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Impact of Measurement Model Modification on Structural Parameter Integrity 
When Measurement Model is Misspecified 

 
Weihua Fan 

University of Houston 
 

 
In the process of model modification, parameters of residual covariances are often treated as free 
parameters to improve model fit. However, the effect of such measurement model modifications on the 
important structural parameter estimates under various measurement model misspecifications has not 
been systematically studied. Monte Carlo simulation was conducted to compare structural estimates 
before and after measurement model modifications of adding residual covariances under varying sample 
sizes and model misspecifications. Results showed that researchers should pay attention when such 
measurement model modifications are made to initially misspecified model with missing path(s). 
 
Key words: Structural equation modeling; modification indices; Lagrange multiplier (LM) tests; residual 
covariance; misspecification. 
 
 

Introduction 
Model modification, also known as specification 
search, has been widely used in the application 
of structural equation modeling, in hope of 
improving models. After obtaining a model that 
fails to meet accepted goodness of fit standards, 
many researchers frequently turn toward model 
modification information in an attempt to find a 
parsimonious model to fit the sample data. Two 
approaches commonly used for model 
modification are the Lagrange Multiplier test 
(LM test; also referred to as modification index) 
and the Wald (W) test. The LM test reduces 
constraints by freely estimating parameters such 
as residual covariances that are currently fixed 
(usually to zero). The W test increases 
constraints by fixing parameters that are 
currently free (Bentler, 1995; Chou & Bentler, 
1990). The more applied approach is usually the 
LM test, because freely estimating parameters 
rather than fixing parameters improves model 
fit. 

Anderson and Gerbing (1988) proposed 
a two-step SEM process as some guidance for 
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latent variable path models which is commonly 
recommended in practice (see, Kline, 2004; 
Schumacker & Lomax, 2004). The SEM process 
consists of two steps: the measurement step and 
the structural step. The measurement step in the 
process considers the measurement model, 
which specifies the relations between the 
underlying factors and the measured variables. It 
allows researchers opportunities to improve the 
data-model fit through model modification 
within the measurement model while 
temporarily inserting a saturated latent structure. 
After obtaining satisfactory data-model fit in the 
first step, the second step involves the structural 
model which hypothesizes relations between the 
latent variables. Assessing the structural 
relations in an SEM application is usually the 
focal point of an investigation. Examples of this 
two-step process include studies by Mattanah, 
Hancock, and Brand (2004), Joiner, Leveson, 
and Langfield-Smith (2002) and Chong and 
Chong (2002). Also see Mulaik and Millsap 
(2000) for a four-step process and Green, 
Thompson and Poirier (1999) for a 2-stage 
specification search procedure, and Green, 
Thompson and Poirier (2001) for an adjusted 
Bonferroni method for eliminating parameters in 
specification searches. 

Although the application of the model 
modification procedures is commonly observed 
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across disciplines (Brekler, 1990; Hutchinson, 
1998; MacCallum, Roznowski & Necowitz, 
1992), it is data-driven in nature and is 
characterized by capitalization on chance (e.g., 
MacCallum, Roznowski & Necowitz, 1992). 
Researchers have thus become prudent with 
model modifications regarding important theory 
related parameters such as structural parameters 
or loading parameters. In the meantime, 
parameters of residual covariances, which are 
much less theoretically concerned, are often 
treated as free parameters to help improve the 
model-data fit. This is exemplified in work by 
Newcomb and Bentler (1988) in which 77 
residual covariances were added prior to 
structural analyses.  

Given that the primary purpose of latent 
variable path models is to assess theoretical 
relations between latent variables (e.g., 
Kerlinger, 1986), it is not uncommon that 
parameters of residual covariances are used in 
abundance to help improve model fit. The liberal 
manner in which residual covariances are made 
to measurement models does not appear to be 
due to a prevailing belief that the true 
measurement model will be found as a result; 
research (see, e.g., MacCallum, Roznowski & 
Necowitz, 1992) has documented that sample-
based respecifications seldom arrive at the true 
population model with consistency. 

Two types of errors can result in model 
modifications such as incorrectly reducing fixed 
constraints: (1) errors due to sampling 
fluctuation, and (2) errors due to 
misspecification (Green, Thompson & Poirier, 
1999). Errors related to sampling fluctuation 
occur if model modifications fit the specific 
characteristics of sample data but not the 
population. Errors due to misspecification can 
occur in two situations. When the initially 
hypothesized model is correctly specified, model 
modification of freely estimated correctly fixed 
parameters to maximally increase model fit is 
unnecessary and results in Type I error 
capitalizations on random sample covariation. 
Fan and Hancock (2006) have shown that the 
overspecification of measurement model 
modifications impacts the structural parameter 
estimates under certain conditions, however, this 
effect is usually negligible. When the initially 
hypothesized model is incorrectly specified, 

which is almost inevitable in practice, model 
modifications to revise the model by freely 
estimating additional parameters can lead to two 
possible results: a revised model with less 
misspecification errors than the initially 
hypothesized model or a revised model with a 
greater number of errors due to misspecification. 
Two common types of measurement model 
misspecification include: (1) relevant parameters 
are incorrectly fixed to zero, and (2) irrelevant 
parameters that should be fixed to zero are freely 
estimated.  

