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Nonlinear Parameterization in Bi-Criteria Sample Balancing 
 

Stan Lipovetsky 
GfK Custom Research North America 

 
 
Sample balancing is widely used in applied research to adjust a sample data to achieve better 
correspondence to Census statistics. The classic Deming-Stephan iterative proportional approach finds the 
weights of observations by fitting the cross-tables of sample counts to known margins. This work 
considers a bi-criteria objective for finding weights with maximum possible effective base size. This 
approach is presented as a ridge regression with the exponential nonlinear parameterization that produces 
nonnegative weights for sample balancing. 
 
Key words: Sample balance, ridge regression, nonlinear parameterization. 
 
 

Introduction 
Sample balance method was introduced by 
Deming and Stephan (1940). It is also known in 
terms of raking or post-stratification, and it is 
widely used in applied research to adjust sample 
data to the known proportions in the population. 
Chi-squared criterion is applied to adjust the 
counts’ contingency table to the needed margins 
(Stephan, 1942; Deming, 1964), which yields 
the weights for observations. The classic method 
has been developed in numerous approaches 
(Ireland & Kullback, 1968; Darroch & Ratcliff, 
1972; Holt & Smith, 1979; Feinberg & Meyer, 
1983; Little & Wu, 1991; Conklin & 
Lipovetsky, 2001; Bosch & Wildner, 2003; 
Kozak & Verma, 2006). The original technique 
has been further extended, particularly, in 
calibration and generalized regression (GREG) 
estimations (Deville & Sarndal, 1992; Sarndal, 
et al., 1992; Deville, et al., 1993; Sarndal, 1996; 
Chambers, 1996; Yung & Rao, 2000; Zhang, 
2000; Singh, 2003). 

Making a sample closer to the required 
margins, the weighting simultaneously reduces 
the effective base size of the data. The farther 
the sample cross-table subtotals are from the 
margins,  the  smaller  is  the  effective base in 
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comparison with the original sample size. 
Decreased effective base produces worse 
statistical test values and wider confidence 
intervals around the estimates which can be 
incorrectly identified as being insignificant. A 
problem of simultaneous sample balancing with 
maximization of the effective base was 
considered in Lipovetsky (2007a), and the 
solution was obtained in a ridge regression 
approach (Hoerl & Kennard, 1970, 1988; 
Lipovetsky, 2006, 2010). Changing the profile 
ridge parameter yields a better fit of the margins, 
or a higher effective base, and the trade-off 
between them is needed: For small ridge 
parameters corresponding to a better margins fit, 
some weights could get negative values which 
are hardly acceptable for applied research. 

This article shows how to improve the 
weights estimation and how to obtain always 
positive values via nonlinear parameterization 
for the weights. This approach is presented in 
the nonlinear optimizing technique for a 
complex objective and can be reduced to 
iteratively re-weighted Newton-Raphson 
procedure (Becker & Le Cun, 1988; Arminger, 
et al., 1995; Hastie & Tibshirani, 1997; 
McCullagh & Nelder, 1997; Bender, 2000; 
Lipovetsky, 2006, 2007b, 2009a,b). The 
exponential, quadratic and logit parameterizations 
of the weights are tried. The exponential function 
is the most convenient for obtaining always 
nonnegative weights. 
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Methodology 
Sample Balancing and Maximizing Effective 
Base 

Let the data be presented in a matrix X 
of N by n order with elements xij for an ith 
observation (i = 1, 2, …, N – number of 
observations) and a jth variable xj (j = 1, 2, …, n 
– number of variables). Besides the design 
matrix X, the required margins are given (census 
or other totals). Consider kj bins of given 
margins for each variable xj, so all the margins 
can be presented in a vector y of mth order, 
where 

 =
= n

j jkm
1

. 

