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Notes on Hypothesis Testing under a Single-Stage Design in Phase II Trial 
 

Kung-Jong Lui 
San Diego State University, 

San Diego, CA USA 
 

 
A primary objective of a phase II trial is to determine future development is warranted for a new 
treatment based on whether it has sufficient activity against a specified type of tumor. Limitations exist in 
the commonly-used hypothesis setting and the standard test procedure for a phase II trial. This study 
reformats the hypothesis setting to mirror the clinical decision process in practice. Under the proposed 
hypothesis setting, the critical points and the minimum required sample size for a desired power of 
finding a superior treatment at a given α -level are presented. An example is provided to illustrate how 
the power of finding a superior treatment by accounting for a secondary endpoint may be improved 
without inflating the given Type I error. 
 
Key words: Phase II trial, Type I error, power, union-intersection test, sample size, equivalence. 
 
 

Introduction 
One of the primary objectives in a phase II trial 
for a new anti-cancer treatment is to make a 
preliminary determination on whether the 
treatment has sufficient activity or benefits 
against a specified type of tumor to warrant its 
further development. Based on subjective 
knowledge, researchers commonly choose two 
response rates in advance p0  and p1  (where 

0 10 1< < <p p ) for the uninteresting and 
desirable levels, respectively. Test hypotheses: 
H p p0 0: ≤  versus H p pa : ≥ 1  (Simon, 1989; 
Lin, Allred & Andrews, 2008; Lu, Jin & 
Lamborn, 2005) are considered using p1  to 
determine the minimum required sample size for 
a desired power 1− β  of rejecting H p p0 0: ≤  

at a nominal α -level when p p= 1 . This 
hypothesis setting can cause clinicians to 
misinterpret their findings that rejecting the null 
hypothesis H p p0 0: ≤  is equivalent to 
supporting the alternative hypothesis 
H p pa : ≥ 1  and vice versa (Storer, 1992). 
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Despite employing a large sample size 

to meet a desired power, the probability of 
excluding a potentially interesting treatment 
from further consideration can still be large. To 
illustrate the above points, for example, consider 
testing H p0 0 30: .≤  versus H pa : .≥ 050  at 
the 0.05 level. When using the common sample 
size calculation formula for a desired 90% 
power of rejecting H p0 0 30: .≤  for p = 0.50 at 
the 0.05-level, the minimum required sample 
size is determined to be 49 patients. 

Suppose that ( x = ) 20 patients respond 
among these ( n = ) 49 patients (i.e., the sample 
proportion response p = 20/49 = 0.408). Using 

these data, the p-value for testing H p0 0 30: .≤  
is 0.049 (on the basis of normal approximation) 
and thereby, H0  is rejected at the 0.05 level. 

Note that because p = 20/49 (= 0.41) is less 
than 0.50, there is no evidence that the 
underlying response rate p is larger than 0.50. 
Conversely, there is statistically significant 
evidence, given p = 20/49, to indicate that the 
underlying response rate p is less than the 
desirable level 0.50 at the 10% level for testing  
 

H p0 050: .≥  
versus 

H pa : .< 050 . 
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Furthermore, when a treatment has the response 
rate p = 0.35 (which is larger than the 
uninteresting level p = 0.30) and is of potential 
interest, it can be shown that the probability of 
terminating this treatment for further 
consideration by not rejecting H p0 0 30: .≤  is 
approximately 80%.  

The above concerns and criticisms are 
partially due to the fact that the complement of 
{ | }p p p≤ 0 is not the set { | }p p p≥ 1  and there 
is no explicit instruction about what should be 
done when the underlying response rate p  falls 

in the borderline region { | }p p p p0 1< < . This 
motivates the recent development of a design 
with three outcomes, including an outcome 
allowable to account for other factors, including 
toxicity, cost or convenience, when making a 
decision (Storer, 1992; Sargent, Chan & 
Goldberg, 2001; Hong & Wang, 2007). One 
intuitive and logical justification of this practice 
is that - if the response rate of a new treatment 
was not much different from that of the standard 
treatment - it would be reasonable to recommend 
the new treatment for further study if the new 
treatment was less toxic, cheaper and/or easier to 
administer.  

