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Shrinkage Estimation in the Inverse Rayleigh Distribution 
 

Gyan Prakash 
S. N. Medical College, Agra, U. P., India 

 
 
The properties of the shrinkage test–estimators of the parameter were studied for an inverse Rayleigh 
model under the asymmetric loss function. Both the single and double–stage shrinkage test–estimators are 
considered. 
 
Key words: Shrinkage factor; Shrinkage test–estimator; Level of significance; Relative bias; Relative 
efficiency. 
 
 

Introduction 
If  x  is a random variable that follows the 
inverse Rayleigh distribution with the parameter 
θ,  then it has the distribution function 
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If n21 ,...xx,x  is the n  random 

observations drawn from model (1.1), then the 
maximum likelihood estimator (MLE) and the 
unbiased estimator of θ  are given respectively 
as 
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  T  is a sufficient statistic 

for the parameter θ . 
In the estimation problem when positive 

and negative errors have different consequences, 
the use of SELF (Squared error loss function) 
is not appropriate. Varian (1975) discussed an 
asymmetric loss function known as the LINEX 
loss function (LLF). This loss function is convex 
and its shape is determined by the value of its 
shape parameter. The positive (negative) values  
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of the shape parameter, gives more weight to 
underestimation (overestimation). Further, the 
magnitude of the shape parameter reflects the 
degree of asymmetry. The invariant form of the 
LLF is defined as 
 

{ } 0  a  ;  1ae )( L a ≠−Δ−=Δ Δ
  

and 











−= 1

θ

θ̂
  Δ .                     (1.3) 

 
Here a''  is the shape parameter of the 

LLF and θ̂  is any estimate of the parameter θ . 
When 0  a > , the loss function increases almost 
exponentially for positive Δ  and almost linearly 
otherwise and overestimation is more heavily 
penalized than underestimation. When 0  a <   
the linear exponential rises are interchanged and 
underestimation is considered more costly than 
overestimation. The LINEX loss function may 
be considered a natural extension of SELF (for 
small values of a''  (near to zero) the LINEX 
loss function tends to SELF). Srivastava and 
Tanna (2001), Xu and Shi (2004), Prakash and 
Singh (2006), Singh, et al. (2007), Prakash and 
Singh (2009) and others have discussed 
estimation procedures under LLF. 

In many situations, the experimenter has 
some prior information about the parameter in 
the form of a point or guess value and it is 
recognized that a shrinkage estimator performs 
better if a guess value of the parameter is 
approximately the true value and the sample size 
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is small. Thompson (1968), Mehta and 
Srinivasan (1971), Pandey and Singh (1977), 
Pandey (1979), Singh, et al. (1996), Singh, et al. 
(2007) and others have suggested shrinkage 
estimators utilizing the point guess value of the 
parameter.  

The study is presented for the single and 
double stage shrinkage test–estimators for the 
parameter θ  under the LLF.  
 

Methodology 
Proposed Class of Estimator for the Parameter θ  

The proposed class of estimator for the 
parameter θ  is defined as 
 

.RC ; 
T

1n
 Cθ̂ Cθ UC

+∈−==       (2.1) 

 

The value of constant Ĉ C =  (for 
example), which minimizes the risk of Cθ  under 

the LLF, is obtained by solving the given 
equality numerically 
 

, 
z

1n
 C a 

z

1
 , 0, I

1n

ea















 −∞=

−
    (2.2) 
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and ω  is the function of z .  

Thus, the improved class of estimator of 
θ  in the class (2.1) is 
 

UC θ̂ Ĉ   θ̂ =                         (2.3) 

 
with the risk under the LLF 
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Proposed Shrinkage Estimator and its Properties 
Following Thompson (1968), a shrinkage 
estimator for the parameter θ  when ,θ0  a guess 

value of θ  is available, is defined as 

( ) 1]. [0,k  ; θ    θθ̂kθ 100U1SH ∈+−=   (3.1) 

 
Depending on the guessed value 0θ  used, a 

shrinkage factor 1k  is specified. The shrinkage 
procedure has been applied to a number of 
different problems, a few examples include: 
mean survival time in epidemiological studies 
(Harries & Shakarki, 1979), forecasting money 
supplies (Tso, 1990), estimating mortality rates 
(Marshall, 1991) and improving estimation in 
sample surveys (Wooff, 1985). 

