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Double median ranked set sample (DMRSS) and its properties for estimating the population mean, when the 
underlying distribution is assumed to be symmetric about its mean, are introduced. Also, the performance of 
DMRSS with respect to other ranked set samples and double ranked set samples, for estimating the 
population mean and ratio, is considered. Real data that consist of heights and diameters of 399 trees are used 
to illustrate the procedure. The analysis and simulation indicate that using DMRSS for estimating the 
population mean is more efficient than using the other ranked samples and double ranked samples schemes 
except in case of uniform distribution. Also, using double sampling schemes substantially increase the relative 
efficiency of ratio estimators relative to their counterpart schemes of one stage samples. Moreover, DMRSS is 
superior to other double sampling schemes for ratio estimation. 
 
Key words: Double extreme ranked set sample; double median ranked set sample, ratio estimation. 
 
 

Introduction 
 
In many agricultural and environmental studies 
and recently in human populations, it is common 
for quantification of a sampling unit to be costly as 
compared with the physical acquisition of the unit. 
For example, level of bilirubin in the blood of 
infants can be ranked visually by observing: a) 
color of the face, b) color of the chest, c) color of 
lower part of the body, & d) color of terminal parts 
of the whole body. Then, as the yellowish goes 
from i to iv, the level of bilirubin in the blood goes 
higher (Samawi & Al-Sakeer, 2001). In such 
circumstances, considerable cost savings can be 
achieved if the number of quantification is only a 
small fraction of the number of available units but 
all units contribute to the information content of 
the quantification. 
 
 
Hani Michel Samawi is an Associate Professor of 
Biostatistics. His areas of research are in bootstrap 
and resampling methods, ranked set sampling 
estimators, sampling method, testing hypothesis, 
estimation, and analysis of biostatistics data. E-
mail: hsamawi@squ.edu.om.  
 

 Ranked set sampling (RSS) is considered 
to be a new method of sampling compared with 
other sampling methods that can achieve this goal. 
RSS was first introduced by McIntyre (1952). The 
use of RSS is highly powerful and much superior 
to the standard simple random sampling (SRS) for 
estimating some of the population parameters. 
 As a variation of RSS Samawi et al. 
(1996) and Muttlak (1997) investigated extreme 
ranked set sample (ERSS) and median ranked set 
sample (MRSS) respectively. Samawi and Muttlak 
(1996 & 2001) used RSS and MRSS to improve 
the performance of the ratio estimator. Also, 
Samawi (2001) suggested the double extreme 
ranked set sampling (DERSS). They showed that 
ERSS, MRSS and DERSS are more practical than 
RSS and more efficient at least than SRS for 
estimating the population mean. Moreover, Al-
Saleh and Al-Kadiri (2000) showed that the 
efficiency of estimating the population mean could 
be improved even more by double ranked set 
sampling technique (DRSS). Also, they proved 
that ranking in the second stage is easier than in 
the first stage.  
 In this article, DMRSS is introduced. The 
properties of DMRSS for estimating the 
population mean, when the underlying distribution 
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is assumed to be symmetric about its mean, are 
discussed. Also, the performance of DMRSS with 
respect to the other ranked set samples and double 
ranked set samples, for estimating the population 
mean and ratio, is considered.  
 In Section 2 samples notations and 
definition and some basic results are introduced . 
DMRSS scheme and properties are introduced in 
Section 3. Also, its performance with other 
sampling schemes will be compared for estimating 
the population mean. In Section 4, the 
performance of different double ranked samples 
schemes will be compared with their counterpart 
one stage ranked samples for ratio estimation 
based on the relative efficiency. Illustration of the 
procedure using real data set with final comments 
and conclusions is discussed in Section 5. 
 
