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New tests based on the ratio of generalized variances are presented to compare covariance matrices from 
dependent normal populations. Monte Carlo simulation concluded that the tests considered controlled the 
Type I error, providing empirical probabilities that were consistent with the nominal level stipulated. 
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Introduction 
Most statistical techniques assume that samples 
must be independent; however, practical 
situations where the samples come from 
dependent populations cannot be ignored. For 
example, a typical situation is a bioequivalence 
assay, the objective of which is to verify if a new 
drug presents effectiveness similar to a brand-
name drug. Thus, both drugs are applied to the 
same sample units, which are classified in two 
distinct groups and differentiated by the 
receiving order. The responses of such 
experiments are correlated and associated to a 
specific correlation structure. 

A naturally appearing hypothesis in this 
type of experiment regards the equality of 
covariance matrices between a new drug and a 
brand-name   drug  (Wang,  et  al.,   1999).   The 
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Bartlett test mentioned by O’Brien (1992) could 
not be used in this case, because its construction 
assumes independence of the samples. Due to 
the restriction of the current tests, the main goal 
of this study is to propose multivariate tests to 
verify the equality of covariance matrices 
considering dependence among multivariate 
observations along populations. 

Another motivation justifying the need 
for a general test for the equality of covariance 
matrices of correlated data in time or space are 
the suppositions of analysis of variance and the 
Hotelling T2 test. It is required that the data 
submitted to multivariate analysis of variance 
have p-variate normal residues, with null mean 
vector and constant covariance matrices. To 
check the assumption of constant covariances 
for k populations or treatments, a more general 
test is required. As noted, such tests do not exist 
or have limited properties for dependence 
structure situations. 

Finney (1938) studied this problem 
considering the univariate case (p = 1) and two 
populations (k = 2) under a known correlation 
coefficient between the same variable in both 
populations. Pitman (1939) and Morgan (1939) 
proposed a likelihood ratio test for the case of k 
= 2 populations, however with an unknown 
correlation matrix. Since that time, many authors 
have explored these results, all have considered 
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only the univariate case (p = 1), although with 
different numbers of populations. 

Roy and Potthoff (1958) concentrated 
on the bidimensional case, that is, k = 2 and p ≥ 
2 variables. However, they did not succeed in 
test construction. Jiang, et al. (1999) evidenced 
that the test considered by Roy and Potthoff 
(1958) presented deficiencies in the imposed 
presuppositions. Smith and Kshirsagar (1985) 
presented a likelihood ratio test to compare 
covariance matrices, coming from two 
dependent normal populations. However, the 
authors had not obtained the analytical 
expression of the maximum likelihood estimator 
under the null hypothesis. Due to some 
numerical problems in the maximization of the 
likelihood functions, the authors surrounded the 
problem using initial values such that the 
estimate of the covariance matrix was positive 
definite. 

In a more general situation, represented 
by a number of populations k ≥ 2 and by a 
number of variables p ≥ 2, Krishnaiah (1975) 
considered a test to compare two or more 
covariance matrices coming from dependent 
normal populations. This test was formalized 
under the assumption that the diagonals of the 
covariance matrices were equal; however, the 
main criticism to this test was that any 
restriction or assumption was made for the 
dependence structure between those matrices. 

Jiang, et al. (1999) used Monte Carlo 
simulation to evaluate some tests based on a 
likelihood ratio used in the comparison of 
covariance matrices of dependent normal 
populations. The differentiation between each 
test was made under different corrections in the 
degrees of freedom as proposed by several 
authors. It was such that - for each correction - 
new statistics had arisen. Results were restricted 
to the bidimensional case, and the extension of 
these tests for p dimensions became 
impracticable in the face of the numerical 
problem in the likelihood maximization. 
Because finding a general test based upon the 
likelihood ratio to compare k dependent 
population covariances is a difficult task, the 
bootstrap method can be used (Manly, 1997). 
Bootstrapping is typically used to round 
problems for which an analytical solution is not 
straightforward. Due to the dependency between 

populations, Hall, et al., (1995) recommend the 
use of implicit resample in bootstrap, which 
must be done in blocks. This article proposes 
multivariate tests for comparing covariance 
matrices from k dependent multivariate normal 
populations, as well as studying their power and 
type I error probability. 
 

