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An Evaluation of Multiple Imputation for Meta-Analytic 
Structural Equation Modeling 

 
Carolyn F. Furlow S. Natasha Beretvas 

Georgia State University University of Texas at Austin 
 

 
A simulation study was used to evaluate multiple imputation (MI) to handle MCAR correlations in the 
first step of meta-analytic structural equation modeling: the synthesis of the correlation matrix and the test 
of homogeneity. No substantial parameter bias resulted from using MI. Although some SE bias was found 
for meta-analyses involving smaller numbers of studies, the homogeneity test was never rejected when 
using MI. 
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Introduction 
Meta-analytic structural equation modeling 
(MASEM) has been recommended as a useful 
approach for supporting theoretical models and 
combines the benefits of both meta-analysis and 
structural equation modeling (SEM). The meta-
analytic benefits include the use of quantitative 
synthesis methods which allow a researcher to 
cull correlations from multiple studies that can 
then be combined across those studies to provide 
individual, more precise estimates of each 
relevant correlation. This can be conducted for 
each element of a correlation matrix that 
describes the full set of relationships between 
the variables of interest to the MASEM 
researcher. The resulting meta-analytically 
pooled correlation matrix can then be analyzed 
using SEM procedures. 

Several methodological dilemmas and 
impediments are frequently encountered by 
MASEM researchers. Most commonly, applied 
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researchers synthesize elements of a correlation 
matrix which is then analyzed using SEM 
software. The MASEM researcher is likely to 
encounter problems with missing data. In the 
MASEM context, this can be in the form of 
missing studies or missing correlations (Pigott, 
1994). The focus of this study concerns 
performance of multiple imputation for handling 
missing correlations for the first step of 
MASEM, the synthesis of the correlation 
matrices across studies. 
 
Missing Data in MASEM 

 If a researcher were interested in 
summarizing elements of a correlation matrix 
describing relationships among five variables, 
ideally data from each contributing study would 
include estimates of each of the correlations in 
the matrix. This is rarely the case. At the 
primary study level, several possible reasons 
exist to explain why a correlation might not be  
reported. The authors of the study might not 
have been interested in measuring one of the 
five variables of interest to the meta-analyst, or 
at the time when one of the primary studies was 
conducted, a variable of interest to the meta-
analyst might not yet have been conceptualized 
as a construct that exhibits an interesting 
relationship with other variables in the matrix 
(Furlow & Beretvas, 2005). Thus, in either 
scenario, the study would not include 
correlations of that variable with each of the 
remaining four. 
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Another plausible reason why a 
correlation might be missing from a study may 
be the file drawer problem (Rosenthal, 1979), 
most commonly referred to as publication bias. 
Publication bias describes the tendency of 
authors (and editors) to provide statistical results 
(either descriptive or inferential) only for 
statistically significant results. Authors either 
fail to mention uninteresting (commonly 
meaning statistically non-significant) results, or 
journal space limitations restrict the presentation 
of the relevant values offering only the phrase 
“not statistically significant”. 

Authors using MASEM reported using a 
variety of methods for handling missing 
correlation estimates. Hom, et al. (1992) utilized 
listwise deletion (LD) by only incorporating 
results from studies that provided the full set of 
correlations of interest.  The vast majority of 
MASEM researchers (e.g., Brown & Stayman, 
1992; Conway, 1999; Manfredo, et al., 1996; 
Parker, et al., 2003; Premack & Hunter, 1988; 
Tett & Meyer, 1993) used pairwise deletion 
(PD). A few used single value imputation to 
handle missing correlations in their MASEM 
studies (Bailey, 2001; Colquitt, LePine & Noe, 
2000). The single imputation method involves 
either mean imputation (using the mean of the 
correlation estimates provided in other studies in 
the meta-analysis) or substituting a value based 
on related results from other meta-analytic 
research conducted outside the domain of the 
focal MASEM study (Colquitt, et al., 2000). It is 
unclear in some MASEM articles how the 
missing correlations were handled (e.g., 
Verhaeghen & Salthouse, 1997). To date, no 
applied study has  used multiple imputation (MI) 
to handle missing correlations. 

As with any statistical analysis, the 
source of the missing data impacts how well the 
method used to handle the missing data will 
function. Little and Rubin (1987) categorized 
missing data mechanisms into three types: 
missing completely at random (MCAR), missing 
at random (MAR) and missing not at random 
(MNAR). What distinguishes these missing data 
mechanisms is the relationship between the 
missing (unreported or unobserved) data point 
and the complete set of data. In traditional 
statistical analyses the cases (rows) in a dataset 
are a single study’s participants and the data 

points are participants’ scores on each variable 
(columns). In meta-analysis, the columns 
(variables) consist of correlation estimates for 
each row, which represents each study. 

With MCAR data, the correlation’s 
missingness is unrelated to any of the observed 
correlations in the dataset. As an example, when 
data are not gathered in a primary study due to 
lack of funding and that funding is not related to 
any of the variables and thus to correlations in 
the dataset, then the missingness can be 
considered MCAR (Pigott, 1994). Another 
example of MCAR data occurs when a primary 
researcher does not measure a variable of 
interest for the MASEM because it is not 
theoretically relevant to his/her study and thus 
that variable’s correlations with the other 
variables would be missing. 