Sample Notations And Definitions With Some 
Useful Results 
One Stage Sampling 
 
Univariate population 
 For any of RSS, ERSS and MRSS 
schemes, the procedure can be described by 
selecting r random sets each of size r from the 
target population. In the most practical situations, 
the size r will be 2, 3 or 4. Rank each set by a 
suitable method of ranking like prior information, 
visual inspection or by the experimenter. In 
sampling notation this implies: 
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         (2.1) 
where Xji denotes the i-th observation in the j-th 
set and Xj(i) the i-th ordered statistic in the j-th 
set.  
1) If only )()2(2)1(1 ,...,, rrXXX , quantified by 

obtaining the element with smallest rank from the 

first set, the second smallest from the second set, 
and so on until the largest unit from the r-th set is 
measured. Then, this represents one cycle of RSS. 
We can repeat the whole procedure m times to get 
a RSS of size n = mr. (See Takahasi and 
Wakimoto, 1968.) 
 
2) Similarly, as in Samawi et al. (1996), we have 
two cases: In case of r is even, and if only RSS, 

( ) ( ) ( ) ( )XXXX krrkrkrk ,,,, 11211 −… , 
k=1,2,…,m, quantified, then this will denote the 
ERSSE . In case of r is odd, and if only 

( ) ( ) ( ) ( )XXXX krkrrkrk r
2

1,,,, 1211 +−… , 

k=1,2,…,m, quantified, then this will denote the 
ERSSO. 
 
3) Again, similar to Muttlak (1997), we have two 
cases: In case of r is odd, and if only 

, ..., m, , kX,  ,X krrkr 21
2

1
2

11 =





 +
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 + … , 

quantified, then this will denote the MRSSO. In 
case of r is even, select for measurement from the 

first 
2
r  samples the ( )

2
r -th smallest unit and from 

the last 
2
r

 samples select the 





 +1

2
r

-th smallest 

unit. This will be denoted by MRSSE (i.e.  
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rr 1 k2

 , , , ,X X X

, , k 1,  2, ..., mX

+ +

+ =

…

…
). 

 
For bivariate population 
 Samawi and Muttluk (1996) modified the 
above procedure in case of bivariate distributions 
to estimate the population ratio. The procedure is 
described as follows: 
 First choose r2 independent bivariate 
elements from a population, with bivariate 
distribution function F(x, y).  Rank each set with 
respect to one of the variables Y or X. Suppose 
ranking is on variable X. Apply the same 
procedures as in case of univariate population but 
for each measured unit from the X’s, the 
associated unit from the Y’s is measured too. This 
may be repeated m times to get a bivariate sample 
of size n = rm. 
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In sample notation: 
1) The sample { ( ) [ ]( )YX kiikii , , i=1,2,…,r, 
k=1,2,…,m} will denote the bivariate RSS. 
 
2) The sample, 

( ) ( )

( ) ( )

1[1]k 2 r k 2[ r ]k1 1 k

r 1[1]k r[ r ]kr 1 1 k r r k

, ), ( , ),{(X Y X Y
 , , ), , )}(X (XY Y−−…

, 

 
 k=1,2,…,m, will denote the bivariate ERSSE and     
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k=1,2,…,m, will denote the bivariate ERSSO. 

1) Similarly, 

( )( )r 1 r 1i k i k2 2
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r a n d k 1, 2 , ,m
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2)  will denote the bivariate MRSSO 
and  
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( ) [ ]( )Y,X, rrrr 1
2

1
2

, ++… , k=1,2, …, m will denote 

the bivariate MRSSE. 
 
Double Ranked Samples (Two Stage Sampling) 
 
1) Al-Saleh and Al-Kadiri (2000) introduced 
DRSS procedure as follows: 
 

1. Identify r3 elements from the target 
population and divide these elements 
randomly into r sets each of size r2 
elements.  

 2. Use the usual RSS procedure on each 
 set to obtain r RSS each of size r.  
 3. Employ again the RSS procedure in 
 Step 2, to obtain the DRSS of size r.  
 4. We may repeat steps 1-3 m times to 
 obtain a sample of size n = rm.  