If a researcher starts with an initial 
model with incorrectly fixed relevant parameters 
set to zero, it is expected that freely estimating 
incorrectly fixed parameters such as cross-
loadings or residual covariances would be 
beneficial to the structural parameters. However, 
incorrectly fixing relevant parameters to zero 
can manifest in significant residual covariances, 
which exist as a function of fixing the truly non-
zero parameters (e.g., cross-loadings) to zero. 
With this scenario it is likely that the LM test 
also suggests to freely estimate residual 
covariances that are correctly fixed to zero, this 
results in a model with more misspecification 
errors. In addition, if a researcher starts with an 
initial model incorrectly freely estimating 
irrelevant parameters that should be fixed to 
zero, it is expected that the LM test suggesting 
more freely estimating incorrectly fixed 
parameters will lead to a model with more 
misspecification errors. This begs the question 
of whether the prevailing modification of freely 
estimating residual covariances is indeed price-
free to our structural parameter estimates under 
measurement model misspecifications. No study 
of specification searches has considered this 
issue, thus the current focus of this investigation. 

Recently with the development of the 
statistical software, a handful of Monte Carlo 
studies have been conducted to assess the 
performances of model modifications. Three 
such studies on model modifications are 
Hutchinson (1998), Chou and Bentler (2002) 
and Fan and Hancock (2006). Hutchinson (1998) 
extended the work of MacCallum, Roznowski 
and Necowitz (1992) to examine the sampling 
stability of post hoc model modifications. The 
study found that modifications tended to be 
inconsistent unless the sample size is very large 
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or the model is large. Chou and Bentler (2002) 
focused on the W test procedure and found a 
satisfactory success rate of the model 
modification of structural relationships among 
factors. However, the results of the test are 
based on the assumptions of a correct 
measurement model and a known sequence of 
latent factors, which pose great challenges to 
applied researchers. Other relevant studies 
include Green and Babyak (1997), Green, 
Thompson and Babyak (1998), Hutchinson 
(1993), Kaplan (1988, 1989), and Silvia and 
MacCallum (1988). 

Fan and Hancock (2006) investigated 
the impact of measurement model 
respecification on structural parameter integrity. 
Their study compared interfactor correlations 
before and after measurement model 
respecifications of crossloadings, intrafactor 
residual covariances and interfactor residual 
covariances for a five-factor confirmatory 
model. The research suggested that some effect 
on structural parameter estimates arises under 
conditions of modification in the measurement 
model; however, in general, the impact is 
negligible. Although some comfort has been 
provided for researchers regarding the two-step 
process of measurement model modification, the 
study is limited in two ways. First, the study 
focused on the impact of overspecification of 
measurement model modifications on structural 
parameters where paths were added to a 
correctly specified model. Second, it studied 
models with interfactor correlations, which 
appear to be less representing in practice than 
models involving direct structural relations. 

This investigation extends the study of 
Fan and Hancock (2006) by assessing the effects 
of freely estimating fixed residual covariances 
under conditions of measurement model 
misspecification for a theoretical model 
involving direct structural relations. This study 
aims to determine whether model modifications 
of freely estimating fixed residual covariances 
are structurally benign under the situations of 
measurement model misspecification with the 
goal of gaining insights into the extent to which 
caution must be exercised in measurement 
model modification prior to structural model 
evaluation. For a three-factor confirmatory 
factor model, Monte Carlo simulation is used to 

compare structural estimates before and after 
measurement model modifications under 
varying sample sizes and model 
misspecifications. 
 

Methodology 
Model Specification 

The true model derived from an 
example illustrated by Paxton, et al. (2001) is a 
three-factor model measured by nine observed 
variables. Seven out of nine observed variables 
load on a single factor and the remaining two 
load on two factors (See Figure 1). In addition, 
factor two is regressed on factor one with the 
coefficient 0.6, and factor three is regressed on 
factor two with the same coefficient. The model 
has factor loadings (λ) with an unstandardized 
value of 1.0 and standardized value of 0.70, 
while the two cross-loadings have an 
unstandardized coefficient of 0.30 and a 
standardized coefficient of 0.21. 