With MAR data, a correlation’s 
missingness (

ijrM  = 1 if correlation ijr  is 

missing, and 
ijrM  = 0, otherwise) would be 

related to the correlation’s value but only 
indirectly - specifically only through another 
observed correlation (or correlations) in the 
dataset (Collins, Schafer & Kam, 2001). For 
example, the likelihood of a correlation, rWX, 
being missing in a study might be greater for 
higher values of another observed correlation, 
rYZ. There would then appear to be a simple 
relationship between rWX and 

WXrM . However, if 

within levels of rYZ, values of rWX are unrelated 
to 

WXrM , then the data are MAR. In other 

words, if the relationship between rWX and its 
likelihood of being missing (i.e.,

WXrM ) is fully 

explained by the relationship between rYZ and 

WXrM , then the missingness can be considered 

MAR. 
As a meta-analytic example, studies 

being synthesized might involve an assessment 
of the relationship between constructs W, X, Y 
and Z. There might be a variety of scales that are 
designed to assess each of Y and Z. Researchers 
who use certain (more reliable psychometrically) 
measures of Y and Z might espouse a theoretical 
framework that also means they are more likely 
to be interested in the relationship between 
measures X and W. Researchers who use 
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different measures of Y and Z may be less likely 
to assess X and W. When using more reliable 
measures of Y and Z, the resulting rYZs will tend 
to be stronger than the rYZs based on less reliable 
scores. Thus, for higher values of rYZ, the 
likelihood that rXW is reported is higher than for 
lower values of rYZ. And for lower values of rYZ, 
it is more likely that rXW will be missing. 
However, controlling for rYZ, there is no 
relationship between rXW and the likelihood that 
rXW’s value is missing from a study. Thus 
missing rXW values could be considered MAR. 

MNAR data result when the likelihood 
of a missing correlation is related to the value of 
the (missing) correlation itself. Publication bias 
provides a likely cause of MNAR data. As 
mentioned earlier, if a correlation estimate is not 
statistically significant, an author might not 
report the relevant statistical information and/or 
an editor might censor the presentation of such 
results. If publication bias explains the 
missingness, then the likelihood of missingness 
is negatively related to the correlation estimate’s 
value, all other factors being equal. The opposite 
pattern of MNAR (in which there is a positive 
relationship between the missing correlation’s 
value and the likelihood of its being missing) is 
also possible. It can occur when a researcher 
purposely neglects to report a correlation that is 
stronger than would be expected theoretically. 

Use of listwise deletion (LD) to handle 
missing data can be advocated in situations in 
which only a few data points are missing. LD 
has been found to result in unbiased parameter 
estimates for models estimated with MCAR data 
(Allison, 2003). However, LD can also result in 
a drastic reduction in statistical power under 
conditions with high proportions of missing 
data. Graham and Hofer (2000) recommend that 
if only five percent or less of the dataset is 
MCAR, then LD can be used. Unfortunately, LD 
is usually not a feasible alternative in MASEM 
research. A high proportion of study authors do 
not report all correlations of interest to MASEM 
researchers (Furlow & Beretvas, 2005), for 
example, in Premack and Hunter’s (1988) 
MASEM study, if LD had been used it would 
have resulted in a completely empty dataset. 

Many MASEM researchers do not use 
LD but instead employ available case analysis 
(PD) as the preferred method for handling 

missing correlations (Furlow & Beretvas, 2005). 
When using PD, no information is deleted; each 
element of the correlation matrix is instead 
obtained by synthesizing all available, observed 
correlation estimates. Use of PD with 
conventional (i.e., not meta-analytic) data has 
been found to result in approximately unbiased 
parameter estimates for MCAR data, however, 
PD can lead to biased estimates if data are MAR 
or MNAR (Graham & Hofer, 2000). Use of PD 
has also been found to lead to non-positive 
definite correlation matrices for typical, non-
meta-analytic datasets (Arbuckle, 1996; Graham 
& Hofer, 2000). To date, this problem has been 
reported in only one applied MASEM study 
(Kubeck, 2002). Even the few MASEM 
simulation studies that have been conducted to 
evaluate the performance of PD with missing 
data have not encountered non-positive definite 
matrices (S. F. Cheung, 2000; M. Cheung & 
Chan, 2005; Furlow & Beretvas, 2005). 

An additional problem associated with 
PD is encountered when PD is used to calculate 
a correlation matrix for a conventional SEM 
analysis (Allison, 2003) and when PD is used to 
calculate elements of a synthesized correlation 
matrix to be analyzed using MASEM. In the 
SEM scenario, each element of the correlation 
matrix might be based on different sample sizes 
and yet a single sample size must be associated 
with the matrix used to estimate the structural 
equation model. The same dilemma is 
encountered by MASEM researchers who use 
the synthesized correlation matrix in their SEM 
analysis (without the associated covariance 
matrix for the correlations). In Cheung and 
Chan’s MASEM procedure utilizing the 
covariance matrix, the authors assert that use of 
the total sample size is “free from the ambiguity 
of choosing among different sample size values 
that have been proposed” (2005, p. 47); 
however, it is unclear that this is the case. 