Methodology 
The multivariate tests considered in this article 
have been constructed considering the 
multivariate observation represented by the 
vector of random variables , where each 

component  is composed of p-

dimensional vectors of random variables 

, j = 1..., k, where k refers to 

the total number of populations and p to the 
number of variables. The vector  is then a pk-
dimensional random variable from a multivariate 

normal distribution, , whose 

parameters are defined as: 
 

                            (1a) 
and 

                  (1b) 
 
The off diagonal elements indicate non-null 
covariances between populations because 
independence was not assumed. Each element in 
the diagonal of Σ represents the covariance 
matrix of the jth population. The hypothesis of 
interest is: H0: Σ11 = Σ22 = ... = Σkk versus H1: At 
least one covariance matrix Σjj differs from the 
others. 

Statistics of the proposed tests were 
specified by the function of the ratio of 
generalized variances, as follows: 
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where Sjj are estimators of the sum of squares 
and products matrices. Each test was 
differentiated by the criterion used in the 
composition of the ratio, namely determinant or 
trace. Estimators of the sum of squares and 
products matrices of the jth population (j=1, 2, ..., 
k) were only considered after the imposition of 
H0 through the bootstrap method (Figure 1). 

After defining the test statistics, the 
multivariate samples considering equicorrelation 
structure were generated in order to evaluate the 
performance of the new tests. Thus, specifying 
the matrix Σ, proceeded as follows. A global 
(population) correlation matrix Rb, where each 
block element in the diagonal represents a 
correlation structure referring to the jth 
population (the area delimited by hatched lines) 
is given by: 
 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

      

        

      

       

        

     

       

         

  

b

1 ρ ρ ρ ρ ρ ρ

ρ 1 ρ

ρ

ρ 1 ρ

ρ ρ
R

ρ

ρ 1 ρ ρ

ρ 1

ρ ρ ρ ρ ρ ρ 1

.

(3) 
 

The global covariance matrix is obtained 
from the following relation: 
 

1 1
2 2*

bΣ = V R V ,                   (4) 

 

where 
1
2V  is a diagonal matrix of the population 

standard deviations which are all equal to 1, 
without loss of generality. 

After defining, samples were generated 
using the Monte Carlo method; an algorithm was 
developed using R software version 2.6.2 
assuming multivariate normal distribution 

. The algorithm first evaluated the 

Type I error rates of the related tests when 
applied to samples simulated under the null 
hypothesis H0. Power was not measured at this 
stage because all diagonal block elements of Σ* 
were considered equal. 

Power rates were evaluated for those 
tests applied to samples simulated under the 
alternative hypothesis. The global population 
covariance matrix should be defined in such a 
way that each population matrix (diagonal 
blocks) would have to obey the heterogeneity 
settled in an intended value δ. In both situations, 
under null and alternative hypotheses, those 
matrices were evaluated in situations of low and 
high correlation, originated from structures 
represented by parametric values ρ fixed in 0.2 
and 0.8. 

Under H1, the gΣ  matrix was defined 

as: 
1 1
2 2

g bΣ = V R V                      (5) 

where 
 
V =

diag  
    2p 2p 2p 2p 2p

2 2 2 k k11...1 d d d ... d ... d
  (6) 

 
Each block (6) was p-dimensional and 
 

p
j

(j -1)× (δ -1)
d = 1+

k -1
                  (7) 

 
for j = 1, 2, …, k, and δ = 2, 4, 8, 16. 