Five model specifications are considered 
in the study. The first model correctly specifies 
the structure that exists in the population, which 
is the true model (specification 1). The second 
model is misspecified by omitting one relevant 
cross-loading path linking factor 1 with item 4 
(specification 2); that is, one relevant cross-
loading path is incorrectly fixed to zero. The 
third model is misspecified by additionally 
omitting one more relevant cross-loading path 
linking factor 2 with item 7 (specification 3); 
that is, one more relevant cross-loading path is 
incorrectly fixed to zero. The fourth model is 
misspecified by containing one irrelevant 
loading from factor 2 to item 3 (specification 4), 
thus one irrelevant loading path that should be 
fixed zero is freely estimated. The fifth model is 
misspecified by containing one additional 
irrelevant loading from factor 3 to item 6 
(specification 5), so one more irrelevant loading 
path which should be fixed zero is freely 
estimated.  

Note that all modifications of residue 
covariance suggested to the above models do not 
exist in the population measurement model. For 
specification 1, the overspecification of the 
measurement model simply constitutes Type I 
error capitalizations on random sample 
covariation. For the remainder of the specified  
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true models, the modifications of residue 
covariance are incorrectly freed to maximally 
improve data-model fit, leading to a revised 
model with more misspecification errors. 
 
Sample Size, Replications, Data Generation and 
Modeling 

Four different sample sizes are 
manipulated in the study, ranging from small to 
large: 100, 200, 400 and 800. A total of 5 (model 
specifications) × 4 (sample sizes) = 20 
experimental conditions. For each condition, 
seven separate runs were conducted. Data 
generation and estimation were carried out using 
EQS 6.1 (Bentler, 1998) and SAS IML (1990). 
Within each of the 20 conditions, multivariate 
normal data were generated and modeled with 
ML estimation as described by Paxton, et al. 
(2001). 

For each replication within each cell, 
each of the specified models was first imposed 
upon the sample data yielding structural 
estimates of 1φ  and 2φ  (as well as of loadings 
and error variances) before any model 
modification. Second, each of the specified 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models with saturated structural correlations was 
imposed upon the sample data yielding residual 
covariances suggested by the multivariate 
Lagrange Multiplier (LM) test. This step is to 
mimic the measurement step in the two-step 
modeling process (Anderson & Gerbing, 1988). 
Next, the residual covariances suggested by the 
multivariate LM test with cumulative statistical 
significance p<.05 were added to the 
measurement model and the new structural 
estimates of 1φ  and 2φ  were obtained after the 
model modifications. 

In this investigation, the multivariate 
LM test is restricted to suggesting residual 
covariances only, the purpose being to diagnose 
the impact of the most commonly applied 
measurement model modification on structural 
relation assessment. Three different 
measurement model respecifications were 
examined by the study separately: residual 
covariances within factors (intrafactor residual 
covariances) and residual covariances between 
factors (interfactor residual covariances) and the 
combination of both. That is, the multivariate 
LM test is restricted to suggesting only 

Figure 1: Simulation Model 
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intrafactor residual covariances in one 
respecification of each initial model, to 
suggesting only interfactor residual covariances 
in another respecification of each initial model, 
and to suggesting both intrafactor and interfactor 
residual covariances in yet another modification 
of each initial model. Thus, each initial solution 
was subjected to three separate modifications. 
As the purpose of this study is to diagnose the 
potential impacts of different types of the 
residual covariances on structural parameters, 
different modifications were made in isolation. 

To summarize, in the 20 cells of the 
design, each replication’s data were analyzed 
seven times: (1) initially specified model 
without any modification, (2) each of the 
specified models with saturated structural 
correlations yielding intrafactor residual 
covariances, (3) specified model with saturated 
structural correlations yielding interfactor 
residual covariances, (4) specified models with 
saturated structural correlations yielding both 
intrafactor and interfactor residual covariances, 
(5) respecified model with suggested intrafactor 
residual covariances added, (6) respecified 
model with suggested interfactor residual 
covariances added, and (7) respecified model 
with both intrafactor and interfactor residual 
covariances added. 

Convergent replications were generated 
for each condition in which a convergent 
replication reached convergence within 50 
iterations in all analyses based on the same data 
set and did so without yielding any offending 
estimates (e.g., Heywood cases). This strategy 
was adopted because improper solutions in SEM 
might affect the estimation of structural 
parameters, thus threatening the results of the 
study. To maintain 1,400 replications per 
condition, an initial set of 1,500 replications was 
generated for each of the conditions. 
 
Analyses 

All analyses are based on the 1,400 
convergent replications. For each replication on 
the same sample, the two structural parameters 
of interest were estimated (a) for the initial 
model before any modification, (b) after adding 
to the initial model any intrafactor residual 
covariances suggested by the multivariate LM 
test (p < .05), (c) after adding to the initial model 

any interfactor residual covariances suggested 
by the multivariate LM test (p < .05), and (d) 
after adding to the initial model any intrafactor 
and interfactor residual covariances suggested 
by the multivariate LM test (p < .05). As a 
result, each given cell’s 1,400 replications had 
four estimates for each of the two structural 
parameters. 