 
Let the variable xj be measured in the kj point 
scale, or the values of xj are segmented into kj 
bins corresponding to the given margins. Each xj 
can be categorized by kj levels, and presented by 
a set of kj binary variables. The whole set of 
these variables can be incorporated into a matrix 
Z of N by m order. The columns of Z present 
binary variables zp with 0-1 values of the 
elements zip (p = 1, 2, …, m). The matrix Z is 
singular, because the rank of a matrix of 
categorized binary variables is not higher than 
m-n. 

Deming-Stephan sample balancing 
consists in fitting the counts nl in the cross-table 
(indexed as l = 1, 2, …, L) of Z matrix by the 
theoretical counts vl in Chi-squared criterion 
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restricted by the conditions of equivalence of the 
sample adjusted totals by each variable to the 
given margins. Adding these restrictions to the 
objective (1) and minimizing such a conditional 
objective by the theoretical parameters vl yields 
a solution for the weights wi which can be 
reached in the algorithm of iterative proportional 
fitting. Total of the weights equals the sample 
base, or the weights can be normalized by the 
relation: 

Nw
N

i
i =

=1

.                        (2) 

 

With the weights wi obtained the 
Deming-Stephan sample balance procedure, the 
effective base size of the weighted sample is 
evaluated by the expression: 
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(3) 
 
where the last equality holds only for the 
normalized weights (2). When the weights are 
distributed more evenly, closer to 1, the effective 
base is close to (but always below) the original 
sample size. Adding and subtracting the constant 
of the base size, the effective base for any set of 
weights can be represented as follows: 
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  (4) 

 
where w  is the mean value of the weights. For 
all weights equal one their mean is 1=w , so 
the effective base equals the sample size. 
Minimization of the weights deviation from their 
mean corresponds to finding the most effective 
base (4). 
 
Sample Balancing with Maximum Effective 
Base 

Based on Lipovetsky (2007a), the 
relation between the given vector of margins y 
and theoretical ŷ  vector of margins is presented 
in a simple linear model: 
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εε +′=+= wZyy ˆ  .                (5) 
 
The theoretical vector wZy ′=ˆ  is estimated by 
the weighted binary variables (prime denotes 
transposition), where w is the Nth order vector-
column of unknown weights wi, and ε  is a 
vector of deviations between the given and 
theoretical margins. The model (5) reminds an 
ordinary linear regression – however, with the 
number N of the unknown coefficients wi 
significantly larger than the number m of the 
values by the dependent variable of margins y. 
Chi-squared criterion can be applied directly to 
minimizing the deviationsε  in (5) by fitting the 
given margins with the weighted binary data: 
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The notation pŷ  is used for the elements of the 

theoretical vector ŷ  (5), and pz~  in the 

denominator (6) are the total counts of the 
binary variables in the columns of matrix Z, so 
they are the elements of the vector of mth order 

NZz 1~ ′= , where 1N denotes a uniform vector-

column of size N. 
Simultaneous minimization of the Chi-

squared criterion (6) and the efficient variance of 
the weights in (4) can be achieved by the 
conditional objective: 
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where q is Lagrange term, D and D-1 denote the 
mth order diagonal matrix and its inversion 
defined via the total counts: 

1

D diag(z) ,

D diag(1/ z)−

=
=




.                 (8) 

 
The condition for minimization yields a system 
of linear equations: 
 

( ) ( )1
N

F
2ZD y Z w 2q w 1 0

w
−∂ ′= − − + − =

′∂
(9) 

which is a matrix equation: 
 

( ) NN qyZDwqIZZD 111 +=+′ −−
,  (10) 

 
For q close to zero this system corresponds to 
margins fit objective, and with q growing the 
main input comes from the efficient base 
objective with the solution of uniform weights. 
The equation (10) corresponds to the ridge 
regression system of equations with the profile 
parameter q. The regularization item qIN added 
to the diagonal of the matrix in the left-hand side 
(10) guarantees that it becomes non-singular and 
invertible. 