Another method to handle missing data 
in MASEM research could be through the use of 
mean imputation to impute a missing data 
point’s value (Graham & Hofer, 2000). The 
problem with mean imputation is that it deflates 
the associated variability of the relevant estimate 
(the correlation in MASEM); this holds even 
when the missing data mechanism is MCAR, 
thus mean imputation is not recommended. To 
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compensate for the reduction in variability, it is 
possible to use Bayesian multiple imputation 
(MI) procedures (Rubin, 1978; Rubin, 1987; 
Schafer, 1997). MI has not been used in meta-
analysis in general and the goal of the current 
study is to investigate its use with MASEM. 
 
Multiple Imputation 

No applied MASEM study to date has 
examined the performance of multiple 
imputation (MI); however, MI is a promising 
technique for handling missing data found in 
MASEM research. MI expands upon single 
imputation and its resultant attenuation of 
variability. MI takes into account the uncertainty 
involved in missing data and imputes m 
plausible values (where m > 1) to replace each 
single missing data point (each correlation 
estimate in MASEM research) resulting in m 
datasets. Each imputed dataset will have the 
same values for the non-missing correlation 
estimates. The values imputed for the missing 
data points will distinguish the m datasets. Each 
of the m datasets is analyzed using the statistical 
procedure of interest (i.e., the meta-analysis) and 
the results can be summarized across the 
imputed datasets. To obtain unbiased estimates 
using MI, the missing data are assumed to be at 
most MAR (thus, MI will also work well with 
MCAR data). 

MI uses the Bayesian Markov chain 
Monte Carlo (MCMC) algorithm to impute 
values for missing data points. The reader is 
referred to several excellent chapters, texts and 
articles that provide more information on the 
technical process underlying MI (Allison, 2003; 
Peugh & Enders, 2004; Graham & Hofer, 2000; 
Schafer & Graham, 2002; Schafer & Olsen, 
1998). 

In traditional use of MI, the researcher 
calculates the statistic of interest (whether it is a 
sample mean, a correlation, a regression 
coefficient, etc.) represented generally as iq̂  for 

imputed dataset i. The simple average of the m 
estimates can be combined across imputed 
datasets to provide the multiply imputed 
estimate of the statistic using: 
 


=

=
m

i
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q

1

ˆ
1

                          (1) 

(Rubin, 1987). The variance estimate associated 
with q is a function of the variance within each 
imputed dataset 
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as well as the variability between the imputed 
datasets (Rubin, 1987) 
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The total variance can be calculated using 
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m
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)1(

1

+
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In MASEM, the meta-analysis involves 

synthesizing correlations across studies. If MI 
were used, values for correlations would be 
imputed leading to the construction of m 
complete (imputed) datasets of correlations. A 
synthesized correlation is calculated for each 
correlation (e.g., rWX, rWZ, rXZ, etc.) in each 
dataset and each resulting synthesized 
correlation corresponds to the relevant q̂  
(previously mentioned), thus, equations 1 - 4 can 
be used to calculate the MI estimate of each 
synthesized correlation and its associated 
variance. 

Although parameter and standard error 
estimates can be easily combined using 
Equations 1 - 4, multivariate inferences, such as 
the test of homogeneity in meta-analysis, require 
different formulas. For example, Schafer’s 
(1997) formula for combining χ2 values (such as 
the one from the test of homogeneity) across 
studies is a relatively simple function of each 
imputation’s χ2 statistic value and its df. The 
formula provides an F-ratio statistic for which 
an associated p-value can be estimated that can 
be interpreted as the significance test associated 
with the χ2. The formula is: 
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where 2χdf is the df associated with the χ2, 2χ

is the mean of the m imputations’ χ2 values, 
dfError is the error degrees of freedom of the F-
ratio statistic calculated as follows: 
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and (Equation 5), r2 is the sample variance of 

2χ across imputations where r2 is calculated 

as follows: 
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Rubin also derived the formula for the 

efficiency of estimates based on m imputed 
datasets 
 

1)/1( −+ mγ                         (8) 
 
where γ is the fraction of missing information. In 
most cases between five and ten imputations are 
sufficient to achieve efficient results, however, 
with a large degree of missingness, more 
imputations may be necessary (Allison, 2003; 
Hershberger & Fisher, 2003). With a higher 
number of imputations, estimates of parameters 
become more stable (Allison, 2003). Allison 
notes that one diagnostic test of whether more 
imputations are necessary requires a check of the 
degrees of freedom for each parameter estimate. 
If the degrees of freedom are appreciably below 
100 then more imputations should improve the 
efficiency of the estimates. 

Typical MI procedures assume that data 
are multivariately normal. In MASEM, the 
typical unit of analysis is the correlation, r. The 
sampling distribution of rs sampled from non-
zero ρ, however, tends to be increasingly skewed 
for larger |ρ| (Hedges & Olkin, 1985). The use of 
Fisher’s Zr transformation results in a more 
normal sampling distribution even for larger ρ 
(Steiger, 1980). While the resulting Zrs are 
approximately normally distributed, research has 
suggested that MI is reasonably robust to 
violations of the assumption of normality 
(Enders, 2001; Graham & Schafer, 1999). 
Graham and Schafer’s (1999) simulation study 
found that - even for extremely non-normal 
variables and small sample sizes - MI worked 
very well. 