After defining the covariance matrix 
parameters * (δ=1) and g (δ>1), multivariate 
sample observations used in the evaluation of 
the considered tests were simulated. The N 
vector set generated formed the matrix of sample 
data: 

*
pkN (0, )Σ

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where X

 l  is a pk×1 vector and N is the sample 

size. 
The construction the matrix was carried 

through using the vector of observations coming 
from the joint distribution of the k populations, 
generated according to the multivariate normal 
distribution, 
 

X =FZ +μ    
 (ℓ = 1, 2, ..., N), 

 
where F is the Cholesky factor (Bock, 1975) of 

the population covariance matrix gΣ  or *Σ ; and 

Z
 is a kp × 1 vector of independent standard 

normal variables, generated by the inversion of 
the distribution function of the standard 
univariate normal in a random point U, 
U~U[0,1]. 

After obtaining the multivariate normal 
samples, the vector of sample means of kp 
variables was estimated by 

( )tt t t
1 2 kX X , X , , X= 

   
, where (j = 1, ..., k). The 

deviations of the vector of means were then 
computed in order to allow no influence of 
possible different averages between the k 
populations on the estimators of the covariance 
matrices. Thus, the inference was made 
considering the matrix of deviations Xd, defined 
as: 

t
dX X 1X= −

 
,                      (9) 

 
where 1


 is a vector N×1. The sum of squares 

and products matrix was estimated by 
 

( )t

d dS X QX= ,                 (10) 

 
where the projection matrix is given by 
 

                      (11) 

where 1


 is a vector of 1’s (N × 1) and I (N × N) 
is an identity matrix. 

Given the random sample Xd, 1,000 
resamples were drawn. In each resample a new 
bootstrap sample Xdb, was obtained, of which 
the matrix of sum of squares and products was 

estimated and named *
bS , (b = 1, ..., 1,000). The 

elements of the diagonal blocks  *
b( jj)Ŝ  (j = 1, 2, 

..., k) of dimensionality (p × p) represent the 
estimators of the population sum of squares and 
products matrices, used to determine the 
statistics based on the generalized variances 
ratio. In each resample, values λ1(b) and λ2(b) 
were computed and compared with λ1 and λ2, 
obtained in the original sample of the Monte 
Carlo simulation. The critical region for the 
considered tests was constructed on the 
empirical distribution of the values of the 
statistics λ1(b) and λ2(b). 

The critical stage of this procedure was 
setting the null hypothesis of equality of the 
population covariance matrices, surrounding all 
restrictions of the numerical methods of 
likelihood function maximization. The bootstrap 
method (Figure 1) considers as randomization 
unit the multivariate sample unit (SU) of each 
population considering p variables, thus 
characterizing H0, which was set considering the 
dependence between the variables of all k-
populations. 

For each situation designed by the 
combination of the number of variables (p = 2, 
3, 8), number of populations (k = 2, 8, 12), 
sample size (N = 20, 50, 100) and nominal 
values 1% and 5%, the empirical probabilities 
were computing by the times that the values of 
the statistics λ1(b) and λ2(b) were greater than or 
equal to the values λ1 e λ2 respectively. These 
values were obtained in the original sample in 
relation to the total number of bootstrap. The 
empirical type I error rates and power had been 
computed considering the proportion of times 
that H0 was rejected by the nominal levels of 1% 
and considered 5% under H0 and H1, 
respectively. 
 
 
 
 

t11
Q = I - ,

n
 
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Results 
Probabilities of Type I Error 

Using a 95% confidence interval for the 
adopted nominal level, it can be inferred that the 
test was conservative if the value of the 
probability was less than the inferior limit. 
However, probability values contained between 
the interval limits demonstrated that the tests had 
provided effective control of type I error rates, 
that is, they have exact size. Table 2 contains the 
empirical Type I error rates, where was used the 
generalized variances obtained from the ratio of 
determinants. 