After initial examinations of general 
convergence, three primary analyses were 
conducted on the 1,400 sets of four structural 
parameter estimates. First, relative deviation 
values between parameter estimates before and 
after model modifications were computed for 
each cell, each of which indicates the bias of the 
parameter estimates from the true parameter 
values. Specifically, for each replication, the 
deviation was computed for each structural 
parameter estimate comparing the estimates 
before and after modification using the formula: 
 

Relative bias (RB) = beforeafter φφ ˆˆ − .      (1) 

 
Thus, for each parameter estimate within a 
replication, three such deviations were 
computed, comparing the parameter estimate 
after each of the three modifications back to the 
initial estimate. These values are treated as 
relative biases due to measurement model 
modifications and are equivalent to the 
difference in bias with respect to the true 

parameter value: ( )ˆ()ˆ φφφφ −−− beforeafter . 

The difference between the estimated 

structural parameter φ̂  and the true parameter 

value φ  is due to sampling fluctuation and any 
misspecification errors. Thus, the relative biases 
are the differences in structural estimates after 
counterbalancing the effects of sampling 
fluctuation and the existing misspecification 
errors for the initial model; in other words, they 
show the effects of adding residual covariances 
to structural estimates. A negative relative bias 
value indicates that adding residual covariances 
tend to decrease the structural estimates 
comparing to the initial structural estimates. A 
positive relative bias value, on the other hand, 
indicates that adding residual covariances 
increases the structural estimates comparing to 
the initial structural estimates. 
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For each structural parameter, three one-
sample t tests were conducted comparing the 
average relative bias (across the 1,400 
replications) to zero; note that these are 
equivalent to dependent sample t tests 

comparing biases before )ˆ( φφ −before  and after 

)ˆ( φφ −after  modification. Identical analyses 

were performed for each of the two structural 
parameters in all 20 cells. The first analysis 
focused on the relative bias of parameter 
estimates to detect potential differential bias as a 
function of parameter value. 

Within each condition and for each 
specific parameter value the variance of the 
above bias values before and after modification 
was tested using a test for dependent sample 
variances (Hinkle, Wiersma & Jurs, 1988). 
Whereas the first analysis addressed the relative 
bias of parameter estimates, the second analysis 
attempted to examine parameter estimate 
variability. That is, because relative bias 
estimates can be positive or negative, their 
average could be near zero, and yet the 
experimental condition under scrutiny might 
actually (or additionally) be inducing instability 
in those estimates. Thus, to evaluate variability 
in the cells, the following procedures were 
conducted. 

Recall that each cell has 1,400 sets of 
bias estimates, including those before 
modification, those after intrafactor residual 
covariances, those after interfactor residual 
covariances, and those after both intrafactor and 
interfactor residual covariances. Within each 
cell, the 1,400 bias estimates prior to 
modification were mean centered using their cell 
mean; this was repeated for the bias estimates 
intrafactor residual covariances, interfactor 
residual covariances, and both using their 
respective cell means. This within-cell centering 
removed bias and allowed specific focus on 
variability.Centered values were squared to 
eliminate sign and these squared values were 
used in the following analysis: 
 

Squared mean centered bias = 2)( BiasBias − , 
(2) 

where Bias = )ˆ( φφ − , and Bias  is the average 
of bias for each cell before or after each model 
modification. Each cell now has 1,400 squared 
mean centered biases for the initial, intrafactor 
error covariance, interfactor residual covariance 
and the combined residual covariances 
conditions. Three dependent-sample t tests were 
conducted comparing squared mean centered 
biases before and after modification. Given the 
centering and squaring, this is tantamount to 
dependent-sample tests of variance of the bias 
estimates. Identical analyses were performed for 
both structural parameters in all 20 cells. 

Eight series of dependent-sample t tests 
were conducted on the above relative bias 
estimates to detect the differences of the 
structural parameter estimate values among the 
five specified models. First, four dependent-
sample t tests were conducted to compare the 
relative bias estimates in each cell for each of 
the misspecified model specifications (2, 3, 4 or 
5) to those in the corresponding cell of the 
correctly specified model (specification 1). That 
is, for every cell for the misspecified models, 
four dependent-sample t tests were conducted 
for comparisons between specification 2 versus 
1, specification 3 versus 1, specification 4 versus 
1, and specification 5 versus 1. 

These analyses are to detect potential 
different effects of adding different residual 
covariances on the structural parameter 
estimates for different model misspecification 
conditions. Similar procedures were also 
conducted to detect differences on the relative 
biases of the structural parameter estimate 
values between specifications 2 and 3, 
specifications 4 and 5, specifications 2 and 4, 
and specifications 3 and 5. The purpose is to 
assess if different measurement model 
modifications have different impacts with 
models under different types of misspecification 
conditions, and also under the same type of 
misspecification but different degrees of 
misspecification. 
 