Treating both H p p p0 0:{ | }≤  and 

H p p pa :{ | }≥ 1  as two separate competing null 
hypotheses, Storer (1992) proposed a three-
outcome design to accommodate the situation in 
which one might reject neither H0  nor Ha  and 
he suggested sample size calculation based on 
P X r Hu( | )≥ ≤0 α , P X r Hl a( | )≤ ≤ β , and 

P( rejecting H pi m| )  ≤ γ  for i = 0, a , where 

ru  and rl  are minimum and the maximum 
critical points satisfying the above probability 
constrains and where p p pm ≈ +( ) /0 1 2 .  

On the basis of Simon’s setting (1989) 
and the normal approximation for the binomial 
distribution, Sargent, Chan & Goldberg (2001) 
proposed a three-outcome test procedure with an 
inconclusive region in which neither H0  nor 

Ha were rejected and they discussed sample size 

calculation for given errors of α  and β , and 
the minimum probabilities of concluding 
correctly. Hong & Wang (2007) further 
extended sample size calculation to 

accommodate a two-sample randomized 
comparative trial. In fact, the design suggested 
by Sargent, Chan & Goldberg (2001) can be 
expressed in terms of Storer’s setting (1989) by 
treating H0  and Ha  as two competing null 
hypotheses in the following:  

 
(1) testing H p p0 0: ≤  (versus p p> 0 ) at α -

level, and rejecting H0  when X ru≥  where

ru is the minimum point satisfying 

P X r p pu( | )≥ = ≤0 α ;  

(2) testing H p pa : ≥ 1  (versus p p< 1 ) at β -

level, and rejecting Ha  when X rl≤ , 

where rl  is the maximum point satisfying 

P X r p pl( | )≤ = ≤0 β .  
 
The inconclusive region then simply 
corresponds to the set of sample points 
{ }r X rl u< < . Based on the normal 
approximation, it can be shown that the 
inconclusive region consists of  
 

{X| np Z np p1 1 11− −β ( ) -0.5 

< X < 

0 0 01np Z np ( p )α+ − + 0.5}, 

 
where Zα is the upper 100(α )th percentile of the 

standard normal distribution. Note that this 
inconclusive region is a function of errors α , 

,β  and the sample size, which are all operating 
parameters of the statistical test procedure rather 
than the biological characteristics of patient 
response to treatments. Various choices of α , 
β , or the sample size can lead to obtain 
different inconclusive regions despite that the 
underlying p1  and p0  are fixed. This is not 
appealing because the inconclusive region 
should represent the values falling in the 
borderline between the uninteresting and 
desirable levels and should be related to the 
biological aspects. Furthermore, it is possible 
that both H p p0 0: ≤  and H p pa : ≥ 1  may be 
rejected in the design proposed by Sargent, Chan 
& Goldberg (2001); in this case, the above 
inconclusive region will no longer exist. This 



KUNG-JONG LUI 
 

381 
 

can occur even when the sample size is 
moderate and both α  and β  errors are 
controlled.  

To clarify this point, consider the above 
example of testing H p0 0 30: .≤  versus 

H pa : .≥ 050 . Given ( x = ) 20 patients with 
response among ( n = ) 49 patients, 
H p0 0 30: .≤  can be rejected at α = 0.05 level 

and H pa : .≥ 050  would be rejected at β  = 

0.10 level. When choosing α = 0.05 and β = 

0.10, by definition ru  < rl  in this case and the 
inconclusive region does not exist. There is no 
discussion on what action to take when both 
H p p0 0: ≤  and H p pa : ≥ 1  are rejected in the 
three-outcome design as proposed previously 
(Storer, 1992; Sargent, et al., 2001; Hong & 
Wang, 2007). 

When determining in practice whether a 
new treatment warrants further study at the end 
of a phase II trial the decision is almost always 
based on multiple risk/benefit considerations 
rather than the testing result of a single primary 
endpoint, especially when no clear decision can 
be derived from the testing result. In other 
words, unless the response rate of the new 
treatment can be shown to be different from that 
of the standard treatment by a magnitude of 
clinical importance, relevant factors are 
incorporated into the determination of whether 
the new treatment should be studied further. 
Thus, it is desirable to design a test procedure 
that can mirror the clinical decision process in 
reality.  