  
 In sampling notations, after ranking each 
sample separately in each subset, we get:  
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k=1,2,…,m , where ( )
)(l
kiiX is the i-th ordered 

observation in the l-th set in the i-th sample in the 
k-th cycle.  Use RSS scheme on each subset 
separately, we get  

( )
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 Then in the second stage, let ( )W kii =i-th 
smallest observation in Aik , then { ( )W kii , 
i=1,2,…,r, k=1,2,…,m} will denote the DRSS. 
Now let ( ) ( )krk WW ,...,1 , k=1, 2, …., m, be a DRSS, 

with mean and variance of ( )kiW are ( )
**
iµ  and 

( )
2**

iσ , respectively. Al-Saleh and Al-Kadiri (2000) 

also showed that:  

  ( )
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1

1
i

r

ir
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=
=   and 
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where µ and 2σ  are the mean and the variance of 
the population, respectively. Also, it was shown 
that ranking in the second stage is easier than in 
the first stage. 
 
2) DERSS is an extension to ERSS procedure by 
Samawi (2001). The procedure is just similar to 
that for DRSS, but taking ERSS instead of RSS in 
the first and in the second stage. Implies that 
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( ) ( ) ( ) ( ) } m ...., 2, 1,k , ..., , , ,{ 13211 =krrkkrk WWWW d
enotes DERSSE. The case when r is odd is similar. 
For more about RSS see for example Kaur et al., 
(1995) and Patil et al. (1999).  
 
Double Median Ranked Set Sample 
 In this Section a modification to MRSS, 
namely double median ranked set sample 
(DMRSS) is introduced. The properties of this 
scheme for estimating the population mean, which 
is considered to be finite, is discussed when the 
underlying distribution function is assumed to be 
symmetric. Also, some numerical and theoretical 
comparisons with SRS, RSS, MRSS, ERSS, 
DERSS and DRSS are included. 
 
Sample Notation and Definitions 
 For each cycle k=1,2,…,m (m= number of 
cycles), assume a simple random sample, of size 
r3, is selected from a target population with c.d.f. 
F(x) and p.d.f. f(x), where F(x) is assumed to be 
symmetric and absolutely continuous, with mean µ 
and variance σ2. Suppose we divided the sample 
independently into r sets of data where each set 
contains r samples, each of size r. Two cases are 
considered:  
 
Case 1: From (2.2) and when r is odd, for the k-th 
cycle, get r2 ranked samples as in (2.2): 

Take the median ( )
( )j

kri
X

2
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These sets are the first stage MRSS samples. The 
second stage MRSS or double MRSS is the set of 
medians of A1k, A2k, …, Ark. Define ( )krW

2
11 +  = 

med(A1k), ( )krW
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W
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med(Ark), then the sample  { ( )krW
2
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1+ }, k=1,2,…,m is denoted by DMRSSO. 

The sample mean using DMRSSO is given by  

                    ( )∑∑=
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Case 2: When r is even, for the k-th cycle, after 
ranking each sample in each set, as in Case 1, 
divide the r sets in (2.2) in half to two independent 

sets. From the first 
2
r  sets take the (

2
r )-th 

smallest unit from each sample and from the last 

2
r  sets take the (

2
r +1)-th smallest unit from each 

sample, that is, we will get the following sets: 
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k=1,2,…, m. This is the first stage. Again from 

each Aik take the ( 2
r

)-th smallest units, while 

from each Bik take the ( 2
r

+1)-th smallest unit as 

follows: th-
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sample 
( ) ( ) ( )

( ) ( ) ( )

r r r r1 k 2 k k
2 2 2 2

r r r r1 1 k 2 1 k 1 k2 2 2 2

 ,  ,  ,  ,W W W

 ,  ,  , W W W
+ + +

…

…
, 

k=1,2,…,m denotes DMRSSE. The sample mean 
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 To study the properties of DMRSSO and 
DMRSSE, next we derive the distribution 
functions of ( )

2
1+rW , ( ) ( )1

22
and 

+rr W W  respectively 

and some of their properties.  
 