Results 
Convergence 

Only specification 5 had failures to 
converge. In 17 of the 20 cells, precisely 1,400 
replication attempts were required to obtain 
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1,400 convergent replications. In the remaining 
three cells, additional replications were required. 
For the condition n = 100 after modification by 
adding interfactor residual covariances and the 
combination of both intrafactor as well as 
interfactor residual covariances, 1,402 
replication attempts were required to yield 
1,400. For the condition of n = 800 (after 
modification by adding intrafactor residual 
covariances), 1,401 replication attempts were 
required to yield 1,400. Thus, even under the 
most challenging conditions, the rate of 
converge was still excellent. 

However, in order to ensure that the 
structural parameter estimates were generated 
based the same series of data sets across 
different respecifications and model 
specification conditions, the three data sets 
giving nonconvergent replications were 
eliminated for all the conditions. That is, 1,403 
replications were conducted for all conditions 
yielding 1,400 convergent replications. All 
analyses were all conducted based on the 1,400 
convergent replications. 
 
Description of Modifications 

Table 1 shows the average number of 
modifications of each type made under the 
different study conditions. Overall, the 
combination of intrafactor and interfactor 
residual covariances were added as expected, 
with interfactor residual covariances only 
slightly less frequent, followed by intrafactor 
residual covariances. Note that specification 1 is 
a correctly specified model and any 
modifications added are Type I errors due to 
random sampling fluctuation. 

Sample size appeared to have a small 
but systematic influence for specifications 2 and 
3. When the model was misspecified by omitting 
relevant cross-loading path(s), increases in 
sample size led to a slight increase in number of 
the residual covariance respecifications made as 
the power to identify the misspecification 
increased. In addition, specifications 2 and 3 
with missing relevant paths provided a slightly 
larger number of residual covariance 
respecifications than other specifications, 
increasing by the severity of misspecification. 
Because paths are omitted to variables that serve 
as indicators to other factors in specifications 2 

and 3, this explains the larger number of 
modifications for interfactor residual 
covariances, as well as other residual 
covariances. Conversely, specifications 4 and 5 
with additional irrelevant paths had generally 
slightly smaller numbers of number of residual 
covariance respecifications than other 
specifications. Considering possible other paths 
explaining the covariances within the model, it 
is expected that less modifications are to be 
made. 
 
Average Bias 

Table 1 shows the results of average 
structural parameter estimates before and after 
any modifications for each condition. For 
specification 1, the true model is fit to the data. 
Thus the bias between the estimated structural 
parameters and true structural parameter is due 
to sampling error. All modifications suggested 
by the ML test under this situation are also due 
to sampling fluctuation, which makes the 
structural parameter estimates less accurate by 
slightly increasing the estimates. As sample size 
increased, the effects of modifications of adding 
residual covariances tended to decrease as the 
power increased. It was also noticed that all 
effects were minimal. 

The greatest biases were observed both 
before and after any modifications for 
specifications 2 and 3 with missing relevant 
path(s) and especially for the under-estimated 
structural parameters. For specification 2, when 
the path from F1 to V4 is incorrectly fixed to 

zero, the first structural parameter estimates ( 1̂φ ) 
were much more biased than the appropriately 

estimated structural parameter ( 2̂φ ). The 

structural parameter estimates of 1̂φ  were 
inflated up to 0.07, while the structural 

parameter estimates of 2̂φ  were inflated to no 
more than 0.015. 

The modifications of residual 
covariances seemed to help control the inflation 

for the structural parameter estimates of 1̂φ  to 
some degree, but with limited effects. For 
specification 3, when both paths from F1 to V4 
and from F2 to V7 are incorrectly fixed to zero, 
both structural parameter estimates were biased  
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and inflated to the similar degree and pattern. 
For specifications 4 and 5 with irrelevant path(s) 
- when truly zero path(s) are freely estimated - 
the structural parameter estimates were 
moderately inflated at a sample size of 100; as 
sample size increased, the inflation of the 
structural parameter estimates became very 
small. 
 
Relative Bias 

Further concerning the impact of 
different residual covariance modifications on 
relative bias of estimates for each of the two 
parameters, two one-sample t tests were 
conducted for each of the 20 cells respectively 
comparing the average relative bias to zero. 
Given that two structural parameters appear in 
each cell, it may be considered that there are two 
t test pairs in each cell, with each of the two 
parameters being within a model for each 
modification type. In Table 2, results are 
presented   for    the   average    relative    bias 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(magnified by 1,000) for each parameter across 
sample sizes, model specifications and different 
modification types. 