A benefit of using MI to handle missing 
data involves the less restrictive MAR 
missingness mechanism that can be assumed 
(unlike with PD and LD where only MCAR is 
assumed). Maximum likelihood (ML) methods 
and the expectation maximization (EM) 
algorithm, among others, also offer alternatives 
for handling missing data (Collins, Schafer & 
Kam, 2001). Use of MI, however, is less 
computationally intensive than ML (Sinharay , 
et al., 2001) and most MI programs use the EM 
algorithm to estimate starting values for the 
ensuing data augmentation iterations. Use of MI 
is further facilitated by its availability in several 
software packages including NORM (Schafer, 
1999), SAS PROC MI (SAS Institute, 2005) S-
PLUS (version 6.0, Insightful Corporation, 
2001), and SPSS (version 14.0, SPSS, 2006). 

To date, no meta-analytic researchers 
have used MI when handling missing data. The 
focus of the current study is to evaluate use of 
MI for synthesizing correlation matrix elements 
and their corresponding standard errors for use 
in MASEM. After missing correlations have 
been handled in MASEM, the researcher can 
synthesize the correlation matrix elements across 
studies. Before this synthesizing can occur, 
however, the researcher must decide whether to 
synthesize the correlations univariately or 
multivariately. 
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Synthesizing Correlations: Univariate Synthesis 
Several methods exist that are used to 

synthesize effect sizes (here, correlations) across 
the k studies included in a meta-analysis 
(Hedges & Olkin, 1985). Synthesis methods 
typically involve weighting each effect, e, by a 
function of its associated sample size. The 
weight, w, most commonly used to obtain the 
pooled estimate of the effect size, ε̂ , is the 
inverse of the effect’s conditional variance 
(Cooper & Hedges, 1994): 





=

== k

i
i

k

i
ii

w

ew

1

1ε̂ .                        (9) 

 
This weighting assigns more weight to the more 
precise correlation estimates that are associated 
with larger sample sizes. 

As noted, the sampling distribution of r 
is increasingly skewed for larger values of |ρ| 
(Hedges & Olkin, 1985). In addition, the large-
sample variance of this distribution depends on 
the value of the parameter itself (Becker, 2000). 
For this reason, several meta-analytic 
researchers and in particular MASEM 
researchers (for example, Becker & Fahrbach, 
1994; Hafdahl, 2001; 2007) recommend using 
Fisher’s (1928) r-to-Zr normalizing and 
variance-stabilizing transformation: 
 

( ) ( )[ ]{ }iir rrZ −+= 1/1ln5.            (10) 

 
when synthesizing correlation estimates. The 
variance estimate associated with Zr is: 
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The weight associated with the correlation 
estimate for study i is thus wi = (ni – 3), thus, to 
obtain the pooled estimate of the transformed 

correlation, ρζ̂ , between variables X and Y, the 

following equation is used: 
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The resulting pooled, transformed correlation 

estimate, ρζ̂ , is then back-transformed to the 

correlation metric using the back-transformation 
formula: 

1)ˆ2exp(

1)ˆ2exp(
ˆ

+

−
=

ρ

ρ

ζ
ζ

ρ                  (13) 

 
to obtain the pooled estimate of the correlation, 
ρ̂ . This univariate synthesis method can be 
used for each correlation in the matrix of 

interest. The standard error of ρζ̂  is calculated 

using 


=

−
= k

i
in

s

1

ˆ

3

1
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Synthesizing Correlations: Multivariate 
Synthesis 

Becker (1992b) introduced a 
multivariate synthesis method using generalized 
least squares (GLS) estimation that recognizes 
the possible dependencies among the p* effect 
sizes (where, p* = [p(p-1)]/2 correlations among 
p variables in a correlation matrix): 
 

( ) TXXX 111 −−− Σ′Σ′=θ̂             (15) 
 

where θ̂  is a p* x 1 column vector containing 
the multivariately synthesized estimates of the 
p* effect sizes, X is the design matrix consisting 
of k stacked p* x p* that identifies matrices for 
p* effect sizes per study, Σ is a block-diagonal 
matrix containing the covariance matrix for each 
study’s set of effect sizes as blocks along its 
diagonal and T is a kp* x 1 column vector 
containing each study’s effect size estimates. 
The omnibus Q-statistic is used to test the null 
hypothesis of the homogeneity of effect sizes 
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(correlation matrices) across studies. It can be 
calculated using: 
 

Q = ( )θθ ˆˆ 11 XXTT −− Σ′′−Σ′        (16) 
 
and is assumed to follow a χ2 distribution with 
(k−1)p* degrees of freedom. 

Olkin and Siotani’s (1976) large-sample 
approximation to the covariance between two 
correlations should be used to calculate elements 
of Σ in equations 15 and 16: 
 

ist iuv

2 2 2 2
r ,r ist iuv isu isv itu itv

isu itv isv itu ist isu isv

its itu itv ius iut iuv

ivs ivt ivu i

[0.5 ( )

             (

             

             )] / n

σ = ρ ρ ρ + ρ + ρ + ρ

+ ρ ρ + ρ ρ − ρ ρ ρ
+ ρ ρ ρ + ρ ρ ρ
+ ρ ρ ρ

. 