Distribution Function and Properties of DMRSS 
Case 1: When r is odd. To find the distribution of 
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(see Arnold, et al. 1992). Let u = F(t), then 
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 which is the usual incomplete beta function. 
Hence, ( )
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Note that, ( ) ( ) ( )  ,, ,

2
1

2
12

2
11 krrkrkr WWW +++ … , k=1 ,2 

,…, m are i.i.d. with the (3.6 ) distribution 
function. 
 
Case 2: Distribution function of ( )

2
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W  and ( )1
2
+ri

W , 

i=1, 2,  …, 
2
r

 when r is even.  

Recall the assumption that the MRSS is based on a 
simple random sample of size r3 with the 
symmetric and i.i.d.  distribution function F(x). 
 
Distribution function of ( )
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c.d.f. of 
kri

W







2

, i =1, 2, …, 
2
r

, will be 

respectively  
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 Hence, 
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identically distributed. 
 
DMRSS for Estimating the Population Mean 
 The following results are stated and 
proved in the Appendix. Using DMRSS when the 
underlying distribution is assumed to be 
symmetric.   ODMRSSW EDMRSSW  and  are 
unbiased estimators for µ, and 

( ) ( )
n

     
2σ≤≤ XW MRSSDMRSS

VarVar , where 
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 (see the Appendix for Theorem 1, Lemma 1 and 
Theorem 2. 
 
Simulation Study 
 Based on 5000 replication, a computer 
simulation is conducted to study the behavior of 
the efficiency of the sample mean using SRS, 
MRSS, RSS, ERSS, DERSS and DRSS with 
respect to DMRSS. Random observations are 
generated from (1) standard normal distribution 
(2) Logistic distribution with α =2, β=1 and (3) 
uniform distribution with θ1 =0, θ2=4. The 
performance of the samples means for r=4,5,6 
and7 and m=4 and 6 are investigated.  
 
Results of simulation study 
 The results of these simulations are 
summarized by the relative efficiency ( the ratio of 
the variances) of the estimators of the mean. The 
simulation results are given in Table 3.1.  
 Table 3.1 shows that estimating the 
population mean using DMRSS is substantially 
more efficient than SRS, MRSS, ERSS and RSS. 
Comparing the sample mean using MRSS with the 
sample mean using DMRSS, our simulation 
confirms the results of Theorem 3.2 for the three 
distributions. Comparing the efficiency for 
estimating the population mean using DMRSS 
relative to DERSS, there is a notable difference 
between them according to the distributions. The 
best performance was in case of logistic 
distribution. In normal distribution, the relative 
efficiency was slightly lower than in logistic 
distribution.  
 Clearly in case of uniform distribution, 
estimating the population mean using DERSS is 
more efficient than using DMRSS. Also, the 
population mean estimator using DMRSS is more 
efficient than the population mean estimator using 
DRSS, when the underlying distribution is 
assumed to be symmetric. 
 Regarding the sample size r, the relative 
efficiency of the population mean estimators, 
using   DMRSS  with  respect  to  any  of the other  

Table 3.1: The efficiency of the mean estimators 
using DMRSS relative to the others 
m r SRS MRSS ERSS RSS DERSS DRSS 
Normal(2,1) 

4 7.51 2.74 3.56 3.13 2.71 1.99 
5 11.83 3.49 5.20 4.53 3.69 2.81 
6 16.41 4.16 6.73 5.21 4.59 3.01 

 
4 

7 23.36 4.88 8.32 6.34 5.98 3.59 
4 7.28 2.69 3.67 3.18 2.71 2.01 
5 12.42 3.66 5.26 4.67 3.83 2.81 
6 15.85 3.82 6.86 4.83 4.45 2.81 

 
6 

7 22.96 4.93 8.54 6.65 6.13 3.80 
Logistic (2,1) 

4 8.53 2.57 5.20 3.79 4.54 2.80 
5 14.63 3.61 7.70 6.06 7.00 4.08 
6 19.38 4.11 10.74 6.54 10.25 4.35 