To avoid distracting readers’ attention 
from the main focus of this article, discussion is 
restricted to a single-stage design. Under the 
proposed setting, the critical points and the 
minimum required sample size for a desired 
power of finding a superior treatment in a 
variety of situations are presented. Furthermore, 
using an idea suggested by Lin, Allred and 
Andrews (2008) and Lu, Jin and Lamborn 
(2005), an example is included to illustrate how 
the power of detecting a superior treatment may 
be improved by considering a secondary 
endpoint without inflating the given Type I 
error. Finally, another alternative procedure is 
considered and its difference, advantage, and 

disadvantage are noted and compared with the 
proposed procedure. 
 
Notation and Hypothesis Testing 

Consider a phase II trial in which a 
random sample of size n patients is taken from a 
studied population and assigned to receive a new 
treatment under study. Suppose that x out of n 
patients are obtained with objective (or primary) 
response. Let p0  denote the objective response 
rate determined from the historical data for the 
standard treatment. Let δ  denote the level of 
difference such that, if the objective response 
rate p is larger than p pu = +0 δ , the new 
treatment is regarded as superior to the standard 
treatment and hence is warranted for further 
study. 

Similarly, if the objective response rate 
p is less than p pl = −0 δ , the new treatment is 
regarded as inferior to the standard treatment 
and is terminated from further investigation. 
Recall that in the standard setting, statistical 
significance against H p p0 0: ≤  does not 
provide information on how large the difference 
p - p0  is between the new and standard 
treatments. By contrast, statistical significance 
evidence to support that p p> +0 δ  (i.e., the 
new treatment is larger than the standard 
treatment by a magnitude δ  of clinical 
significance) will provide better evidence. 
Conversely, when statistically significant 
evidence exists that the new treatment is inferior 
to the standard treatment (i.e., p p< −0 δ ), the 
new treatment may be excluded from further 
consideration for ethical reasons. This 
occurrence will not be known unless the data 
against the hypothesis p p≥ −0 δ  is examined. 
Thus, despite the fact that the main interest in a 
phase II trial is to find a potentially promising 
treatment, the critical region may also include 
the sample points to test the hypothesis 
p p≥ −0 δ . However, the calculation of sample 

size required for power of detecting a given 
p p( )< −0 δ  is of no practical interest. Defining 

p pl = −0 δ  and p pu = +0 δ , therefore, the 
hypotheses considered in testing are: 
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H p p pl u0: ≤ ≤  
versus                                                               (1) 

H p pa u: >  or p pl< . 
 
H p p pl u0: ≤ ≤  will be rejected at the α -level 

if x xu≥ ( )α1  or x xl≤ ( )α2 , where 

α α α= +1 2 , xu ( )α1  is the minimum point 
such that 
 

1

1

11
u

u u

n x n x
u ux x ( )

P( X x ( )| p )
n

p ( p ) ,
x

−
=

≥ =

 
− ≤ 

 
 α

α

α
     (2) 

 
and xl ( )α2  is the maximum point such that 
 

2

2

20
1l

l l

x ( ) x n x
l lx

P( X x ( )| p )
n

p ( p ) .
x

−
=

≤ =

 
− ≤ 

 
 α

α

α
        (3) 

 
Note that the hypothesis setting (1) is 

simply a switch between the null and alternative 
hypotheses when testing equivalence (Dunnett & 
Gent, 1997; Westlake, 1979; Liu & Weng, 1995; 
Liu & Chow, 1992; Hauck & Anderson, 1984; 
Lui, 1997a, 1997b; Lui & Cumberland, 2001a, 
2001b). Note also that the above test procedure 
for (1) is a union-intersection test (Casella & 
Berger, 1990). When making an error in 
recommending an ineffective or harmful 
treatment for phase III trial is considered more 
serious than making an error of missing a 
potentially interesting treatment, an investigator 
may wish to choose α α1 2≤ . 

For a given true value p ∈{p| p pu> }, 
the power is equal to 
 

1 2

2 1l u

( n, p, , , )
P( X x ( )| p ) P( X x ( )| p ).