(17) 
 
Alternatively, multivariate synthesis with GLS 
estimation (see equation 15) could be used to 
synthesize Zr-transformed correlations (equation 
10). Elements of the covariance matrix, Σ, for 
the Zrs are a function of the covariances between 
the correlations (equation 17) and can be 
calculated using: 
 

( )( )( )22

,
, 113 iuvisti

rri
ZZ n

n
iuvist

iuvristr ρρ
σ

σ
−−−

=       (18) 

 
(Steiger, 1980). Initially, when demonstrating 
use of GLS synthesis in a simulation study 
(Becker, 1992b), individual study estimates of ρ 
were used in equations 17 or 18 when 
calculating Σ. Use of these less efficient single 
study estimates of ρ was later found to be one 
cause of GLS’ poor performance for 
synthesizing correlation matrix elements 
(Becker & Fahrbach, 1994). 

Researchers have found that 
multivariate GLS tends to outperform univariate 
synthesis methods when a pooled estimate of ρ 
is instead substituted for each ρ in equations 17 
or 18 (Becker & Fahrbach, 1994; S. Cheung, 
2000; Furlow & Beretvas, 2005). Lastly, it 
should be mentioned that when there is no 
missingness, or the missing values have been 
replaced using some type of imputation, the 

results with Zr-transformed correlations from 
GLS and univariate synthesis are mathematically 
equivalent (Gagné, Furlow, & Beretvas, 2004). 

Hafdahl (2007) conducted a study 
evaluating the performance of univariate and 
multivariate synthesis methods paired with r and 
Fisher’s transformation, Zr, as well as using the 
more efficient estimates of ρ in the relevant 
weight (univariate or multivariate) matrix. 
Hafdahl found support for using the Zr 
transformation over r, for multivariate over 
univariate synthesis methods and for substituting 
the pooled estimates of ρ instead of using 
individual study estimates. Combining these 
options led to better parameter estimation 
accuracy, efficiency and precision and for 
improved Type I error control for the test of 
homogeneity. 

Hafdahl (2007) only investigated the 
performance of synthesis methods when no data 
(i.e., correlation estimates) were missing in any 
of the studies being meta-analyzed. In cases 
where not all correlation estimates are provided 
in every study, the relevant rows and columns 
are deleted from the matrices (specifically in the 
T, Σ, and X matrices) used in GLS (equation 15) 
and the Q-statistic (equation 16) estimation 
(Becker & Schram, 1994). Other researchers 
have assessed the impact of missing data on 
MASEM. Similar to Hafdahl’s results, Furlow 
and Beretvas (2005) found that the Zr 
transformation along with use of pooled average 
estimates of ρ substituted for ρ in the elements 
of the Σ matrix worked best as a synthesis 
method. Furlow and Beretvas (2005) also 
compared the results from their study when 
correlations were MCAR and MNAR and when 
LD versus PD was used to handle the missing 
correlations. They found that MNAR data 
produced high levels of relative bias in the 
correlation estimates while percent relative bias 
among the correlations for MCAR data was 
never above 3%. Use of PD resulted in enhanced 
estimation of synthesized correlations when 
compared with LD when it was used along with 
the more efficient method for GLS. 

Cheung and Chan (2005) demonstrated 
the use of multi-group SEM (where each study 
comprises a group) and model parameter 
constraints across groups as a way to conduct 
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MASEM analyses. They compared the 
performance of their procedure with the more 
typically used MASEM procedure (in which the 
elements in the correlation matrix are first meta-
analytically synthesized and then analyzed using 
canned SEM software without the covariance 
matrix associated with the synthesized 
correlation matrix being analyzed).  

The authors evaluated both procedures 
when data were missing and found support for 
their procedure, however, the authors used the 
earlier version of GLS with individual study 
estimates of ρ when calculating the covariance 
matrix, Σ, used in GLS’ multivariate synthesis 
(equation 15) and for the Q-statistic (equation 
16). Therefore, it was not surprising that GLS 
did not perform well. In addition, Cheung and 
Chan only considered k = 5, 10 and 15 in their 
study (well below the median k of 26 that they 
reported in their review of the applied literature). 
Although they acknowledged that their largest k 
was smaller than the average reported, they 
indicated that because their method involved the 
cross-group constraints (where each study is 
considered as a group) their method was too 
computationally intensive to involve larger ks, 
thus providing a weakness to their method for 
MASEM. 

Both methodological MASEM studies 
(Furlow & Beretvas, 2005; Cheung & Chan, 
2005) had also generated data such that the 
sample size associated with each study was the 
same. While use of a single sample size for 
every study in the simulated meta-analysis might 
simplify interpretation of results, it does not 
provide an authentic simulation of reality. 
Instead, in a real-world meta-analysis the sample 
size for each study is typically different. 
 

Methodology 
This simulation study was designed to 
investigate the use of MI for pooling estimates 
of correlation matrices when some correlation 
estimates were missing in the primary studies 
being synthesized. For this exploration of the 
use of MI, the synthesis of elements of a four-
variable correlation matrix was investigated with 
MCAR data. Manipulated conditions in the 
study included the degree of missingness (25% 
and 50% of all correlations), the number of 
studies (k = 25, 50 and 100) involved in the 

meta-analysis, and the average sample size per 
study ( n~  = 50 and 100). 