 
4 

7 29.47 4.81 14.74 8.79 13.95 5.43 
4 8.50 2.77 5.11 3.89 4.61 2.79 
5 15.03 3.77 7.28 6.13 6.90 4.07 
6 19.85 3.83 11.68 6.29 9.84 4.11 

 
6 

7 29.86 4.95 14.06 8.88 13.26 5.62 
Uniform(0,4) 

4 4.35 2.17 1.44 1.83 0.52 1.00 
5 6.82 2.97 1.89 2.29 0.81 1.21 
6 8.95 3.34 1.70 2.58 0.26 1.27 

 

7 11.75 4.00 2.10 3.10 0.68 1.35 
4 4.46 2.20 1.45 1.78 0.50 1.04 
5 7.45 3.11 1.94 2.39 0.87 1.25 
6 8.99 3.28 1.60 2.50 0.27 1.27 

 

7 18.19 4.40 1.75 3.42 0.16 1.46 
 
previous sampling techniques, increases as r 
increases. While considering the cycle size m, the 
relative efficiency for the sample mean using 
DMRSS relative to the other sampling schemes is 
not affected by the value of m. 
 
Ratio Estimators 
 Frequently the quantity that is to be 
estimated from a bivariate random sample is the 
ratio of two means of two correlated variables, say 
X and Y, which both vary from unit to unit. For 
example, in a household survey, the average 
expenditure on cosmetics per adult female, and the 
average number of hours per week spent watching 
television for child aged 10 to 15. 
 Examples of this kind occur frequently 
when the sampling unit (the household) comprises 
a group or cluster of elements and our interest is in 
the population mean per element. Also, the ratio 
estimation method is used to obtain increased 
precision of estimating the population mean or 
total by taking advantage of the correlation 
between an auxiliary variable X and the variable 
of interest Y. In this paper, we assume that the 
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bivariate random variable (X,Y) has symmetric 
marginal distributions. 
 
Ratio Estimator Using SRS 
 Let the bivariate random variable (X,Y) 
has c.d.f. F(x,y) with means µµ y and x ,variances 

σσ 22   and  yx , and correlation coefficient ρ, then 

x

yR
µ
µ

=  will denote the population ratio. Using a 

simple bivariate random sample from F(x, y), the 
estimator of R is given by: 

                         
X
YRSRS =

�
                              

(4.1) 
where YX   and   are the means of X and Y 
respectively. 
 Hansen et al.(1953) showed that the 

variance of SRSR
�

 can be approximated by 
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Ratio Estimator Using RSS 
 Samawi and Muttlak (1996) showed that 
the ratio estimator using RSS when ranking is on 

the variable X, is 
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where xixT i µµ −= )()( , yiyiyT µµ −= ][][  and    

))(( ][)(][)( yiyxixiyixT µµµµ −−= . 
 As demonstrated by Samawi and Muttluk 
(1996), that ranking on X is more efficient than 
ranking on Y in ratio estimation in terms of 
variance, therefore we introduce only the case 
where ranking on the variable X is assumed to be 
without errors. In the next subsections, we will 
introduced and study the performance of ratio 
estimators using the double ranked samples 
discussed in the pervious sections. 
 
Ratio Estimation Using DRSS 
 Using the notation of Section 2.3, the 
second stage a subsample of size n=rm, 

( ) },,2,1 , ,,2,1 ,{ mkriW kii …… ==  is selected. 

Also, in the second stage, for each ( )kiiW  measure 

(quantify) the associated value of the random 
variable Y. The bivariate DRSS 

( ) [ ]( ){ }mkri, YW kiikii ,...,2,1 ,,...,2,1 : ==  is 

measured, where ( )kiiW  as defined above, and 

[ ]kiiY  is the corresponding value of Y obtained 

from the i-th RSS sample in the k-th cycle. 
Now, let YW yx == ****   and µµ ��

, 
 

  
 

 

where ( )∑ ∑=
i k

kiWrm
W 1

, and then the 

estimate of population ratio R using DRSS is 
given by   
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           (4.4) 
 By using Taylor expansion and assuming 
large population size, it is easy to show that 
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where    and 22 V V y

 
x as in equation (4.2). 