Results in Table 2 show that the test 
based on the ratio of determinants submitted to 
low covariances (ρ = 0.20) controlled the Type I 
error with probabilities equal to or less than the 
nominal level set at 5% in almost all the 
evaluated situations. The exception occurred 
when the test was submitted to a high number of 
populations and had a small sample (N = 20). 
Increasing the value of the global correlation for  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ρ = 0.80 implied greater averages in the 
covariances and it was verified that the test was 
conservative in general. Results in Table 3 show 
the probabilities of the test considering the ratio 
of total variances (trace) evaluated with the same 
situations as that of the previous test. 

In general, when using the ratio of total 
variances statistic, conservative results were 
obtained for those samples submitted with low 
global correlation (ρ = 0.20). In the high 
correlation cases (ρ = 0.80), the results of the 
test remain conservative, despite using 
determinant or trace. 

Comparing the results of the generalized 
variances ratio tests presented in this article with 
the likelihood ratio tests considered by Bartlett 
(1937), Box (1949) and Krishnaiah (1975), it 
can be affirmed that the likelihood ratio tests are 
not adequate to compare dependent multivariate 
populations. Such affirmation is based on the 
fact that these tests have been compared with 
results presented by Jiang, et al. (1999) who  

Figure 1: Bootstrap Process Used to Estimate the Matrices of Sum of Squares and 
Products Coming from Dependent Multivariate Normal Populations 
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used Monte Carlo simulations to verify that, in 
general, the likelihood ratio tests did not control 
type I error when N = 10, 15, 20, 25, 50, 75 and 
100 under several correlation structures. 
However, asymptotic tests considered by the 
authors did control type I error for samples 
greater than 50 (N > 50) with probabilities close 
to the nominal level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the tests evaluated herein, it was 
observed that, for samples sizes smaller than 50 
(N < 50), the tests were conservative under 
correlation ρ = 0.80. It is noteworthy that results 
obtained by other authors were related to 
bivariate populations only. This limitation was 
due to the maximization of the likelihood 
functions problem. Thus, for larger numbers of 

Table 2: Type I Error Rates for the Situations of Low and High Correlation, 
Evaluated In the Combinations of Number of Populations (k), Number of 

Variables (p) Considering the Test Defined by the Determinant Ratio 
 

 k = 2 k = 8 k = 12 

 p = 2 p = 3 p = 8 p = 2 p = 3 p = 8 

N ρ = 0.20 

20 0.039 0.04 0.029* 0.045 0.016* 0.036* 

50 0.045 0.040 0.038 0.039 0.043 0.037 

100 0.037 0.039 0.047 0.046 0.050 0.048 

N ρ = 0.80 

20 0.016* 0.015* 0.011* 0.011* 0.014* 0.018* 

50 0.006* 0.014* 0.004* 0.005* 0.036* 0.039 

100 0.004* 0.020* 0.006* 0.006* 0.052 0.036* 
*empirical probabilities under the lower limit of the 95% confidence interval 
(0.037; 0.065) 
 

 
Table 3: Type I Error Rates for the Situations of Low and High Correlation 
Evaluated In the Combinations of Number of Populations (k), Number of 

Variables (p) Considering the Test Defined By the Ratio of Traces 
 

 k = 2 k = 8 k = 12 

 p = 2 p = 3 p = 8 p = 2 p = 3 p = 8 

N ρ = 0.20 

20 0.042 0.044 0.032* 0.037* 0.031* 0.035* 

50 0.039 0.035* 0.032* 0.046* 0.030 0.031* 

100 0.040 0.036* 0.031* 0.037 0.034* 0.043 

N ρ = 0.80 

20 0.000* 0.000* 0.000* 0.001* 0.006* 0.001* 

50 0.000* 0.000* 0.000* 0.001* 0.000* 0.001* 

100 0.000* 0.000* 0.000* 0.001* 0.002* 0.000* 
*empirical probabilities under the lower limit of the 95% confidence interval 
(0.037; 0.065) 
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populations and variables no results exist in the 
literature, regarding means of the likelihood 
theory that could be compared with the results of 
this present work. Results shown in Table 4 
were obtained under the same configurations 
previously evaluated, but with the nominal level 
set to 1%. However, k = 8 populations on p = 12 
variables were evaluated in particular, because 
this represents an extreme case and because 
cases considering k > 2 could not be found in the 
literature. 