Because MI assumes data are 
multivariate normal, it was of interest in this 
study to transform the correlations to Fisher’s Z 
metric since its sampling distribution is more 
normal than that of ρ. As noted, when Zr is used, 
results from the more efficient version of GLS 
are equivalent to using univariate weighting 
when no data are missing or missing data values 
have been imputed (Gagné, Furlow & Beretvas, 
2004). The results from the omnibus test of the 
homogeneity of variance, however, will not be 
the same for univariate and multivariate 
synthesis. Thus, the performance of univariate 
versus multivariate synthesis methods was 
compared when assessing the Type I error 
performance for the homogeneity test. Use of 
MI was also assessed in terms of resulting 
parameter and standard error estimation for only 
the univariate synthesis of correlations. 

In applied meta-analysis, study results 
tend to be based on uneven sample sizes. To 
mimic this, each study’s sample size, ni, was 
generated using the same distribution as that 
used in Hafdahl’s (2007) simulation study: 
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where Xi (for i = 1 to k) was sampled for each 
study i from a χ2 distribution with 3 degrees of 
freedom. The value of n~  depended on the 
sample size condition. In the current study, for 
small and moderate n~  conditions, the values of 
n~  were 50 and 100, respectively. Last, {y} 
represents the closest integer to the value of y. 
 
Data Generation 

Multivariate normal fixed-effects data 
were generated in SAS (SAS Institute, 2005) 
using the Cholesky root of the generating 
covariance matrix. For each combination of 
conditions, 1,000 replications were conducted. 
The relevant degree of missingness was 
introduced into the dataset, the missingness was 
then handled using MI, and correlation estimates 
were synthesized. 
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Model Generation 
To simplify this exploration of the use 

of MI with MASEM analyses, a scale-invariant 
model was selected to generate the data. Scale-
free parameter and standard error estimation 
results for a scale-invariant SEM model are 
equivalent whether a correlation or a covariance 
matrix is analyzed (Cudeck, 1989). A four-
variable, one-factor (scaled to have a variance of 
one) model was used. Values for the elements of 
the correlation matrix used to generate the data 
are those implied by the relevant generating 
values for the true factor loadings (with loading 
values of 0.5, 0.6, 0.7 and 0.8 for variables V1, 
V2, V3 and V4, respectively). Table 1 shows the 
model-implied values of the correlations used to 
generate the data. To simplify the study, the 
variables’ and factors’ variances were each 
standardized to have a value of one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After data were generated, MCAR 
missingness was introduced. The premise 
underlying the general design of missingness in 
this simulation study was that once a study was 
(randomly) selected to have missingness 
introduced, then a variable was randomly 
selected as one that was not measured in a study. 
Once a variable was selected to be missing, all 
correlations involving that variable were 
designated as missing. Thus, if variable V1 was 
selected then r12, r13, r14, would each be missing 
for a study: this mimics a realistic meta-analytic 
scenario in which a variable is not measured in a 
study and thus associated correlations could not 
be reported. 

To determine reasonable values for the 
degree of missing data and the number of studies 
synthesized in the meta-analysis for this study, a 
review of applied MASEM studies in the 
literature was conducted through a search of the 
PsycInfo database using the search criteria 
“meta-analysis” and each of “structural equation 
modeling”, “path analysis” and “confirmatory 
factor analysis”. In addition, other applied 
MASEM articles cited in the resulting sources or 
known to the authors were also examined. This 
led to the identification of 24 applied MASEM 
studies. The amount of missing correlations 
could only be determined for 13 of these 24 
studies because authors did not report the 
information needed to calculate these 
percentages. Two studies reported no missing 
correlations while at the other extreme, three 
studies reported over 80% of all correlations 
missing. The mean rate of missing correlations 
was 67.8% while the median rate was 70%. The 
mean number of studies synthesized across all 
24 MASEM studies was 49.6 with correlations 
being pooled from a minimum of four to a 
maximum of 155 studies’ results. 

The number of studies in the simulated 
meta-analysis used in this study were chosen to 
reflect small (25), moderate (50) and large (100) 
numbers of studies. Per-study sample size was 
varied as described in equation 19 with two 
levels for the average per-study sample size ( n~  
= 50 and 100). Two percentage levels of missing 
correlations were chosen (25% and 50%) to 
reflect the amounts of missingness found in 
applied MASEM studies. In conditions where 
25% of the correlations were missing in a meta-
analysis, 30% of the studies were first selected 
and then 50% (2) of the four variables within 
those studies were chosen to be missing 
(resulting in one correlation out of six remaining 
in those studies). In conditions with 50% of 
correlations missing, 60% of the studies were 
selected to have missingness and 50% of the 
variables within those studies were designated as 
missing along with their correlations. Baseline 
conditions where no correlations were missing 
were also examined for each combination of k 
and n~ . 

 
 

Table 1: Generating Values of Model-Implied 
Correlation Matrix 

 V1 V2 V3 V4 

V1 1.00    

V2 0.30 1.00   

V3 0.35 0.42 1.00  

V4 0.40 0.48 0.56 1.00 

Note: Corresponding generating loading values 
were 0.5, 0.6, 0.7 and 0.8 for V1, V2, V3 and 
V4, respectively. 
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Synthesis Method 
Following dataset generation for each 

condition and introducing the missingness, MI 
was used. To multiply impute the data, SAS 
PROC MI was utilized, employing a 
noninformative prior (the default for PROC MI) 
and assuming a multivariate normal posterior 
distribution. Because a relatively large degree of 
missingness was simulated in this study, forty 
imputations were used rather than the typical 
five to ten (Allison, 2003). The forty imputed 
datasets each consisted of a full set of 
correlations for each study in each simulated 
meta-analysis. 