 
Ratio Estimation Using DMRSS 
 Using similar modification for bivariate 
case, and assuming that ranking is on variable X in 
the two stages. Then as in section 2, (W1(s)k,Y1[s]k), 
(W2(s)k ,Y2[s]k), …,(Wr(s)k ,Yr[s]k) k=1, 2, …,m will 

denote the bivariate DMRSS where s is (
2
r

) for 

the first 
2
r

 units and ( 1
2
+

r
) for the last 

2
r

 units 

in case when r is even and (
2

1+r
) when r is odd. 

Wi(s)k is the s-th smallest X unit in the k-th cycle of 
the i-th bivariate MRSS in the first stage and Yi[s]k 
is the corresponding Y observation in the k-th 
cycle of the  i-th bivariate MRSS.  
Two cases are considered here: 

Case(1): When r is odd, the estimate of the 
population ratio R using DMRSSO is defined by  
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Again, by using Taylor expansion we have 
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Case(2): When r is even, the estimate of the 
population ratio R using DMRSSE is given by 
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Ratio Estimation Using DERSS 
 Assume without loss of generality that r is 
even. The case when r is odd is similar and it will 
be indicated in the numerical results only. Also 
assume ranking is on variable X. Let 
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 be the bivariate 

DERSS  (see Samawi, 2001). This set of 
bivariate observations is independent but not 
identically distributed. 
The estimate of the population ratio R using 
DERSS is given by   
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or r. 
 
Simulation Study 
 A computer simulation is conducted to 
study the efficiency of estimating R when ranking 
is performed on the variable X. Using SRS, RSS, 
MRSS, ERSS, DRSS, DERSS and DMRSS, 
bivariate random samples where generated from a 
bivariate normal distribution with µx=2, µy=4, 
σx=1, σy=1and ρ= 0.5. 0.8, 0.9, ±±±   
 The performance of the ratio estimate will 
be investigated for r=4, 5, 6 and 7 and m=4 and 6. 
The ratios of the population means are estimated 
from SRS, RSS, MRSS, ERSS, DRSS, DERSS 
and DMRSS data sets. Using 5000 replications, 
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estimates of the means, the mean square errors and 
the ratio of the mean squrare errors (relative 
efficiency) for the ratio were computed.  
 
Results of the simulation study 
 The values obtained by the simulation 
study are given in Table 4.1. In all cases the 
simulation showed that the efficiency of 
estimating R is not affected by the cycle size m, an 
explanation for this is that m is canceled in the 
numerator and dominator when relative efficiency 
is used. The values in the tables vary from a value 
of m to another because of the simulation 
variation. When the underlying distribution is 
N2(2,4,1,1,ρ), Table 4.1 shows that estimating the 
population ratio using DMRSS is more efficient 

than using SRS, RSS, and MRSS. Also, using 
DRSS to estimate the population ratio is more 
efficient than using SRS and RSS, and using 
DERSS is more efficient than using SRS, RSS and 
ERSS.  
 Moreover, using the definition of relative 
efficiency, the double sampling schemes can be 
compared with each other. Our simulation 
indicates that, estimating the population ratio 
using DMRSS is more efficient than using DRSS 
and DERSS. Also, whenever    ρ increases the 
efficiency increases in all cases. Note that negative 
values of ρ give higher efficiency than the positive 
values. 
 