Solution of the system (10) is given in 
the work (Lipovetsky, 2007a), and can be 
presented explicitly as follows: 
 

( ) )~()~(1 1 zyzdiagqZZZw N −+′+= −

(11) 
 
Due to (11), the weights are distributed around 
1, and depend on the difference of the given 
margins y and counts NZz 1~ ′=  by the 

categorized variables. For 0~ =− zy  all the 

weights are 1=iw . A unit change 1=Δ py  in a 

pth component of the vector of margins leads to 
the weights change equal the elements 

( ) 1)~( −+′ zdiagqZZZ  of the pth column of the 
transfer matrix, which shows the rate of 
relaxation of the closeness to the given margins. 

Variation in the parameter q permits a 
trade-off between better correspondence to the 
given margins versus more efficient weights of 
the higher effective base. Dividing the 
expression (4) by N yields a quotient EB/N of 
the effective to sample base, which is defined as 
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one minus the ratio of the centered and non-
centered weights’ second moments: 
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The expression (12) has a form of the coefficient 
of determination R2 known in regression 
analysis, and demonstrates similar properties. If 
the residual sum of squares in the numerator at 
the right-hand side (12) is close to zero, R2 is 
close to one, and the effective base reaches the 
sample base. It is convenient to introduce 
another coefficient of determination for the 
margins fitting in Chi-squared objective (6) 
which also is a weighted least squares objective: 
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(13) 
 

where the original value of the objective 2
origχ  is 

taken using the sample counts z~ . Both 

coefficients 2
EBR  and 2

mrgR  can be profiled by 

the parameter q for finding an acceptable level 
of adjustment to margins at a sufficiently large 
effective base. 
 
Nonlinear Parameterization for Finding 
Nonnegative Weights 

In practice researchers often encounter 
with the sample total counts too different from 
the assigned Census margins. Such a 
discrepancy can easily produce weights with 
negative values. In these cases the linear ridge-
regression solution (11) requires to increase the 
parameter q high enough to reach all the weights 

non-negative. In the ridge regression it is not a 
problem, but at a price of losing the needed level 

2
mrgR  of margins fitting. To obtain positive 

weights a special parameterization for the 
weights can be used. For example, the positive 
weights can be presented by the exponent 
 

i iw exp(v )= ,                   (14) 

 
or the non-negative weights can be given by the 
quadratic dependence 
 

2
i iw (v )= ,                     (15) 

 
where iv  are the unknown parameters. The 

logistic parameterization is: 
 

i min
i

max min

1
w w w ,

1 exp( v )

w w w

= + Δ
+ −

Δ = −
,  (16) 

 
where minw  and maxw  are the given constants of 

the minimum and maximum values of the 
desired weights. For any iv , the weights iw  

always belong to the range from minw  to maxw . 

Numerical minimization of the objective 
(7) by the parameters iv  of the positive weights 

can be efficiently performed by Newton-
Raphson optimizing technique. Consider the 
Newton-Raphson algorithm for the objective (7) 
which can be approximated as: 
 

)()()( )0()0( vv
v
FvFvF −

∂
∂+≈ ,      (17) 

 
where v(0) is an initial approximation for the 
vector v which consists of the unknown 
parameters iv . An extreme value of a function 

can be found from the condition of the first 
derivative equals zero, thus taking the derivative 
of (17) yields: 
 

0)( )0(
2

2

=
∂
∂+−

∂
∂=

v
Fvv

v
F

dv
dF

.      (18) 

 



NONLINEAR PARAMETERIZATION IN SAMPLE BALANCE 

202 
 

Solution of the equation (18) for the vector v is: 
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where a matrix of the second derivatives, or 

Hessian, is denoted as H, so 1−H  is the inverted 
Hessian, and the vector of the first derivatives is 
the gradient F∇ . The obtained expression (19) 
is used in the iterations for finding each (t+1)-st 

approximation for the vector )1( +tv  via the 

previous vector )(tv  at the tth step. 
The first derivative of (7) by each 

parameter kv  is: 
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(20) 
 
which corresponds to the derivative in matrix 
form (9) multiplied by the derivative of each 
weight by its parameter. The second derivative 
by any two parameters (r and k, running by the 
observations i = 1, 2, …, N) is as follows: 
 