After the forty multiply imputed datasets 
had been calculated for each replication the 
contents of each dataset were used to obtain 
forty synthesized matrices. To synthesize each 
correlation estimate, each study’s rij value was 
transformed to 

ijrZ  using equation 10. These 

were pooled together using equation 12 to obtain 

the univariately pooled 
ijρζ̂  for each pair of 

variables i and j. The standard error estimates 
were also calculated using equation 14. The 
resulting estimates of the Fisher-transformed 
correlation matrix elements and associated 
standard error estimates were then combined 
across the 40 imputed datasets per replication 
using Rubin’s combination rules (see equations 
1-4) through PROC MIANALYZE. 

Performance of the Q-statistic for 
correct identification of the homogeneity of the 
correlation matrices across studies was also 
evaluated. The Q-statistic was calculated with 
the covariance matrix, Σ, in equation 16 
containing only variances of the Zrs along the 
diagonal for the test of homogeneity for the 
univariate synthesis. The Q-statistic was also 
calculated using the full covariance matrix (see 
equations 17 and 18) for GLS. Rather than using 
single-study estimates of ρ, the more efficient 
pooled estimates were used because they have 
been found to enhance the performance of GLS 
(Hafdahl, 2007). Per-imputation χ2 estimates 
and associated p-values were combined across 
imputations using Allison’s SAS macro 
COMBCHI (2000) (which utilizes equations 5, 
6, and 7). A correction to COMBCHI corrected 

a small error in the code (Enders, personal 
communication, December 8, 2005). 
 
Data Analysis 

The relative percent bias, θ̂(B ), was 
used to evaluate estimation of correlations 
(Hoogland & Boomsma, 1998). Hoogland and 
Boomsma recommended identification of bias 

when the magnitude of θ̂(B ) exceeds five 
percent of the corresponding population value. 
The accuracy of the standard error estimates 
associated with each correlation was assessed 
using the standard error’s relative percent bias. 
Hoogland and Boomsma suggested that standard 
error relative percent bias of magnitude 10 
percent or less indicates an acceptable degree of 
bias. Finally, the proportion of correct fixed-
effects model identifications were tallied using 
the univariately and multivariately weighted Q-
statistic (see equation 16). 
 

Results 
Parameter Estimation Bias 

No substantial bias was found under any 
of the conditions examined for estimation of the 
correlations. Relative percent bias for each 
element across conditions and matrices never 
exceeded a magnitude of 1%. 
 
Standard Error Estimation Bias 

Table 2 lists the results from all study 
conditions and all correlations for the standard 
error bias. In cells with no missing correlations, 
percent relative bias was always well below 
Hoogland and Boomsma’s (1998) 10% cutoff 
with a highest magnitude of 5.5%. In cells with 
missing data, the bias was always positive and a 
distinction was apparent in the bias for the small 
(25%) and large (50%) degree of missingness 
conditions.  

For conditions with 25% of correlations 
missing, bias magnitude was always below 10% 
for cells with ks of 50 and 100, except 
unexpectedly for ρ24 with k = 100 and n~  = 100. 
With a k of 25 and n~  = 50, bias was 
consistently above 10%. With a k of 25 and n~  = 
100, the magnitude of the bias decreased below 
10% for all ρs except ρ14. In cells with 25% 
missing data and k = 25, bias ranged from 4% to 
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13.7% with a mean of 9.3% (SD = 2.9). In cells 
with 50% of correlations missing the bias 
increased, with larger bias for smaller k. In these 
cells with a k of 25, bias ranged from 12.1% to 
22.3% with a mean of 17.2% (SD = 3.1).  
 
Q-Statistic’s Correct Model Rejection Rates 

All data were generated with 
homogeneous correlation matrices. Table 3 
shows the proportion of instances that the Q-
statistic led to an incorrect inference that there 
was heterogeneity in the correlation matrices for 
cells with no missing correlations. Univariate 
weighting of the Q-statistic led to lower 
incorrect model rejection rates than did 
multivariate weighting. However, the average 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rejection rate (M = 8.3%, SD = 0.8) for 
univariate weighting exceeded the nominal level 
of 5%. The average for multivariate weighting 
was 17.6% (SD = 5.4). In general, for GLS, the 
rejection rates increased as k increased. This was 
not the case for univariate synthesis. For 
conditions with missing correlations, MI never 
led to an incorrect rejection of the null 
hypothesis (i.e., the rejection rate was always 
0%), regardless of synthesis method, thus the 
results are not presented in a table. 
 