Similarly, by estimating a 95% 
confidence interval for this nominal level it can 
be verified whether or not the test was 
conservative. It was observed that the results for 
a 1% level of significance had the same pattern 
as results at the 5% level. Due to the similarity 
in results of the type I error rates, it is expected 
that the power function would be similar and 
coherent for both nominal levels 1% and 5%. It 
is worth noting that this similarity to the pattern 
of type I error rates between 1% and 5% also 
was observed in other configurations evaluated 
in k variables and p populations, thus, not all 
results are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Power of the Multivariate Tests for Comparing 
Covariance Matrices of k Dependent Normal 
Populations 

Power results corresponded to the 
empirical probabilities, which were obtained 
under the same configurations evaluated in the 
control of type I error rate discussed previously 
using the bootstrap method (see Figure 1). 
Results shown in Table 5 consider low global 
correlation (ρ = 0.20). 

Analyzing the results in Table 5, it is 
observed that by increasing the degree of 
heterogeneity (δ) in all evaluated situations the 
power of the test suffers incrementally. 
However, for sample sizes N = 50 and greater, 
cases of δ = 8 were similar to situations where δ 
= 16. This suggests that - for any degree of 
heterogeneity (δ > 8) between covariance 
matrices - the considered test was powerful 
when the population covariances had relatively 
low correlation. 

An interesting result can be observed in 
power evaluation as the number of populations 
(k) rises. The power of the test presents few 
oscillations under a degree of heterogeneity (δ)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Probabilities of Type I Error Considering the Generalized Variance Given 
By the Ratio of Determinants and the Ratio of Traces In the Two Evaluated Global 

Correlations with Nominal Significance Level 1%, k = 8 and p = 12 
 

 Ratio of Determinants 

N ρ = 0.20 ρ = 0.80 

20 0.0116 0.0033* 

50 0.0050 0.0066 

100 0.0150 0.0133 

 Ratio of Traces 

N ρ = 0.20 ρ = 0.80 

20 0.0100 0.0000* 

50 0.0016* 0.0000* 

100 0.0083 0.0000* 
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greater than 8 and sample sizes greater than 50, 
but does not hold for the case where a high 
number of variables are considered (p = 12). 
Regarding performance, when the number of 
variables (p) increases for a settled number of 
populations (k) and when bivariate populations 
(k = 2) are considered, the test becomes more 
sensitive, thus decreasing its power. Under low 
heterogeneity (δ), the test showed discrepant 
results for small samples (N = 20). Clearly, for a 
great number of variables (p = 8), the reduction 
of power was even more drastic. With respect to 
k = 8 populations, the number of variables 
caused less reduction of power, considering a 
maximum degree of heterogeneity of this study 
(δ = 16). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regarding the effect of increasing the 
sample size (N), the power for cases with small 
samples was small, what agrees with empirical  
Type I error rate probabilities (Table 2). In such 
situations the test was revealed to be 
conservative. Note such deficiency of power, 
caused by the conservative property of the test 
(Table 2), does not invalidate it. Tests 
comparing k dependent population covariance 
matrices for many populations do not exist in the 
literature. Results shown in Table 6 emphasize 
the performance of the generalized variances test 
as represented by the determinants ratio under a 
global correlation (ρ = 0.8) and considering the 
same situations evaluated previously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Power Empirical Values for the Bootstrap Generalized Likelihood Ratio 
Test for Different Sample Sizes (n), Numbers of Populations (k), Variables (p), 