 
 

Table 4.1 Efficiency of the estimators of R when ranking on X and (X,Y) has  N2(4,2,1,1,ρ) 
 

 

M 

 

r 

DMRSS relative to 

SRS     RSS     MRSS 

DRSS relative to 

SRS      RSS 

DERSS relative to 

SRS       RSS      ERSS 

ρ= 0.9 
4 4 4.15 1.95 1.67 2.79 1.31 2.19 1.03 1.15 
 5 5.47 1.14 1.88 3.33 1.30 2.62 1.02 1.16 
 6 5.77 2.27 1.89 3.61 1.42 2.77 1.09 1.38 
 7 6.05 2.15 1.82 3.78 1.34 2.94 1.04 1.26 

6 4 4.24 2.07 1.83 2.85 1.39 2.36 1.15 1.27 
 5 4.87 2.14 1.81 3.02 1.33 2.48 1.09 1.20 
 6 5.67 2.33 1.87 3.49 1.44 2.75 1.13 1.37 
 7 5.91 2.17 1.85 3.72 1.36 2.76 1.01 1.24 
     ρ= 0.8     

4 4 3.74 1.81 1.62 2.69 1.30 2.24 1.08 1.23 
 5 4.28 1.88 1.66 2.99 1.31 2.37 1.04 1.14 
 6 4.44 1.77 1.58 3.27 1.31 2.56 1.02 1.24 
 7 4.41 1.79 1.61 3.31 1.35 2.54 1.03 1.20 

6 4 3.55 1.71 1.53 2.52 1.21 2.14 1.03 1.21 
 5 4.09 1.91 1.70 2.72 2.37 2.38 1.11 1.24 
 6 4.10 1.91 1.65 2.83 1.32 2.30 1.07 1.19 
 7 4.22 1.80 1.59 2.96 1.26 2.43 1.04 1.18 
     ρ= 0.5     

4 4 3.11 1.69 1.52 2.37 1.29 2.04 1.11 1.19 
 5 3.60 1.84 1.63 2.67 1.36 2.20 1.12 1.14 
 6 3.90 1.80 1.59 2.88 1.33 2.43 1.12 1.30 
 7 3.52 1.56 1.40 2.68 1.19 2.33 1.03 1.24 
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6 4 2.99 1.68 1.52 2.36 1.33 2.01 1.13 1.16 
 5 3.45 1.67 1.51 2.53 1.23 2.15 1.04 1.10 
 6 3.66 1.66 1.47 2.85 1.29 2.26 1.02 1.20 
 7 3.46 1.65 1.46 2.63 1.26 2.29 1.09 1.22 
     ρ= -0.5     

4 4 5.12 2.22 1.99 3.17 1.37 2.55 1.11 1.24 
 5 6.08 2.40 2.01 3.51 1.38 2.91 1.15 1.34 
 6 7.67 2.55 2.01 4.14 1.51 2.94 1.07 1.37 
 7 7.23 2.23 1.96 4.22 1.41 3.23 1.08 1.33 

6 4 4.52 2.08 1.78 2.96 1.36 2.39 1.10 1.27 
 5 5.63 2.39 2.01 3.32 1.41 2.74 1.16 1.34 
 6 6.93 2.44 2.00 4.17 1.88 3.11 1.09 1.40 
 7 6.91 2.23 1.95 4.21 1.72 3.09 1.00 1.26 
     ρ= -0.8     

4 4 6.73 2.73 2.37 3.83 1.56 2.89 1.17 1.35 
 5 8.77 3.15 2.58 4.19 1.51 3.06 1.10 1.29 
 6 10.31 3.52 2.72 4.97 1.70 3.41 1.17 1.42 
 7 12.95 3.64 3.03 5.72 1.61 3.83 1.08 1.36 

6 4 5.90 2.54 2.19 3.49 1.50 2.71 1.17 1.32 
 5 9.33 3.12 2.62 4.24 1.42 3.25 1.09 1.27 
 6 9.07 3.30 2.71 4.42 1.61 3.13 1.14 1.43 
 7 11.84 3.60 2.79 5.62 1.71 3.72 1.13 1.39 
     ρ= -0.9     

4 4 6.76 2.18 2.43 3.50 1.45 2.72 1.13 1.34 
 5 11.03 3.84 3.05 4.54 1.58 3.52 1.23 1.36 
 6 12.91 3.83 3.13 5.20 1.54 3.66 1.08 1.45 
 7 17.19 4.66 3.56 6.36 1.72 3.99 1.08 1.42 