Conclusion 
Use of MI for meta-analysis resulted in 
synthesized correlations without substantial 
parameter estimation bias when data were  

Table 2: Relative Percentage Bias of Standard Errors of ρ 
Study Condition By ρ 

Median % 
Missing 

k n~  ρ12 ρ13 ρ23 ρ14 ρ24 ρ34 

0 25 50 1.0 1.1 2.2 -3.1 2.0 5.5 1.6 

0  100 -1.7 -0.4 4.1 -4.9 0.5 1.1 0.1 

0 50 50 -0.1 0.0 0.4 0.7 0.4 0.5 0.4 

0  100 -0.6 -2.2 1.4 -2.0 -0.2 -2.0 -1.3 

0 100 50 -1.5 -0.4 1.5 -2.3 1.3 -2.0 -1.0 

0  100 -1.5 1.4 0.0 -3.2 -1.1 2.5 -0.6 

25 25 50 13.7 7.9 11.7 11.1 10.8 11.4 11.3 

25  100 7.1 9.3 4.0 10.9 8.2 5.3 7.7 

25 50 50 5.2 6.4 4.0 7.1 9.1 8.7 6.8 

25  100 6.8 6.1 5.6 3.9 6.6 6.6 6.4 

25 100 50 7.3 3.4 7.4 4.6 7.3 4.6 6.0 

25  100 5.7 5.7 4.5 5.3 12.2 2.4 5.5 

50 25 50 17.3 14.1 12.1 19.9 18.8 17.4 17.4 

50  100 16.5 19.0 16.7 12.7 20.0 22.3 17.9 

50 50 50 8.7 11.3 5.7 9.0 6.3 10.1 8.9 

50  100 11.4 7.3 11.6 10.6 13.6 10.5 11.0 

50 100 50 10.6 6.0 9.7 8.3 6.3 10.0 9.0 

50  100 9.1 10.6 11.7 7.9 12.4 10.2 10.4 

Note: n~ represents the average per-study sample size (see equation 19); k = number of studies; % 
missing = percent of correlations missing in the simulated meta-analysis. Median contains the median 
relative percentage SE bias by condition. 
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MCAR. Substantial positive standard error bias 
was found, but typically only for smaller meta-
analyses (k of 25) and this bias was higher with 
larger degrees of missing data. Cheung and 
Chan (2005) also identified problems with 
MASEM when values of k were low. Based on 
the review of applied MASEM studies, however, 
it appears that most MASEM studies involve 
larger k values. From these results, use of MI 
with meta-analysis might be advocated. The 
results for the test of homogeneity, however, 
indicate that MI should not be used for testing 
the homogeneity of correlation matrices across 
studies. Although MI never resulted in an 
incorrect inference that there was heterogeneity 
in the correlation matrices, future research is 
likely to indicate that when this test should be 
rejected (i.e., when there is heterogeneity 
present), MI will have insufficient power. 

While parameter and SE estimate results 
from GLS and univariate weighting utilizing the 
z-transformation are equivalent when the data 
being analyzed has no missingness, their results 
differ for the test of homogeneity. GLS resulted 
in substantially higher incorrect rejection rates 
than did the univariate weighting method and the 
rates for GLS increased as k increased. These 
findings are consistent with those from Hafdahl 
(2007) where GLS synthesis resulted in higher 

Type I error rates when compared with 
univariate synthesis when no data were missing. 
Thus in the context of testing for heterogeneity, 
the univariate weighting method is 
recommended. 
 
Limitations and Future Directions 

One limitation of this study is the use of 
only a fixed-effects model both for data 
generation and model estimation. While this is a 
limitation, applied MASEM studies most 
frequently assume a fixed-effects model and 
therefore the performance of the conditions in 
this study under this assumption provide an 
important starting point for this research. A 
random-effects model, however, might provide a 
more appropriate fit in many MASEM studies, 
particularly when important between-study 
characteristics impact the variability found 
among studies’ correlations. Hafdahl (2008) 
recently compared GLS with univariate 
synthesis under a random-effects model with no 
missing correlations. Hafdahl found that while 
both methods had high power to reject 
homogeneity when at least 50 studies were used 
in the meta-analysis, when fewer than 50 studies 
were used GLS had far superior power 
performance over univariate weighting. This 
difference was particularly noticeable when the 
average per study sample size was at least 100. 
Future research should continue to explore the 
differences between the univariate and 
multivariate synthesis methods for their power 
and Type I error control particularly when 
missing data occur. Given MI’s Type I error 
performance for the test of homogeneity, its 
performance with between-study heterogeneity 
should also be evaluated to see if it exhibits the 
weak power that would be expected. 

As noted, MI worked well in most 
conditions for estimation of correlations and 
their standard errors (typically substantial 
standard error bias was only found with 50% of 
correlations missing). The results for the test of 
homogeneity with MI, however, seem to 
indicate a problem with its use. Because 
Schaefer’s (1997) equations for combining the 
relevant p-values from the χ2 test of 
homogeneity seem not to have worked well in 
the conditions examined here, it would seem that 
future research should explore whether these 

Table 3: Homogeneity Assumption Rejection 
Rates for Omnibus Q-Statistic for Conditions 

with No Missing Correlations 

Study Conditions Synthesis Method 

k n~  GLS Univariate 

25 
50 13.1 8.3 

100 10.9 9.1 

50 
50 17.2 7.1 

100 16.8 7.6 

100 
50 25.7 8.8 

100 21.7 9.0 

Note: See equation 19 for n~ . Results for cells 
with missing correlations are not reported here 
because MI always resulted in never rejecting 
the test of homogeneity. 
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equations can be refined or new equations 
developed. Additionally, future research should 
also evaluate the performance of MI with 
missing data mechanisms other than MCAR. 

Use of MASEM techniques will 
continue to increase as educational researchers 
use meta-analysis to summarize past research 
and SEM to investigate relationships between 
observed and latent variables. It is hoped that the 
results from this study will help inform the use 
of, and lead to continued refinement of, 
MASEM techniques for educational and 
psychological research. 
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