=
≤ + ≥

Φ α α δ
α α

 

(4) 
Thus, given p, α1 , α2 , and δ , a trial-and-error 
procedure can be applied to determine the 
critical points: xl ( )α2  and xu ( )α1 , as well as 
the minimum required sample size n for a 
desired power 1− β  based on (4) such that 

1 2 1( n, p, , , )Φ α α δ β≥ − .            (5) 

 
Sample Size Determination and Critical Points 

Programs were written in SAS (1990) to 
find the minimum required sample size n 
satisfying equation (5). For illustration purposes, 
δ = 2.5% was arbitrarily chosen for the 
following discussion. Table 1 summarizes the 
critical points xu ( )α1 , xl ( )α2 , and the 
minimum required sample size n for 
α α1 2 010= = .  calculated from 

Φ( , , , )n p α α β1 2 1≥ −  (5) for a desired power 

1− =β 0.80, 0.90 in testing 
 

H p p pl u0: ≤ ≤  
versus 

H p pa u: >  or p pl< , 
 
where p pl = −0 δ , p pu = +0 δ , δ = 2.5%;

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; and 

p p p= + +0 0015 0 20. , . .  
For example, consider testing 
 

H p0 0 325 0 375: . .≤ ≤  (i.e., p0 = 0.35) 
versus 

H pa : .> 0 375  or p < 0 325.  
 
at levels of α α1 2 010= = . . If the desired 

power for rejecting H0  when the underlying 
objective response rate p equals 0.50 is 80%, for 
example, based on equation (5), 77 patients 
would be required. Furthermore, Table 1 shows 

that if ( )1 35ux ( )α =  or more patients are 

obtained with an objective response out of the 
77 patients, then the new treatment would be 
recommended for further study.  

On the other hand, if 19 or less patients 
are obtained with objective responses, the new 
treatment would be terminated from further 
consideration. Finally, if the number of patients 
with objective responses falls between 20 and 
34, other factors would be considered to 
determine whether the experimental treatment 
warrants further study. Table 2 summarizes the 
corresponding critical points xl ( )α2 , xu ( )α1  
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and the minimum required sample size n for α1

= 0.05 and α2 =0.15 in the same configurations 
as those considered in Table 1. 
 

Discussion 
Multiple factors are almost always accounted for 
at the end of a phase II trial to determine 
whether a new treatment warrants further study 
unless there is a clear cut decision in the testing 
results. The test procedure proposed herein has 
the advantage of resembling the actual clinical 
decision process more closely than the standard 
test procedure. By contrast, in Simon’s setting, 
the determination of a new treatment for further 
study may completely depend on the testing 
result of a single primary point, but this may not 
be the case in practice. Furthermore, in the 
three-outcome design, the inconclusive region 
depends on the operating characteristics, such as 
errors α , β , and the sample size, of a test 
procedure. Thus, the inconclusive region can 
change or may not even exist for different given 
values of these parameters even when the 
underlying objective response rate is fixed. For 
this reason the inconclusive region is defined 
here in terms of biological equivalence. Based 
on the proposed hypothesis setting (1), it is 
possible to control both the errors of 
recommending a non-superior treatment and of 
terminating a non-inferior treatment to be less 
than a given error-level. 

When there is no statistical evidence 
against the hypothesis H p p pl u0: [ , ]∈  based 
on the primary endpoint, a reasonable and 
appealing action can be to consider a secondary 
endpoint to improve power. For example, in 
traditional phase II trials, the total response (TR) 
rate, the sum of the complete response (CR) rate 
and the partial response (PR) rate, is often used 
as the objective (or primary) response rate p. 
Because CR is generally rare for many tumors, 
even a small increase in the number of CRs can 
be important in evaluation of the efficacy of a 
treatment. Thus, clinicians will welcome a 
decision rule that accepts a new treatment for 
further study based on an improved CR rate 
even when the treatment does not achieve the 
desirable objective response rate of TR (Lin, 
Allred & Andrews, 2008; Lu, Jin & Lamborn, 
2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The critical points xl ( )α2 , xu ( )α1 and 
the minimum required sample size n calculated 
from Φ( , , , )n p α α β1 2 1≥ −  in equation (5) for 

a desired power 1− =β 0.80, 0.90 in testing 

H p p pl u0: ≤ ≤  versus H p pa u: >  or p pl<  

where p pl = −0 δ , p pu = +0 δ , δ = 2.5%; 

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; 

p = p0 015+ . , p0 0 20+ . ; 1 0 10.α =  and α2 = 

0.10. 
 