Table 2 shows all relative biases to be 
no larger than hundredths. Most cells with 
statistically significant values occurred at 
specifications 2 and 3, when the model is 
misspecified with missing relevant paths. Very 
few significant cells occurred at specifications 1, 
4 and 5. For the first structural parameter 1φ  at 
specification 2 when the path from F1 to V4 is 
missing, all of the relative biases were negative, 
indicating a propensity for the modification to 
cause the parameter estimate to become slightly 
smaller than it is prior to modification. 

For the second structural parameter 2φ  
at specification 2, the significant relative biases 
were positive when sample sizes are moderate or 
large, indicating a propensity for the 
modification to cause the parameter estimate to 
become slightly larger than it was prior to 

Table 1: Average Number of Modifications of Each Type per Replication 

Specification 
Covariance 
Condition* 

Sample Size 

100 200 400 800 

1 
Intra 0.369 0.391 0.404 0.360 
Inter 0.925 0.964 0.968 0.916 

Combine 1.161 1.201 1.208 1.144 

2 
Intra 1.455 0.564 0.754 1.046 
Inter 1.603 1.631 1.656 1.799 

Combine 1.309 1.513 1.765 1.921 

3 
Intra 0.650 0.906 1.282 1.701 
Inter 1.141 1.335 1.556 2.190 

Combine 1.559 1.910 2.382 3.114 

4 
Intra 0.340 0.352 0.363 0.347 
Inter 0.911 0.964 0.968 0.915 

Combine 1.099 1.154 1.159 1.115 

5 

Intra 0.321 0.336 0.339 0.333 

Inter 0.884 0.936 0.946 0.892 

Combine 1.099 1.154 1.159 1.115 
*Note. Intra refers to the intrafactor residual covariance condition, inter refers to 
the interfactor residual covariance condition, and comb refers to the combination of 
intrafactor and interfactor residual covariance condition. 
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modification. The results showed that the 
structural parameter estimates became smaller 
and closer to the true parameter value when 
modifications of residual covariances were made 
when the initial first structural path is under-
represented in the unmodified misspecified 
model. Conversely, for the initial appropriately 
estimated second structural path, the effects of 
modifications were no longer helpful and tended 
to increase the estimated structural parameter 
and cause greater biases. However, the practical 
effects for the second structural parameter were 
much smaller than for the first under-estimated 
structural parameter. In addition, it is notable 
that most of the significant cases occurred when 
sample sizes were moderate or large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More significant cells were observed as 
the severity of misspecification increased when 
one more relevant path from F2 to V7 is missing 
at specification 3. Relative biases associated 
with intrafactor residual covariance modification 
or the combination of intrafactor and interfactor 
were almost all negative across sample sizes, 
whereas in the interfactor case the propensity 
was for mostly positive relative bias. That is, 
intrafactor residual covariance or the 
combination of intrafactor and interfactor 
modification had a propensity to cause a 
parameter estimate to become smaller than it 
was prior to modification.  

The interfactor covariance modification, 
by  contrast,   had  the  tendency   to   cause  a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Average Structural Parameter Estimates across Modifications of Each Type 

Specification 
Covariance 
Condition* 

Sample Size 

100 200 400 800 

1̂φ  2̂φ  1̂φ  2̂φ  1̂φ  2̂φ  1̂φ  2̂φ  

1 

BF 0.610 0.612 0.601 0.605 0.603 0.603 0.602 0.600 
Intra 0.612 0.613 0.603 0.605 0.604 0.603 0.603 0.600 
Inter 0.610 0.613 0.601 0.607 0.604 0.602 0.602 0.600 

Combine 0.612 0.614 0.602 0.607 0.604 0.602 0.603 0.600 

2 

BF 0.669 0.613 0.660 0.607 0.662 0.604 0.661 0.602 
Intra 0.661 0.607 0.655 0.608 0.653 0.607 0.649 0.608 
Inter 0.662 0.607 0.657 0.607 0.658 0.607 0.658 0.604 

Combine 0.667 0.614 0.659 0.609 0.656 0.608 0.655 0.606 

3 

BF 0.669 0.665 0.660 0.657 0.662 0.655 0.661 0.653 
Intra 0.668 0.647 0.656 0.627 0.655 0.615 0.652 0.608 
Inter 0.669 0.667 0.662 0.661 0.662 0.659 0.660 0.659 

Combine 0.668 0.650 0.658 0.631 0.656 0.619 0.653 0.611 

4 

BF 0.614 0.612 0.604 0.605 0.604 0.603 0.602 0.600 
Intra 0.615 0.613 0.606 0.605 0.602 0.603 0.602 0.600 
Inter 0.615 0.612 0.605 0.607 0.604 0.602 0.602 0.600 