The risk under the LLF (1.3) for the 
shrinkage estimator SHθ  is given by 
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The value of 21 k k =  (for example) that 

minimizes ( )SHθ̂ R , is also obtained by solving 

the given equality numerically: 
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Therefore, the improved shrinkage estimator for 
θ  in the class (3.1) is 
 

( )  . θ    θθ̂kθ̂ 00U2SH +−=            (3.4) 

 
The expressions of the relative bias and the risk 
under the LLF are obtained as 
 

( ) ( ) ( ) ( )1 k δ 1 1  θ̂ E
θ

1
θ̂ RB 1SHSH −−=−=  

(3.5) 
and 
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The expression of relative bias of SHθ̂  

clearly shows that the relative bias is zero at 
1.00δ =  and has a tendency of being negative 

for 1.00δ0 <<  and positive otherwise. 
The relative efficiency for the shrinkage 

estimator SHθ̂  with respect to the improved 

estimator  Cθ̂  is defined as 

 

( ) ( ) ( ).θ̂ Rθ̂ Rθ̂,θ̂ RE SHCCSH =  

 

The expression ( )CSH θ̂,θ̂ RE  involves 

δ,  a  and n . For the selected set of values of 

1.60; (0.20) 0.40  δ =  1.00 0.50, 0.25,  a =  and

15 12, 08, 4,0 n = , the numerical findings of the 
relative efficiency are presented in Table 1 for 

. 0.50 0.25,  a =   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the values in the table, it may 

be concluded that the shrinkage estimator SHθ̂  

performs better than the estimator Cθ̂  for the 

considered set of the parametric space and 
attains maximum efficiency at the point 

1.00δ = . Also, the efficiencies increase 
(decrease) for (n) a  increases when other 

parametric values are fixed (except 1.00δ = ). 
 
The Shrinkage Test–Estimators and their 
Properties 
 

It has been shown that the shrinkage 

estimator SHθ̂  has a lower risk than the 

improved estimator Cθ̂  when a guess value 0 θ  

of θ  is near to the true value of the parameter θ .  
Thus, the shrinkage test–estimator is 

proposed for testing the hypothesis 0 0 θθ:H =  

against 0 1 θθ:H ≠  based on a given set of data. 

The test statistic 2 
n) (20 χ~Tθ 2  is used for 

testing 0 H . If α  is the level of significance 

then the null hypothesis 0 H is not rejected if

]mTθ 2m [ Pα1 2 0 1 ≤≤=− . 

  

Table 1: Relative efficiency for the Shrinkage Estimator SHθ̂   

with respect to Cθ̂ for 0.50 and 0.25  a =  

n  a  
δ  

0.40 0.60 0.80 1.00 1.20 1.40 1.60 

04 
0.25 1.7810 3.1662 10.358 15.774 6.9258 2.1400 1.5999 

0.50 1.9967 3.6602 11.779 16.036 9.9987 2.9404 1.6161 

08 
0.25 1.2857 1.8153 4.5882 19.534 4.4207 1.6963 1.1901 

0.50 1.5537 2.2628 5.7189 23.606 5.3097 1.9740 1.3167 

12 
0.25 1.1796 1.5122 3.2651 20.664 3.1455 1.4269 1.1138 

0.50 1.2762 1.6553 3.5781 22.116 3.3206 1.4723 1.1313 

15 
0.25 1.1422 1.4045 2.7725 21.122 2.6720 1.3076 1.0604 

0.50 1.1699 1.4513 2.8794 21.419 2.6799 1.3339 1.0889 
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Thus, the proposed shrinkage test–estimators are 
 

=i SH θ̂  

( ) ( )( ) ; I θ̂ Ĉkθ k1θ̂ )  t T  t(Ui 0 i C 21 ≤≤−+−+
 (4.1) 

 
where (A) I  denotes the indicator of A,  

0 

i 
i θ 2

m
t =  and 2 1,i = . Here 1m  and 2m  are 

the values of the lower and upper 100α 2% 

points of the Chi–square distribution with 2n  
degrees of freedom. 

