (20) 

 

d3 =  
= +=

'v

1i

'v

1ij
ije2                     (21) 

where 

eij = max( ( )ijji p1xmm − ,

( )jiij p1xmm − ) 

(22) 

From these formulas it is clear that d3 is at least 
as high as d1 and d2. 
 
Finding the Greatest Lower Bound 

Woodhouse and Jackson (1977) 
described an algorithm that finds the greatest 
lower bound (GLB) for the reliability of a test if 
only the assumptions of classical test theory 
hold. However, ten Berge, Snijders and Zegers 
(1981) showed that this algorithm will not 
always produce the correct lower bound. They 
described another algorithm that avoids these 
shortcomings and also is less time consuming. 
The algorithm, as implemented in this study, 
proceeds as follows: Define: 
 

C = the given covariance matrix 
 

C0 = C-Diag(C) 
and 

Ri = The ith row of C 
 
1) Construct a v by r matrix T with r <= v and 

not too small. Ten Berge, Snijders and 
Zegers (1981) advised that r = the number of 
non-negative eigenvalues in Γ0. In order to 
be safe, choose r = v. 

 
Similar to Bentler & Woodward (1980) the 
cells Tij of T are defined as follows: 

 

If i > j Tij is set to 
i

1−  

 

If i = j Tij is set to 
i

1

 
 

If i < j Tij is set to 0
 
 

 
(By this choice all rows have length 1.) 

 
2) Perform the following steps for each row i 

of T: 
 

2.1) Compute a = MIN(0, i
TT

i RTTR ) ; 

a is the provisional estimate of the true 
variance of item i. 
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2.2) If 0 < Cii < a, row i is replaced by 

i
T

ii
RT

C

1−

 
 
If 0 < a ≤ Cii, row i is replaced by 

T
i

1
T R .

a

−

 
 
2.3) If a = 0, rescale row i to length 1. 

 
3) Compute the (estimated) sum of error 

variances: E = TR(TTCT) and check for 
convergence. The process has converged if 
the following conditions hold: 

 
a) E has not (sufficiently) decreased since 

the last check 
b) All rows of T have length ≥ 1 

 
If the process has not converged go back to 
step 2. 

 
4) Compute the resulting estimate of Γt by 

copying C and replacing Cii by 








i
TT

iii RTTR,CMIN , i = 1,v and 

check whether its smallest eigenvalue is 
zero. If not, the whole procedure should be 
repeated with another starting value of T, 
but we wonder if such a situation will ever 
occur. 

5) Define  E = Cii-Ctii and estimate 
 

v v

ij
i 1 j 1

E
GLB 1

C
= =

= −


                   (23) 

 
If this algorithm is applied to the example of 
Table 1 the result is GLB = 0.7324. Ten Berge 
and Sočan (2004) provide several sources from 
which other programs can be obtained that 
compute the greatest lower bound. 
 
The Effect of Sampling Error 

A problem exists with several of the 
lower bounds described in the preceding text. 
When estimated from a small sample, λ4, λ5, λ6, 
λ7 and GLB will capitalize on chance; meaning 

that their estimates from the sample tend to 
overestimate the true population values. As 
Shapiro and ten Berge (2000) remarked: “It is 
well known that the g.l.b., based on small 
samples (even a sample of one thousand subjects 
is not generally enough) may severely 
overestimate the population value, and statistical 
treatment of the bias has been badly missing” (p. 
413). They show that bias tends to increase with 
decreasing sample size and with lower values of 
GLB. Moreover, the bias is expected to be larger 
with more parameters to be estimated, that is, 
with greater v. 

In absence of an analytical solution the 
use of brute (computing) force is suggested. The 
following bootstrapping approach could be used: 
 
1) Compute from the sample covariance matrix 

C the selected lower bound, G0. If the 
sample from which C is computed is 
available, steps 2 through 5 may be skipped 
and the sample plays the role of X in step 6. 

 
2) Generate a n by v matrix F, filled with 

drawings from a standard normal 
distribution; n must be not too small and 
always larger than v: 1,000 or 2,000 is 
adequate. 

 
3) Rotate the columns of F to orthogonality and 

scale them to mean 0 and length n ; F will 
act as the set of components from a principal 
components analysis. 

 
4) Perform a principal components analysis on 

C, resulting in a diagonal matrix Λ with 
eigenvalues and the matrix V with the 
corresponding eigenvectors. Compute the 

factor matrix A = 2

1

VΛ  and make sure that 
A is square; add zero columns if needed. 