Combine 0.617 0.613 0.607 0.607 0.603 0.603 0.602 0.600 

5 

BF 0.614 0.616 0.604 0.606 0.604 0.603 0.602 0.600 
Intra 0.616 0.615 0.605 0.605 0.603 0.603 0.601 0.600 
Inter 0.618 0.612 0.604 0.607 0.603 0.602 0.602 0.600 

Combine 0.618 0.616 0.605 0.608 0.602 0.603 0.601 0.600 
*Note. BF refers to the initial model without any modification, Intra refers to the intrafactor residual 
covariance condition, inter refers to the interfactor residual covariance condition, and comb refers to 
the combination of intrafactor and interfactor residual covariance condition. 
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parameter estimate to become slightly greater 
than it was prior to modification. The results 
indicate that modification to intrafactor residual 
covariance or the combination of intrafactor and 
interfactor modification can help make more 
accurate structural parameter estimates when 
they are under-represented in the initial model. 
However, modifications of interfactor residual 
covariance tend to bias the structural parameter 
estimates even more under the same situation, 
although the effects are smaller. 

Most of the cells for specifications 2 and 
3 with moderate and large sample sizes were 
significant compared to specification 1, while 
there were fewer significant cells for 
specifications 4 and 5 compared to 1. In 
addition, while comparing the relative biases 
among specifications 2 to 4 and 3 to 5, many 
significant results were observed with moderate 
and large sample sizes. Results showed that 
misspecifications with missing path(s) had 
greater impact on the structural parameter 
estimates after model modifications than 
misspecifications with additional irrelevant 
path(s), and comparisons between specifications 
2 and 3, and 4 and 5 showed the effects of the 
severity of the misspecification on the structural 
parameter estimates after model modifications. 

The results have two implications. First, 
for misspecifications with additional irrelevant 
paths (specifications 4 and 5), adding one more 
irrelevant path does not impact the structural 
parameter estimates to a great degree; second, 
for misspecifications missing relevant path(s) 
(specifications 2 and 3), the biases on the 
structural parameter estimates after the 
intrafactor or the combined factor model 
modifications increase as the severity of the 
misspecification increases; the effects are 
somewhat ambiguous for interfactor model 
modification. 
 
Relative Variability 

Within each cell, the 1,400 bias 
estimates prior to modification were mean 
centered using their cell mean; this was repeated 
for the bias estimates from the intrafactor 
residual covariances, the interfactor residual 
covariances, and the combination of the two. All 
centered values were squared to eliminate sign; 

thus, the average value for a cell was the 
empirical parameter estimate variance. 

In Table 3, the statistical significance of 
the difference between the original empirical 
parameter estimate variance and that after each 
modification is reported for each parameter 
estimate pair for intrafactor residual covariances, 
interfactor residual covariances, and the 
combination of both respectively. Also shown is 
the average percentage change for each pair of 
parameter estimates in empirical standard errors 
after modification, computed as the square root 
of the empirical parameter estimate variance 
after modification minus the square root of the 
empirical parameter estimate variance before 
modification, divided by the square root of the 
empirical parameter estimate variance before 
modification and then multiplied by 100 to 
create a percentage. That is, 
 

2 2

2
 change 

after before after before

beforebefore

ˆ ˆ ˆ ˆ

ˆˆ

% ,
s s s s

ss
ϕ ϕ ϕ ϕ

ϕϕ

=
− −

=

(3) 
 

where 2
ˆ
after

sφ  refers to the empirical parameter 

estimate variance after modification, 2
ˆ
before

sφ  

refers to the empirical parameter estimate 

variance before modification, 
after

sφ̂  refers to the 

empirical parameter estimate standard deviation 

after modification, and 
before

sφ̂  refers to the 

empirical parameter estimate standard deviation 
before modification. 
In general, model modification by adding 
residual covariances appeared to lead to a 
significant increase in variability of the 
parameter estimates relative to those prior to 
modification because more specification errors 
are introduced into the model. A couple of 
exceptions occurred in specification 2 with small 
sample sizes after modification of intrafactor 
residual covariance or interfactor error 
covariance, where modification significantly 
decreased variability of the parameter estimates 
relative to those prior to modification. Second, 
empirical standard errors were typically 
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inflatedby less than 8% for specification 1 and 
varied for other specification conditions when 
model was misspecified. The most extreme 
values appeared under specification 2, with 
inflation reaching between -32.048% and 
45.446%. For the other misspecified conditions, 
the empirical standard error values inflated to no 
larger than 18%. The modification of interfactor 
residual covariances generally yielded the 
smallest inflation in empirical standard errors for 
specifications 3, 4 and 5. 
 