The expression of the relative bias is 
obtained as: 
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Similarly, the expressions of the risk 
under the LLF for the proposed shrinkage test–
estimators are 
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(4.3) 
The value of 1 3k  k= (for example) that 

minimizes the risk of the shrinkage test–

estimator SH1θ̂  may be obtained by solving 

following equality 
 

( ) 1a 1 δ aΔ1 1
1 2 1 2
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Δ Δ
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.−       

=               
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Hence, the improved shrinkage test–estimator is 

defined as 
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The expressions of the relative bias and 

the risk under the LLF are given as  
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The relative efficiency of the shrinkage 

test–estimator SHiθ ; i 1, 2, 3, ˆ =  with respect to 

improved estimator Cθ̂  is defined as 

 

( ) ( ) ( )SHi C C SHiRE θ , θ R θ R θ ; i 1, 2, 3.ˆ ˆ ˆ ˆ= =  

 

The relative bias ( )SH1RB θ̂  and the 

relative efficiency ( )SH1 CRE θ , θˆ ˆ  are the 

functions of δ,  k,  α,  a  and n . For a similar 
set of values as considered previously with 
k 0.25, 0.50, 0.75=  and α 0.01, 0.05,=  the 
relative bias (not presented) and the relative 
efficiency are presented in Table 2, for 08n =  
and 12 . 

The relative biases are negligibly small 
and lie between −0.014 and 0.019. For small 
values of δ 1.00,≤  the relative bias is negative 

but for large δ  it has a tendency to be positive. 
The value of the absolute relative bias (ARB) 
decreases as n  increases for δ 1.00≥  when 
other parametric values are fixed. The ARB 
increases as α) ( a  increases for small δ 1.00≤  
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and decreases otherwise. In addition, the ARB 
decreases when k  increases for the all 
considered values of δ  when other parametric 
values are fixed. 

The shrinkage test–estimator SH1θ̂  has 

smaller risk than Cθ̂  for the all considered 

values of the parametric space. The efficiency 
decreases as 'a'  or k  increases in the region 
0.40 δ 1.20≤ ≤  when other parametric values 
are fixed and the efficiency attains maximum at 
the point δ 1.00= . In addition, as the level of 
significance α  increases, the efficiency 
decreases for the all considered values of δ . 

The expressions of the relative bias and 
the relative efficiency for the test–estimator 

SHiθ ; i 2, 3ˆ =  are the functions of δ,  α,  a  and 

n . For a similar set of values as considered 
earlier, the relative biases (not presented here) 
and the relative efficiencies are shown in Tables 
3 and 4. 

The relative biases of SH2θ̂  are 

negligibly small and lie between −0.017 and 
0.029. For small values of δ 1.00,≤  the relative 

bias is negative, but for large δ  it has a 
tendency of being positive. The ARB increases 
as a(α)  increases for small δ 1.00≤  and 

decreases otherwise. The relative biases of SH3θ̂  

are also negligibly small and lie between −0.018 
and 0.031. Other properties are similar to 

shrinkage test–estimator SH2θ̂ . 

The shrinkage test–estimator SH2θ̂  

performs well with respect to Cθ̂  for the all 

considered parametric values and attains 
maximum efficiency at the point δ 1.00=  
(Table 3). The efficiency decreases as 'a'  
increases when δ 1.00 ≤ for other fixed 
parametric values. This decreasing trend has also 
been observed when α  increases for all 
considered values of δ . 

Table 4 shows that the shrinkage test–

estimator SH3θ̂  performs uniformly well with 

respect to Cθ̂  for the all considered parametric 

values. The efficiency decreases as n  increases 

in the region 0.80 δ 1.40≤ ≤  for other fixed 
parametric values. Other properties are observed 
to be similar to the shrinkage test–estimator 

SH2θ̂ .  
 
The Double–Stage Shrinkage Test–Estimator 

A double–stage procedure using prior 
information in the form of an initial estimate or a 
guessed value has been considered by many 
authors (Katti, 1962; Shah, 1964; Waikar & 
Katti, 1971; Al–Bayyati & Arnold, 1972; 
Waikar, et al., 1984; Adke, et al., 1987). Arnold 
& Al–Bayyati (1970) considered the double–
stage shrinkage estimator for the mean of a 
normal population when a prior guessed value of 
the mean is available. Pandey, et al. (1988) 
proposed some shrinkage estimators for the 
variance of a Normal distribution at double–
stage under mean square error criterion. 