2 m
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(21) 

 
where rkδ  is Kronecker delta. Hessian (21) in 

the braces contains an expression coinciding 
with that in braces of the first derivatives (20). 
The first derivative reaches zero at the optimum, 
therefore Hessian can be reduced to the first part 
(21) which in matrix notation is: 
 

( )
1

N

i i

H 2G (ZD Z qI ) G ,

G diag dw / dv

− ′= +
=

.          (22) 

All the notations in (22) are the same as in (5), 
(8)-(10), and G denotes the Nth order diagonal 
matrix of the weight derivatives by the 
parameters. Vector of the first derivatives (20) 
can be also represented in matrix notation as: 
 

( )1

NF ( 2)G ZD (y Z w) q(w 1 )− ′∇ = − − − − . 

(23) 
 
Substituting the expressions (22)-(23) into (19) 
yields the expression for minimization the 
objective (7): 
 

( )

( )

( ) ( )

1
1(0) 1 1

N

N

1
1 N(0) 1 1

N 1

N

1(0) 1 1 1 1

N N

ZD (y Z w)
v v G ZD Z qI

q(w 1

(ZD y q1 )
v G ZD Z qI

(ZD Z qI )w

v G ZD Z qI ZD y q1 G w .

−
−− −

−
−− −

−

−− − − −

′−
′= + +

− −

+
′= + +

′− +

′= + + + −

 
 
 
 
 
 

(24) 
 
The second item in (24) contains the expression 
coinciding with the solution of the system (10) 
which can be denoted as linear solution, linw , 

given in explicit form in (11). The recurrent 
equation (24) for a tth and the next steps of 
approximation can be represented as: 
 

)( )(1)()1( t
lin

tt wwGvv −+= −+ .     (25) 

 
Formula (25) presents the iteratively re-weighted 
Newton-Raphson procedure for minimizing the 
objective (7) in a nonlinear parameterization, 
and it usually quickly converges. 

For the exponential function (14), the 
inverted matrix of derivatives (22) is: 
 

( ) )/1()exp( )()(1 t
i

t
i wdiagvdiagG =−=− , 

(26) 
 
and for the quadratic function (15) it is: 
 

( ) ( ))2/(1)2/(1 )()(1 t
i

t
i wdiagvdiagG ==− . 

(27) 
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For the logistic function (16) its diagonal matrix 
of the inverted derivatives is: 
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1 1 i
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where the constants minw  and maxw  define the 

range wΔ  of the desired weights. With the 

initial parameters Nvi /1)0( = , finding the initial 

weights by the formulae (14)-(16), and the 
related 1−G  matrix by the corresponding 
formulae (26)-(28), and applying them in (25), it 
is easy to obtain the next approximation for the 
parameters, then the nonnegative weights, and to 
continue the process until it converges. 
 
Numerical Example 

Data from a marketing research project 
of six hundred observations contains variables of 
gender (two values), income (three levels), age 
group (three levels), and region (four levels) – 
these categories are given in the first columns of 
Table 1. The next two columns in Table 1 
present the margins observed in the data and 
required by Census. Within each variable, a total 
of the observed or the required margins equal 
one. For example, the gender splits to 35% and 
65%, while it should contain 40% and 60% of 
males and females, respectively. The largest 
difference of the sample and population values 
can be observed by the age groups of 18-34 and 
54-65 years old respondents, and by Midwest 
and West regions. 

The next column in Table 1 presents the 
results of the Deming-Stephan iterative 
proportional fitting (corresponds to the ridge 
parameter q = 0). All proportions are reached, 
thus, the fitted margins coincide with the 
required ones in Table 1 and the coefficient of 

determination 2
mrgR  (13) equals one. However, 

the coefficient of determination 2
EBR  (12) for the 

effective sample size equals 0.15, so the 
effective base is reduced by 85% from the 
sample of 600 observations to the effective base 
of only 90 observations, which is somewhat low. 
Descriptive statistics for the obtained weights 
are given in the last three rows of this column: 
they show that the weights vary (around mean 
value equal one) in the wide range from the 
minimum (min = −1.91) to the maximum (max 
= 18.29), with the standard deviation (std = 
2.42). These results are poor and having 
negative weights is inconvenient in applied 
research (most of statistical software modules 
require the weights to be nonnegative). 