 
5) Construct the matrix X = FAT. The resulting 

X has a multivariate normal distribution 

with covariance matrix XX
n

1 T  = C. 

 
6) Draw k random samples from X. For each 

estimate the covariance matrix and the 
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chosen lower bound. The sampling consists 
of random selections (with replacement) of 
rows from X. Compute the mean Gm and the 
standard deviation sm of these lower bound 

estimates. The standard error 
k

sm  may be 

used as a stop criterion during the 
simulations. 

 
7) The difference G0-Gm is an estimator of the 

bias by capitalization on chance and G0 is 
corrected by taking 2G0-Gm instead. The 
correction may not be perfect, but it will be 
close if the sample is not too small and G0 
not too great. 

 
In the example of Table 1 and assuming a 
sample size n = 200 the bias is estimated as 
0.002839; taking n = 100 the bias estimate 
becomes 0.002942. These bias estimates are 
very small, possibly due to the small number of 
items. 
 
A computer program, called Reliab, that 
computes some of the lower bounds to the 
reliability, including the GLB, is available at 
http://www.ru.nl/socialewetenschappen/rtog 
/software/statistische/kunst/ 
 
The Factor Analytic Approach 

Factor analysis explains the correlations 
between a set of items by a limited set of 
underlying latent variables, called factors. The 
model allows the estimate for scores of 
individuals on the factors as weighted sums of 
their item scores. In this model it is possible not 
only to find lower bounds, but also to find real 
estimates of the reliability of the estimated factor 
scores from a single test administration. 

In factor analytic models, the variance 
of an item is viewed as composed of two parts: 
 
1) Common variance, i.e. variance that is 

shared with other items, and 
 

2) Unique variance (or unicity), i.e. variance 
that is unique for the item: it consists of 
specificity and genuine error. 

 
 

Defining: 
 
Z = n × v matrix of standardized scores (z-
scores) of n individuals on v items. 
 
F = n × v matrix of true scores of the individuals 
on f factors; F is unknown. 
 
Bz = v × f matrix of weights to estimate the 

factor scores F from the item scores Z: F̂  = ZB 
 
Assume that the weights are scaled such that the 

variances of F̂  (i.e., diagonal values of F̂F̂
n

1 T ) 

are unity. Thus if 
 
A = v × f factor pattern, i.e., the matrix 
containing the weights of the factors in the 
reconstruction of Z: Z = FAT + error + unicities; 
 
S = v × f factor structure; it contains the 
correlations between Z and F; 
 
U = v × v diagonal matrix with unicities; and 
 
Rff = f × f matrix with correlations between the 
factors; 
 
then the correlations between the factors and the 
factor score estimates are: 
 

( )

T
ˆff

T
z

T T
z

T T
z

T
ff z

T
z

1 ˆR F F
n
1

F ZB
n
1

F FA U B
n
1

F FA B
n

R A B

S B

=

=

= +

=

=

=

     (24) 

 
If this model is adhered to, the latent 

factors play the role of true scores, and although 
they are latent, f̂f

R  contains estimates of the 

correlations between them and the factor score 
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estimates. The squares of these correlations can 
be interpreted as the reliabilities of the factor 
score estimates. This measure is also called the 
“factor determinacy” (McDonald, 1974, p. 213). 
 
In this context two remarks must be made: 
 
1) Factors, as they result from a factor analysis, 

are not completely defined: they function as 
axes in an f-dimensional space and any other 
set of f axes in that space will explain the 
correlations between the items equally well. 
Therefore, the orientation of the factors must 
be selected on the basis of additional 
criteria, for example their interpretability 
from a given theory, and 
 

2) As with all regression models, the squared 
correlations between factors and factor score 
estimates tend to be inflated, especially 
when the analysis is based on a small 
sample. 

 
Conclusion 

A number of lower bounds to the reliability of a 
test have been discussed; all are based on the 
covariance matrix of the items in the test. It is 
clear that the most commonly used measure, 
known as Cronbach’s alpha, KR20 or λ3, is a 
poor choice; its only advantage over Guttman’s 
λ2 is its ease of computation by hand. 

It is clear that - under the assumptions of 
the classical test theory and without additional 
assumptions - the measure known as the 
Greatest Lower Bound is the highest possible 
lower bound. Its only weakness, one shared with 
several of the other measures, is its sensibility to 
capitalization on chance if it is estimated from a 
relatively small sample. In the absence of 
analytical methods to correct this bias a 
bootstrapping approach using brute computing 
force is suggested in order to minimize the bias. 
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