Let ji  jx (i 1, 2, .. n ) ; j 1, 2. ,= =  be two 

random samples of size 1n  and 2n  respectively, 

drawn independently from the model (1.1) with 
the parameter θ . The pooled unbiased estimate 

of θ  based on two samples of size 1n  and 2n  is 

 

( ) ( )1 2 2 1
P

1 2

n 1 T n 1 T
θ ;

2T T

− + −
= . 

 
jn

j 2
i 1 ji

1
T , j 1, 2

 x=

= =             (5.1) 

 
The proposed class of estimators for the pooled 
estimate of θ  is given by 
 

PC Pθ θ ; R .l l += ∈                (5.2) 

 

The value of ˆl l=  (for example), for which 

( )PCR θ  is minimum is obtained by simplifying 

the given equality numerically 
 

DaΔa  DΔ
2e G 0, , 0, , e ,

l
′′  = ∞ ∞   

  
  (5.3) 

where 
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  Table 2: Relative Efficiency for the Shrinkage Test-Estimator 1 SHθ̂  with respect to Cθ̂  

for 12 and 08 n =  

08 n =  δ  

α  a  k  0.40 0.60 0.80 1.00 1.20 1.40 1.60 

0.01 

0.25 

0.25 1.2151 2.1922 2.3196 4.6215 3.8156 1.7756 1.6830 

0.50 1.1481 1.8933 2.0205 2.9787 2.7729 2.1138 1.3801 

0.75 1.1479 1.4051 1.4303 1.8448 1.7469 1.6798 1.5326 

0.50 

0.25 1.1945 1.4547 1.9428 3.8979 3.5790 1.9019 1.8913 

0.50 1.1381 1.4508 1.7480 2.7789 2.7129 2.1823 1.4858 

0.75 1.1375 1.1574 1.3149 1.8276 1.7426 1.7329 1.5948 

0.05 

0.25 

0.25 1.1347 2.1089 2.1210 2.8377 2.3843 1.5066 1.2878 

0.50 1.1345 1.7516 1.8392 2.1867 1.9566 1.7256 1.2700 

0.75 1.1323 1.2456 1.3262 1.5639 1.4307 1.4857 1.4403 

0.50 

0.25 1.1332 1.4234 1.5926 2.3318 2.2350 1.6070 1.1905 

0.50 1.1315 1.4197 1.4455 1.9222 1.8855 1.7907 1.3849 

0.75 1.1132 1.1282 1.1312 1.4561 1.4220 1.3367 1.3282 

12 n =   

0.01 

0.25 

0.25 1.6316 2.1191 2.3444 3.3353 2.5675 1.1708 1.1617 

0.50 1.6011 2.1061 2.0147 2.5170 2.2819 1.6603 1.0200 

0.75 1.4517 1.5849 1.4843 1.7736 1.6626 1.6518 1.4559 

0.50 

0.25 1.5354 1.6908 1.7535 2.8634 2.4524 1.1878 1.1736 

0.50 1.5087 1.6781 1.6401 2.2561 2.1817 1.6498 1.0498 

0.75 1.3727 1.1940 1.2765 1.6437 1.6092 1.6217 1.4366 

0.05 

0.25 

0.25 1.4620 1.9624 2.2676 2.5836 1.8173 1.0414 1.1474 

0.50 1.4437 1.8656 2.0132 2.0955 1.6523 1.3561 1.0191 

0.75 1.3858 1.5181 1.4754 1.5833 1.3628 1.3994 1.3366 

0.50 

0.25 1.4319 1.6854 1.7453 2.0929 1.6666 1.0416 1.0582 

0.50 1.4145 1.6152 1.5948 1.7697 1.5237 1.3307 1.0478 

0.75 1.3557 1.1478 1.2402 1.3909 1.2701 1.3559 1.3211 
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Table 3: Relative efficiency for the Shrinkage Test-Estimator 2 SHθ̂  with respect to Cθ̂  