Degrees of Heterogeneity (δ) Under Low Global Correlation (ρ = 0.20) 
 

 k = 2 k = 2 k = 2 k = 8 k = 8 k = 8 
N p = 2 p = 3 p = 8 p = 2 p = 3 p = 12 

δ = 2 

20 0.150 0.080 0.050 0.090 0.090 0.070 

50 0.370 0.230 0.220 0.200 0.180 0.080 

100 0.610 0.650 0.470 0.430 0.270 0.120 

δ = 4 

20 0.490 0.320 0.120 0.300 0.180 0.100 

50 0.900 0.790 0.820 0.820 0.550 0.190 

100 0.970 0.980 0.950 0.980 0.930 0.520 

δ = 8 

20 0.810 0.600 0.150 0.710 0.430 0.090 

50 0.970 1.000 0.950 0.980 0.910 0.470 

100 0.980 1.000 0.950 0.980 1.000 0.900 

δ = 16 

20 0.95 0.890 0.220 0.950 0.760 0.180 

50 0.98 1.000 0.950 0.980 1.000 0.730 

100 0.980 1.000 0.950 0.980 1.000 0.990 
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Comparing results in Tables 5 and 6, 
observe that an increment of the degree of 
heterogeneity (δ) yields an increment of the 
power values. However, this increment was 
small, since for N = 20,50 and degree of 
heterogeneity δ = 4, the test remains not so 
powerful. 

In a general manner, the number of 
populations (k) is related to a reduction of 
power, retaining the same highlighted properties 
of when the population covariance matrices 
presented, in average, low correlation (Table 5). 
However, in comparison to results shown in 
Table 6, it is suggested that increasing the global 
correlation yields an even greater reduction in 
power. Therefore, it may be concluded that 
increasing the number of populations (k) where 
population covariances present high correlations 
results in a great loss of power. In turn, when the 
number of variables (p) is increased with a set 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
number of populations (k), the test retained the 
same properties. The increment of the global 
correlation from ρ = 0.20 for ρ = 0.80 also did 
not affect the power of the test when the number 
of variables (p) was increased for a set number 
of populations (k). 

Regarding the sample size, results 
shown in Table 6 agree with previous results. It 
is advisable to use the considered test to deal 
with small samples when comparing bivariate 
populations (k = 2) with a degree of 
heterogeneity greater than 8. Such a test can be 
used for other cases; however, exploratory 
studies of the populations must be done. 
 

Conclusion 
Generalized variances tests controlled type I 
error according to a set nominal level. Tests 
based on the ratio of traces, in general, provided 
more conservative results. The simulation results 
clearly demonstrated that the procedure based on 
the determinant could more effectively control 

Table 6: Power Values for the Bootstrap Generalized Likelihood Ratio Test for 
Different Sample Sizes (n), Numbers of Populations (k), Variables (p), Degrees of 

Heterogeneity (δ) Under Low Global Correlation (ρ = 0.80) 
 

 k = 2 k = 2 k = 2 k = 8 k = 8 k = 8 
N p = 2 p = 3 p = 8 p = 2 p = 3 p = 12 

δ = 2 

20 0.110 0.080 0.030 0.020 0.020 0.050 

50 0.380 0.230 0.100 0.180 0.030 0.060 

100 0.730 0.590 0.330 0.410 0.110 0.100 

δ = 4 

20 0.500 0.370 0.070 0.170 0.040 0.070 

50 0.930 0.780 0.720 0.760 0.200 0.220 

100 0.980 0.950 0.700 0.990 0.500 0.580 

δ = 8 

20 0.890 0.600 0.090 0.580 0.090 0.110 

50 0.990 0.980 0.950 0.960 0.450 0.480 

100 0.990 0.980 0.980 1.000 0.900 0.930 

δ = 16 

20 1.000 0.870 0.210 0.920 0.180 0.200 

50 1.000 1.000 0.950 1.000 0.800 0.840 

100 1.000 1.000 0.980 1.000 0.980 0.990 
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the type I error rate to α, particularly when the 
off-diagonal elements of Rj, the correlation 
matrix corresponding to Σj, are small. Power of 
the generalized variances tests was reduced by 
increasing the number of variables and 
populations in both global correlations 
evaluated. 
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