Several other columns in Table 1 
present the results of the linear ridge regression 
solutions (11) with the parameter q running by 
step 0.25 up to 2.25. Increasing q results in a 
loss on the margins adjustment, but a win on the 
effective sample size. Beginning from q = 0.75, 
all the weights become positive and distributed 
in the narrower range (the standard error reduces 
twice), and the effective base grows to 

38.02 =EBR , so it becomes more than twice as 
large in comparison with the results of q = 0. 
Further increasing q to 1.75, the coefficient of 
determination for margins and for effective 
sample size becomes equal to 0.60. 

Table 2 presents the results of the 
exponential parameterization (25)-(26) for the 
nonnegative weights (14). In difference to linear 
estimation, the nonlinear approach yields only 
nonnegative weights with similar characteristics 
of the quality of margins fit and effective base. 
The other nonnegative parameterizations (15)-
(16) produce similar results to the exponential 
fitting. The outcomes in the considered example 
are typical for sample balance with maximizing 
effective size and nonnegative parameterization 
for weights. 

As mentioned for the formulae (12)-

(13), the coefficients of determination 2
EBR  and 

2
mrgR  can be profiled by the growing parameter 

q for finding a point of intersection between the 

declining curve of margins adjustment 2
mrgR  and 

the rising curve 2
EBR  of the sufficiently effective 

base (see Figure 1). Comparison of the 
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coefficients of determination - 2
EBR  and 2

mrgR  - 

in Tables 1 and 2 and in Figure 1 show that the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

feasible solutions can be found in the range of q 
from 0.75 to 1.75. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Sample Balance with Maximum Effective Size: Linear Ridge Regression 

Variable 
Category 

Margins Ridge Profile Parameter q 

Observed Census 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

Gender 
Male 

0.35 0.40 0.40 0.34 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 

Gender 
Female 

0.65 0.60 0.60 0.66 0.68 0.68 0.69 0.69 0.69 0.69 0.69 0.69 

Income 
Low 

0.44 0.48 0.48 0.40 0.37 0.36 0.35 0.35 0.34 0.34 0.34 0.34 

Income 
Mid 

0.49 0.43 0.43 0.52 0.55 0.57 0.58 0.59 0.59 0.60 0.60 0.61 

Income 
High 

0.07 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.06 

Age 
18-34 

0.04 0.32 0.32 0.26 0.22 0.19 0.17 0.16 0.14 0.13 0.12 0.12 

Age 
35-54 

0.41 0.40 0.40 0.39 0.40 0.40 0.40 0.40 0.41 0.41 0.41 0.41 

Age 
54-65 

0.55 0.28 0.28 0.35 0.38 0.41 0.43 0.44 0.45 0.46 0.47 0.47 

Region 
Midwest 

0.19 0.34 0.34 0.31 0.28 0.26 0.25 0.24 0.23 0.22 0.22 0.21 

Region 
West 

0.29 0.13 0.13 0.22 0.27 0.30 0.32 0.34 0.36 0.37 0.38 0.39 

Region 
South 

0.35 0.33 0.33 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

Region 
Northeast 

0.17 0.20 0.20 0.20 0.19 0.18 0.17 0.16 0.16 0.15 0.15 0.14 

Descriptive Statistics 

R2
mrg 1.00 0.95 0.88 0.81 0.74 0.69 0.64 0.60 0.56 0.53 

R2
EB 0.15 0.23 0.31 0.38 0.44 0.50 0.55 0.60 0.64 0.67 

Min -1.91 -0.60 -0.15 0.09 0.24 0.35 0.43 0.49 0.54 0.58 

Max 18.29 13.48 11.25 9.72 8.60 7.78 7.13 6.59 6.14 5.75 

Std 2.42 1.81 1.49 1.28 1.12 1.00 0.90 0.82 0.75 0.70 
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Table 2: Sample Balance with Maximum Effective Size: Linear Ridge Regression with Exponential 
Parameterization of the Coefficients 