04 n =  δ  

α  a  0.40 0.60 0.80 1.00 1.20 1.40 1.60 

0.01 

0.25 1.6548 2.8665 4.7368 11.755 6.6751 3.1841 1.9473 

0.50 1.5454 2.3551 4.0652 9.9677 2.8202 2.1233 1.7596 

1.00 1.5401 2.1247 3.8357 9.6791 5.9872 3.2399 1.8926 

0.05 

0.25 1.5548 1.7367 2.5544 4.9625 3.6768 2.5214 1.7863 

0.50 1.4454 1.6955 2.2922 4.1782 2.4534 2.0365 1.7452 

1.00 1.4402 1.6507 2.2569 4.0661 3.1790 3.0188 1.7381 

08 n =   

0.01 

0.25 1.6543 1.9973 2.4546 6.0587 3.8926 2.1165 1.5681 

0.50 1.4361 1.4759 2.2995 5.8657 3.6473 2.1909 1.6250 

1.00 1.3288 1.0766 1.9320 5.5925 4.4410 2.8794 2.5328 

0.05 

0.25 1.5502 1.9872 2.1138 3.3657 2.4321 1.7246 1.4518 

0.50 1.3626 1.4470 1.7291 3.1299 2.2758 1.7918 1.5200 

1.00 1.3191 1.0424 1.5898 3.0576 2.0576 1.5325 1.1507 

12 n =   

0.01 

0.25 1.4375 1.8921 2.3629 3.8744 2.5683 1.7466 1.4662 

0.50 1.3713 1.5575 1.8136 3.7197 2.4520 1.7204 1.4438 

1.00 1.3244 1.3924 1.7434 3.7049 3.6813 3.1246 1.1731 

0.05 

0.25 1.3801 1.7143 2.2637 2.7897 1.8072 1.4265 1.3546 

0.50 1.3551 1.5169 1.7135 2.7499 1.6598 1.3866 1.3322 

1.00 1.3159 1.3391 1.4702 2.3182 2.2879 2.2782 1.1685 

15 n =   

0.01 

0.25 1.3716 1.7533 2.2959 3.8034 2.1006 1.6055 1.4303 

0.50 1.3628 1.6522 2.0846 3.7610 2.0189 1.5494 1.3781 

1.00 1.3114 1.3493 1.6074 3.2557 3.1649 2.9006 1.2831 

0.05 

0.25 1.3486 1.5474 2.2562 2.8378 1.6021 1.3135 1.3179 

0.50 1.3466 1.5130 2.0011 2.6023 1.4944 1.2548 1.2696 

1.00 1.2355 1.3321 1.3961 2.4358 2.1663 2.0297 1.1815 
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Table 4: Relative efficiency for the Shrinkage Test-Estimator 3 SHθ̂  with respect to Cθ̂  