p0 p n xl ( )α2  xu ( )α1  

1− =β 0.80 

0.15 
0.30 51 2 13 

0.35 31 1 9 

0.25 
0.40 68 10 24 

0.45 36 4 14 

0.35 
0.50 77 19 35 

0.55 41 9 20 

0.45 
0.60 77 26 43 

0.65 37 11 22 

0.55 
0.70 73 32 48 

0.75 36 14 25 

0.65 
0.80 59 31 45 

0.85 30 14 24 

0.75 
0.90 39 24 34 

0.95 16 8 15 

1− =β 0.90 

0.15 
0.30 79 5 19 

0.35 45 2 12 

0.25 
0.40 94 15 32 

0.45 52 7 19 

0.35 
0.50 109 28 48 

0.55 53 12 25 

0.45 
0.60 105 37 57 

0.65 54 17 31 

0.55 
0.70 101 46 65 

0.75 50 21 34 

0.65 
0.80 83 45 62 

0.85 41 21 32 

0.75 
0.90 61 39 52 

0.95 22 12 20 
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When studying the efficacy of a 
treatment for brain tumors the TR rate can be 
small as well. In this case, the objective response 
can be stabilization disease (SD) progression for 
six months after post-treatment initiation, while 
the secondary endpoint can be either CR or PR. 
For both of the above examples, a critical region 
may be found based on the objective and 
secondary responses such that if the objective 
response rate cannot be used to decide whether a 
new treatment warrants further study, an 
opportunity may still exist to justify the 
acceptance of the new treatment based on its 
secondary response rate subject to the originally 
given α1  error. To illustrate this point, consider 
the example for patients with glioblastomas. On 
the basis of the standard for the North American 
Brain Tumor Consortium (NABTC), interest lies 
in determining whether the objective response 
rate of SD increases from p0 = 0.15 to p= 0.35 
(Lu, Jin & Lamborn, 2005). Thus, testing 
 

H p0 0125 0175: . .≤ ≤  (with δ = 2.5%) 
versus 

H pa : .> 0175 or p < 0125.  
 
is considered. From equation (5), the minimum 
required number of patients is determined to be 
31 patients for a desired power of 80% when p = 
0.35 at ( α1 = α2 = ) 0.10-level and the 

corresponding critical points xl ( )α2  and 

xu ( )α1  are 1 and 9, respectively (Table 1).  
When no evidence exists to claim the 

experimental treatment to be superior (i.e., 
p > 0175. ) to the standard treatment based on 

the objective response rate of SD, for example, 
the experimental treatment may be still 
determined to warrant further study. This could 
occur if the secondary response rate, pS , that 
the tumor shrinkage is sufficient to be regarded 
as either CR or PR for a 6-month interval is 
larger than 0.05.  

Let xs  denote the number of patients 
with the secondary response among 31 patients. 
While keeping the above critical point xu ( )α1  
for the objective response of SD, SAS programs 
are written to search for the secondary endpoint 

Table 2: The critical points xl ( )α2 , xu ( )α1 and 
the minimum required sample size n calculated 
from Φ( , , , )n p α α β1 2 1≥ −  in equation (5) for a 

desired power 1− =β 0.80, 0.90 in testing

H p p pl u0: ≤ ≤  versus H p pa u: >  or p pl< , 

where p pl = −0 δ , p pu = +0 δ , δ = 2.5%;

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; p =
p0 015+ . , p0 0 20+ . ; 1 0 05.α =  and α2 =0.15. 

 

p0  p n xl ( )α2  xu ( )α1  

1− =β 0.80 

0.15 
0.30 73 5 19 

0.35 41 2 12 

0.25 
0.40 92 16 33 

0.45 48 7 19 

0.35 
0.50 102 27 47 

0.55 50 12 25 

0.45 
0.60 103 38 58 

0.65 53 18 32 

0.55 
0.70 95 44 63 

0.75 48 21 34 

0.65 
0.80 81 45 62 

0.85 41 21 33 

0.75 
0.90 56 36 49 

0.95 26 15 24 

1− =β 0.90 

0.15 
0.30 102 8 25 

0.35 55 3 15 

0.25 
0.40 121 21 42 

0.45 66 10 25 

0.35 
0.50 136 38 61 

0.55 71 18 34 

0.45 
0.60 140 52 77 

0.65 72 25 42 

0.55 
0.70 129 61 84 

0.75 64 28 44 

0.65 
0.80 110 62 83 

0.85 53 28 42 

0.75 
0.90 78 51 67 

0.95 32 20 29 
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for the critical point xCS , which is the minimum 

point xS  such that the probability P X( ≥ 9 or

X x p ps S u S≥ = =| . , . )0175 0 05 ≤ 010. . The 

critical point, xCS , is 5 if an observation ( x xS, ) 
= (8, 6) is obtained. Although the number (x = 8) 
of patients with the objective response of SD is 
not ≥  9, the experimental treatment may be 
recommended for further development because 
the number of ( xS = 6) patients with the 
secondary response is above the critical point (
xCS =5). In fact, the joint power for given values 

p and pS  based on the trinomial distribution can 
also be calculated: 
 