Conclusion 
This study investigated the effects of 
measurement model modifications of adding 
residual covariances on structural parameter 
estimates with different sample sizes under 
different model specifications. The Monte Carlo  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

study performed a systematic examination of the 
impact on the structural parameter estimates for 
three different common measurement model 
modifications of residual covariances under five 
different model specifications, which include 
adding adding intrafactor residual covariances, 
adding interfactor residual covariances and 
adding both intrafactor and interfactor residual 
covariances respectively. Overall, the model 
specifications with missing relevant path(s) have 
the most impact on the structural parameter 
estimates, while the impact increases as the 
severity of the misspecification increases. 

The propensity is noted that the 
modifications of either adding intrafactor 
residual covariance or adding both intrafactor 
and interfactor residual covariances tended to 
decrease the structural parameter estimates  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Percentage Change in Empirical Standard Error of Parameter Estimates across Modifications 

Specification 
Covariance 
Condition* 

Sample Size 
100 200 400 800 

1̂φ  2̂φ  1̂φ  2̂φ  1̂φ  2̂φ  1̂φ  2̂φ  

1 

Intra 3.271a 0.527 4.917a 0.899a 5.467a 1.387a 3.769a 1.006a 

Inter 2.191a 2.569a 1.846a 7.222a 2.542a 5.605a 0.992a 3.536a 

Combine 5.345a 2.606a 6.763a 7.608a 7.204a 5.672a 4.356a 3.981a 

2 

Intra -29.844a -31.260a 7.735a 3.942a 10.685a 7.958a 8.230a 6.107a 

Inter -31.114a -32.048a -15.347a -15.207a 7.250a 6.187a 1.932 1.592 

Combine 5.441a 3.342a 9.161a 6.896a 9.802a 7.281a 45.446a 40.501a 

3 

Intra 4.213a 5.781a 8.109a 11.294a 9.719a 16.024a 7.437a 14.323a 

Inter 2.228a 0.941 2.715a 2.709a 2.777a 2.185a 4.145a 2.987a 

Combine 5.423a 6.326a 9.037a 12.760a 9.422a 17.242a 8.772a 16.700a 

4 

Intra 4.596a 0.341 10.827a 0.914a 15.636a 1.339a 15.115a 1.126a 

Inter 2.174a 2.703a 2.359a 7.280a 1.995a 5.915a 1.473a 3.633a 

Combine 6.239a 2.610a 10.134a 7.721a 13.483a 6.367a 12.822a 4.047a 

5 

Intra 3.969a -1.289 11.371a 0.357 15.096a 0.666a 17.261a 0.435 

Inter 4.430a -5.187a 4.168a 3.043a 5.925a 2.303a 3.274a 1.140 

Combine 7.939a -2.998a 12.647a 4.016a 17.311a 3.892a 14.187a 2.314a 

*Note. Intra refers to the intrafactor residual covariance condition, inter refers to the interfactor residual covariance 
condition, and comb refers to the combination of intrafactor and interfactor residual covariance condition. 
aThe empirical parameter estimate variance was statistically significantly different (p<.05) from the corresponding 
variance prior to model modification. 
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compared to those prior to modification, while 
the interfactor modification tended to increase 
the structural parameter estimates. By contrast, 
the model specifications with additional 
irrelevant path(s) did not have much impact on 
the structural parameter estimates because very 
few random significant cells were observed at 
specifications 4 and 5. In sum, only the under-
estimated structural parameter estimates from 
the misspecified models with missing relavant 
path(s) approached the true values when the 
intrafactor residual covariances or the 
combination of intrafactor and interfactor 
residual covariances were added. In addition, all 
three model modifications tended to 
significantly increase the variability of the 
parameter estimates relative to those prior to 
modification across model specification 
conditions. Interestingly, sample size did not 
appear to influence the impact of the 
measurement model modifications of residual 
covariances on the structural parameter 
estimates. Thus, more attention should be paid to 
a misspecified model with missing path(s) when 
conducting measurement model modification. 

Although many significant cells were 
observed, the impacts of the different types of 
model modification were found to be small, 
usually no larger than hundredths. However, it is 
notable that this study focused on conditions 
with normally distributed data. It is expected 
that the impact of measurement model 
modification would be enlarged under the 
inevitable conditions with nonnormally 
distributed data in practical research. Based on 
results from this investigation it may be stated 
that liberally saturating measurement models 
with additional residual covariance parameters 
does not necessarily help with the structural 
parameter estimates if a researcher begin with a 
misspecified model, especially with missing 
parameters. Thus, the role of theory cannot be 
more salient for all model types (Hancock, 
1999). 

However, researchers should exercise 
caution with the results. As with any simulation 
study, there are innumerable conditions to 
manipulate and choices must be made to keep 
the design manageable. It is possible that 
another research study could produce different 
results under different models and experimental 

conditions. For example, the extent to which 
measurement model modification alters 
structural parameter estimates under conditions 
of nonnormality remains to be studied. 
Similarly, the amount of modification that 
affects parameters within a mean structure, such 
as latent means and intercepts, is also a subject 
for further investigation. 
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