6 4 6.84 2.90 2.46 3.56 1.51 2.78 1.18 1.40 
 5 10.63 3.69 2.92 4.41 1.53 3.40 1.18 1.36 
 6 12.82 4.04 3.19 5.17 1.63 3.43 1.08 1.41 
 7 16.33 4.50 3.50 5.80 1.60 3.77 1.04 1.37 

 
 
Application To Real Data Set And Conclusions 
 We illustrate the double ranked sample 
mean estimation procedure using a real data set 
which consists of the height (Y) and the diameter 
(X) at breast height of 399 trees. See Platt et al. 
(1988) for a detailed description of the data set. 
The summary statistics for the data are reported in 
Table 5.1. Note that the correlation coefficient  is 
ρ=0.908. 
 
 
 
 

 
Table 5.1. Summary Statistics of trees data. 
 

Variable Mean Variance 

Height (Y) in 
feet 

52.36 325.14 

Diameter (X) 
in cm 

20.84 310.11 

 
 In this article, ranking is performed on the 
variable X exactly measured. However, in practice 
ranking is done before any actual quantification. 
Using a set size r = 3 and the cycle size m = 3, we 
draw bivariate SRS, DRSS, and DMRSS of size 9, 
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however DERSS is the same as DRSS in this case. 
Table 5.2 contains all the above proposed 
estimators and their estimated variances using the 
drawn samples.  
 
Table 5.2. Results from the drawn samples. 

Sample Naïve 
Estimator 
of the 
Diameter 
(X) 

9(Estimated 
Variance)* 

Ratio 
Estimator 

9(Estimated 
Variance)* 

SRS 13.57 168.60 2.50 1.036 
DRSS 19.39 148.37 2.29 0.633 
DMRSS 15.89 131.35 2.15 0.297 
 
 Table 5.2 confirms the simulation results. 
However, this example is just to illustrate the 
application using the proposed estimators. 
 Finally, the theortical and simulation 
results showed that the population mean estimator 
using DMRSS is an unbiased estimator for the 
population mean whenever the underlying 
distribution is assumed to be symmetric. Also, it 
was shown theoretically that the variance of this 
estimator is less than the variance of the sample 
mean using MRSS (the first stage). Although 
using numerical simulation it was noticed that the 
sample mean based on DMRSS is more efficient 
than using other sampling methods (see Table 3.1) 
with respect to there variances. 
 Note there are difficulties in selecting the 
DMRSS because of the similarity of the subjects 
from the first stage. However, in practice this is 
not a problem because the number of units we 
rank in the second stage will not exceed 5.  
 In ratio estimation using the two stage 
sampling for different schemes, the estimator of 
the population ratio of two variables was 
introduced and the variance in each case was 
derived. Our numerical study indicated that the 
two stage sampling is more efficient than the first 
stage sampling considering the same sampling 
scheme with respect to their variances. 
 Comparing the two stage sampling 
schemes, namely DRSS, DMRSS and DERSS, 
superiority in efficiency depends on the 
distribution of the bivariate variable. However, 
DMRSS was more efficient than DRSS and 
DERSS when the underlying distribution is the 
bivariate normal. Moreover, those efficiencies 
depend on the set size r and the strength of the 
correlation between X and Y.  
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Appendix 
Theorem 1: Let X be a random variable with 
symmetric distribution function F (x) and mean µ, 
then  
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EDMRSS  when r is even. If the c.d.f. F(x) is 
symmetric about its mean µ, then 

  ODMRSSW EDMRSSW  and  are unbiased 
estimators for µ. 
 
Proof:  The proof is a consequence of Theorem 1.  
 
Theorem 2: If the random variable X has a 
symmetric distribution function F(x) about µ, then 
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Proof:  Because Yang (1982) showed that 

( ) 2
)(   σ≤medXVar ,  

where )(medX  is the sample median of i.i.d sample 
of size r, then we need to prove only that 
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Case 2: When r is even, ( )kri
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