9 5

31

9 5

31
1

1

s S

( i j ori }i j

i j ( i j )
S S

P( X  or X | p, p )
!      

i ! j !( n i j )!
      p ( p p ) ( p )

+ ≥ ≥

− −

≥ ≥ =

− −
× − −

     (6) 

 
where the indicator function, 1{ }condition , equals 1 

if the condition in braces is true, and equals 0 
otherwise.  

For example, when p = 0 35.  and pS = 
0.20, the joint power obtained from (6) ≈ 0.88, 
which is larger than the original desired actual 
power P X p( | . )≥ =9 0 35 ≈ 0.81 exclusively 
based on the objective response by 
approximately 7%. Note that because the 
binomial distribution is discrete, the true Type I 
error P X pu( | . )≥ =9 0175  based on the 
objective response is actually equal to 0.079, 
which is less than the nominal (α1 = 0.10) level. 
This is the reason why the critical region can be 
expanded from { }X ≥ 9  to {X ≥ 9 or X S ≥ 5}  
to increase power without the necessity of 
inflating the given α1  error. Conaway & Petroni 
(1995) proposed methods for designing group 
sequential phase II trials with two binary 
endpoints.  

Conaway & Petroni (1995) also focused 
discussion on the situation in which a new 
treatment is recommended for further study 
when the new treatment has both a high 
response and lower toxicity. By contrast, 
consider the situation in which the new 

treatment is recommended for further study if 
the new treatment has either a high objective 
response rate or a high secondary response rate. 
Thus, Conaway & Petroni’s results cannot be 
applicable to the situations discussed here. 

It may be shown that  
 

P X x p( | )≥ (=
n
X

p p
X x

n x n x





 −

=
− ( )1 ) ≤α *  

 

if and only if the 100(1-α * )% lower confidence 
limit (LCL) (one-sided), given by 
x x n x F
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Berger, 1990; Lui, 2004). Similarly, it can be 

shown that P X x p( | )≤ ≤α *  if and only if the 

100(1- α * )% upper confidence limit (UCL) 
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falls below p. Thus, the hypothesis setting and 
test procedure defined in (1-3) is equivalent to 
the decision procedure defined as follows: when 

the UCL with α α* = 2  falls below p pl ( )= −0 δ , 
the new treatment is terminated; when the LCL 

with α α* = 1  falls above p pu ( )= +0 δ , the new 
treatment warrants further consideration; when 
neither of the above conditions hold relevant 
factors are accounted for in the final decision. 
Compared with hypothesis testing, the use of 
confidence intervals to present the testing results 
may shed light on the magnitude of the 
difference between the two treatments under 
comparison. 

Rather than excluding a new treatment 
from further consideration when it is shown to 
be inferior (i.e., p p< −0 δ ) to the standard 
treatment in the procedure proposed, an 
alternative procedure can be considered by 
including a new treatment into further 
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consideration only when it is shown to be non-
inferior to the latter (i.e., p p> −0 δ ). That is, the 
following design may be employed: (1) for the 

LCL with a given α α* = 1  falling below p0 −δ , 
the new treatment is excluded from further 

consideration; (2) for the LCL with α α* = 1  

falling into [ p0 −δ , p0 +δ ], accounting for 
other factors; and (3) for the LCL falling above 

0p ,+ δ  the new treatment is recommended for 

further study. To avoid missing a potentially 
useful treatment when a new treatment for a 
specified type of cancer is hard to find, the 
hypothesis setting and test procedure (1-3) 
described herein may be employed to terminate 
a new treatment only when it is shown to be 
inferior to the standard treatment. To alleviate 
the concern of including an inferior treatment for 
phase III trials, a large value for α2  may be 
chosen (e.g., 0.15) in (3); on the other hand, 
when new experimental treatments are easier to 
find, the alternative decision procedure, 
including only those treatments shown to be 
non-inferior to the standard treatment for further 
consideration, can be of potential use. 