Variable 
Category 

Margins Ridge Profile Parameter q 

Observed Census 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

Gender 
Male 

0.35 0.40 0.36 0.33 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 

Gender 
Female 

0.65 0.60 0.64 0.67 0.68 0.68 0.69 0.69 0.69 0.69 0.69 0.69 

Income 
Low 

0.44 0.48 0.41 0.38 0.37 0.36 0.35 0.35 0.34 0.34 0.34 0.34 

Income 
Mid 

0.49 0.43 0.52 0.53 0.55 0.57 0.58 0.59 0.59 0.60 0.60 0.61 

Income 
High 

0.07 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.06 

Age 
18-34 

0.04 0.32 0.27 0.25 0.22 0.19 0.17 0.16 0.14 0.13 0.12 0.12 

Age 
35-54 

0.41 0.40 0.46 0.41 0.40 0.40 0.40 0.40 0.41 0.41 0.41 0.41 

Age 
54-65 

0.55 0.28 0.27 0.34 0.38 0.41 0.43 0.44 0.45 0.46 0.47 0.47 

Region 
Midwest 

0.19 0.34 0.29 0.30 0.28 0.26 0.25 0.24 0.23 0.22 0.22 0.21 

Region 
West 

0.29 0.13 0.23 0.25 0.28 0.30 0.32 0.34 0.36 0.37 0.38 0.39 

Region 
South 

0.35 0.33 0.28 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

Region 
Northeast 

0.17 0.20 0.19 0.19 0.19 0.18 0.17 0.16 0.16 0.15 0.15 0.14 

Descriptive Statistics 

R2
mrg 0.96 0.93 0.87 0.81 0.74 0.69 0.64 0.60 0.56 0.53 

R2
EB 0.21 0.25 0.32 0.38 0.44 0.50 0.55 0.60 0.64 0.67 

Min 0.00 0.00 0.00 0.09 0.24 0.35 0.43 0.49 0.54 0.58 

Max 15.48 13.02 11.15 9.72 8.60 7.78 7.13 6.59 6.14 5.75 

Std 1.93 1.72 1.47 1.28 1.12 1.00 0.90 0.82 0.75 0.70 
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Conclusion 
This article considers a sample balancing 
procedure with simultaneous maximization of 
the effective base size and the parameterization 
which guarantees the nonnegative weights. A 
multiple criteria objective is reduced to a ridge 
regression model (10). The analytical linear 
solution for the weights (11) is generalized to 
the nonlinear parameterization of the weights by 
exponential and other functions (14)-(16). To 
obtain always nonnegative weights, solution of 
the nonlinear system of equations is considered 
in the Newton-Raphson iteratively re-weighted 
procedure (17)-(28). The suggested weighting 
scheme is optimal for finding the best margins 
adjustment with the best effective base size. 
With growth of the ridge profile parameter q, the 
margins fit (13) decreases while the effective 
base (12) increases, thus a trade-off between 
them is used. The suggested approach can serve 
in solving various practical and theoretical 
problems involving sample balance for 
nonnegative weights. For example, the described 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
method can be applied to solving calibration 
problem for data obtained by different sources or 
in international market research. The data 
gathered in several countries by various 
attributes measured in ordinal scales can be 
skewed to higher or lower levels due to the 
cultural norms and specifics dissimilar in 
different countries. To render the data samples 
comparable for statistical research one country 
can be taken as a basic pattern, Census likewise, 
and its counts of the response distribution can be 
found by the attributes levels. Fitting each other 
country distribution to the basic one can be 
performed exactly by the sample balance 
procedure which yields a solution for weighting 
the adjusting data with positive weights. 
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