04 n =  δ  

α  a  0.40 0.60 0.80 1.00 1.20 1.40 1.60 

0.01 

0.25 1.6548 2.9751 4.9163 12.671 6.9280 3.3047 1.9473 

0.50 1.5454 2.4443 4.2197 10.744 3.7855 2.2037 1.7596 

1.00 1.5401 2.2052 3.9810 10.433 6.2141 3.3629 1.8926 

0.05 

0.25 1.5548 1.8025 2.6512 5.3498 3.8165 2.6166 1.7863 

0.50 1.4454 1.7597 2.3790 4.5038 2.5468 2.1138 1.7452 

1.00 1.4402 1.7132 2.3424 4.3828 3.2998 3.1332 1.7381 

08 n =   

0.01 

0.25 1.6543 2.073 2.5476 6.5306 4.0401 2.1967 1.5681 

0.50 1.4361 1.5318 2.3866 6.3226 2.9271 2.1739 1.6250 

1.00 1.3288 1.1174 2.0052 6.0281 4.6093 2.9885 2.5328 

0.05 

0.25 1.5502 2.0625 2.3939 3.6278 2.5242 1.7899 1.4518 

0.50 1.3626 1.5018 1.7946 3.3737 2.3620 1.8597 1.5200 

1.00 1.3191 1.0819 1.6500 3.2957 2.4355 2.3905 1.1507 

12 n =   

0.01 

0.25 1.4375 1.9638 2.4524 4.1762 2.6656 1.8128 1.4662 

0.50 1.3713 1.6165 1.8823 4.1094 2.5449 1.7856 1.4438 

1.00 1.3244 1.4451 1.8094 3.9931 3.8208 2.4243 1.1731 

0.05 

0.25 1.3801 1.7792 2.3494 3.1007 1.8756 1.4805 1.3546 

0.50 1.3551 1.5743 1.7784 2.9641 1.7227 1.4395 1.3322 

1.00 1.3159 1.3898 1.5259 2.6987 2.3746 2.3645 1.1685 

15 n =   

0.01 

0.25 1.3716 1.8197 2.3829 4.0996 2.1802 1.6663 1.4303 

0.50 1.3628 1.7148 1.7636 4.0539 2.0954 1.6081 1.3781 

1.00 1.3114 1.4004 1.6683 3.5093 3.2848 2.1105 1.2831 

0.05 

0.25 1.3486 1.6060 2.3417 3.0588 1.6628 1.3632 1.3179 

0.50 1.3466 1.5703 1.7069 2.8050 1.5510 1.3023 1.2696 

1.00 1.2355 1.3825 1.4490 2.6255 2.2484 2.1063 1.1815 
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function of 1z  and .z 2  

Thus, the improved pooled estimator 
among the class (5.2) is 
 

PC Pθ θˆˆ l=                        (5.4) 

with the risk 
 

( ) ( ) ( )DaΔa
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(5.5) 
where 
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D

1 2
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2 z z
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The performances of the shrinkage test–

estimator SH3θ̂  are better in terms of the 

magnitude of efficiency when they are compared 

with SH2θ̂ . Hence, SH3θ̂  has been considered in 

double–stage setup. The proposed double–stage 
shrinkage test–estimator is given as 
 

( )( )PC 1  U3 03 PC DSH θ̂θ̂ kθ k1θ̂θ̂ −+−+=
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The proposed double–stage technique is 

to first obtain a sample size 1n  and compute 

U1θ̂ . If U1θ̂  implies that the prior estimate 0θ  

was reasonable, the sampling is stopped and the 
parameter is estimated with the help of a 
shrinkage estimator. Otherwise, 2n  additional 

observations are obtained and used to improve 
the estimate based on all 1 2(n n )+  

observations. The risk under the LLF for DSHθ̂  

is obtained as 
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The problem is considered as a 

sequential estimation problem with stopping 
random variable N  defined as 
 

1 1 1 2

1 2

n            if  t T t
N

n  n   otherwise.

≤ ≤
=  +

        (5.6) 

 
If a cost 0)( d >  is introduced for each 

observation. Then the risk of DSHθ̂  is: 

 

( ) ( ) (N) E d  θ̂Rθ̂ R
~

DSH DSH +=  

 

Similarly the risk of PCθ̂  is: 

 

( ) ( ) )n(n d  θ̂Rθ̂ R
~

21PC PC ++=  

 
Therefore, the relative efficiency of 

DSHθ̂  with respect to PCθ̂  is given by: 

 

( ) ( )
( ) . 
θ̂ R

~
θ̂ R

~
  θ̂,θ̂  RE

DSH 

PC 
PC DSH =  

 
The function of the relative efficiency  

involves α a, δ, ,n ,n 21  and per unit cost d . For 
a similar set of selected values as considered 
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previously with 08 04,  n 2 =  and 05, 0.50,  d =
50, 10,  calculated relative efficiencies are 

presented for 08 04,  n 1 =  and 0.50  d =  in 
Table 5. 

The double–stage shrinkage test–

estimator DSHθ̂  performs well with respect to 

improved pooled estimator PCθ̂  for the all 

considered parametric set of values and attains 
maximum efficiency at the point δ 1.00= . The 
efficiency decreases as 1α(n )  and increases for 

all δ  when other parametric values are fixed. 
The decreasing trend was observed when 2n  

increased for all considered values of δ . The 
nominal loss was recorded when per unit cost 
increased but the effective interval did not alter. 
 

Conclusion 
Based on the data presented, the performances 
of both the shrinkage test–estimators are 
uniformly well respect to the improved estimator 

Cθ̂  for the considered parametric set of values. 

Based on the gain in efficiency, SH3θ̂  may be 

preferred over SH2θ̂  in the region 

0.60 δ 1.40≤ ≤ . The double–stage shrinkage 

test–estimator DSHθ̂  performs well with respect 

to improved pooled estimator PCθ̂  for the all 

considered parametric set of values. 
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