In summary, limitations in the 
commonly-used hypothesis setting and the 
recently proposed three-outcome design have 
been described. The hypothesis testing has been 
reformatted and a test procedure proposed to 
more closely resemble the clinical decision 
process. The minimum required sample size for 
a desired power of finding a superior treatment 
at a given α -level has been presented and the 
corresponding critical points in a variety of 
situations provided. Discussion and an example 
were used to illustrate how power may be 
improved by accounting for the secondary 
endpoint without inflating the given Type I error 
in the proposed test procedure. Also included 
was a discussion on an alternative procedure and 
for which situations in which this procedure can 
be of use. The findings and the discussion 
should be helpful for clinicians when exploring a 
new treatment in a phase II trial. 
 
 
 
 

References 
Casella, G., & Berger, R. L. (1990). 

Statistical Inference. Belmont, CA: Duxbury. 
Conaway, M. R., & Petroni, G. R. 

(1995). Bivariate sequential designs for phase II 
trials. Biometrics, 51, 656-664. 

Dunnett, C. W., & Gent, N. (1997). 
Significance testing to establish equivalence 
between treatments, with special reference to 
data in the form of 2x2 tables. Biometrics, 33, 
593-602.  

Hauck, W. W., & Anderson, S. (1984). 
A new statistical procedure for testing 
equivalence in two group comparative 
bioavailability trials. Journal of 
Pharmacokinetics and Biopharmaceutics, 12, 
83-91.  

Hong, S., & Wang, Y. (2007). A three-
outcome design for randomized comparative 
phase II clinical trials. Statistics in Medicine, 26, 
3525-3534. 

Lin, X., Allred, R., & Andrews, G. 
(2008). A two-stage phase II trial design 
utilizing both primary and secondary endpoints. 
Pharmaceutical Statistics, 7, 88-92.  

Liu, J.-P., & Chow, S.-C. (1992). 
Sample size determination for the two one-sided 
tests procedure in bioequivalence. Journal of 
Pharmacokinetics and Biopharmaceutics, 20, 
101-104. 

Liu, J.-P., & Weng, W.-S. (1995). Bias 
of two one-sided tests procedures in assessment 
of bioequivalence. Statistics in Medicine, 14, 
853-861. 

Lu, Y., Jin, H., & Lamborn, K. R. 
(2005). A design of phase II cancer trials using 
total and complete response endpoints. Statistics 
in Medicine, 24, 3155-3170.  

Lui, K.-J. (1997a). Sample size 
determination for repeated measurements in 
bioequivalence test. Journal of 
Pharmacokinetics and Biopharmaceutics, 25, 
507-513. 

Lui, K.-J. (1997b). Exact equivalence 
test for risk ratio and its sample size 
determination under inverse sampling. Statistics 
in Medicine, 16, 1777-1786. 

Lui, K.-J. (2004). Statistical Estimation 
of Epidemiological Risk. New York: Wiley. 
 



KUNG-JONG LUI 
 

387 
 

Lui, K.-J., & Cumberland, W. G. 
(2001a). A test procedure of equivalence in 
ordinal data with matched-pairs. Biometrical 
Journal, 43, 977-983.  

Lui, K-J., & Cumberland, W. G. 
(2001b). Sample size determination for 
equivalence test using rate ratio of sensitivity 
and specificity in paired-sample data. Controlled 
Clinical Trials, 22, 373-389. 

Sargent, D. J., Chan, V., & Goldberg, R. 
M. (2001). A three-outcome design for phase II 
clinical trials. Controlled Clinical Trials, 22, 
117-125.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SAS Institute Inc. (1990). SAS 
Language Version 6, 1st edition. Cary, North 
Carolina SAS Institute.  

Simon, R. (1989). Optimal two-stage 
designs for phase II clinical trials. Controlled 
Clinical Trials, 10, 1-10.  

Storer, B. E. (1992). A class of phase II 
designs with three possible outcomes. 
Biometrics, 48, 55-60.  

Westlake, W. J. (1979). Statistical 
aspects of comparative bioavailability trials. 
Biometrics, 35, 273-280. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2010

	Notes on Hypothesis Testing under a Single-Stage Design in Phase II Trial
	Kung-Jong Lui
	Recommended Citation


	Microsoft Word - toc_vol9_no2

