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Effect of Measurement Errors on the Separate and Combined Ratio 
and Product Estimators in Stratified Random Sampling 

 
Housila P. Singh Namrata Karpe 

Vikram University, 
Ujjain India 

 
 

Separate and combined ratio, product and difference estimators are introduced for population mean Yμ  of 
a study variable Y using auxiliary variable X in stratified sampling when the observations are 
contaminated with measurement errors. The bias and mean squared error of the proposed estimators have 
been derived under large sample approximation and their properties are analyzed. Generalized versions of 
these estimators are given along with their properties. 
 
Key words: Auxiliary variate, bias, mean squared error, measurement error, study variate. 
 
 

Introduction 
Statistical procedures for the analysis of data 
presume that observations are correct 
measurements for the characteristics being 
studied. When applied to a real world data set, it 
is assumed it is possible to take measurements 
without error on the theoretical construct of the 
variables. This is untenable in many applied 
situations when observation errors are a rule 
rather than an exception. 

Hence, an auxiliary variable is 
commonly used in survey sampling to improve 
the precision of estimates. When auxiliary 
variable information is available researchers are 
able to utilize it in methods of estimation to 
obtain the most efficient estimator. Examples are 
ratio, product and regression estimation 
methods. Using auxiliary information at the 
estimation stage, a large number of estimation 
procedures for approximating the population 
mean Yμ  of a study variable Y have been 
proposed and their properties studied based on 
data originating under various kinds of sampling 
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schemes and under the supposition that 
observations have been recorded without error. 
Such an assumption may not be tenable in actual 
practice and data may contain observational or 
measurement errors due to various reasons 
(Cochran, 1968; Sukhatme, 1984).  

Chandhok and Han (1990) have studied 
the properties of a ratio estimator under two 
sampling schemes; simple random sampling 
without replacement and the Mizuno scheme 
when measurement errors are present. Shalabh 
(1997) studied the properties of the classical 
ratio estimator in simple random sampling when 
the data on both the characteristics Y (study 
variable) and X (auxiliary variable) are subject to 
measurement errors. Manisha and Singh (2001), 
Maneesha and Singh (2002) and Singh and 
Karpe (2008a) have also considered the problem 
of estimating the population mean using 
auxiliary information in the presence of 
measurement errors. Later Singh and Karpe 
(2008b, 2009a, 2009c) studied the effect of 
measurement errors on the classes of estimators 
proposed for population variance and coefficient 
of variation. This article discusses the properties 
of separate and combined ratio and product 
estimators in stratified random sampling when 
the data are subject to measurement errors on 
both the characteristics Y and X. 
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Suggested Estimators 
Separate Ratio Estimator in Stratified Random 
Sampling in the Presence of Measurement 
Errors 

Consider a finite population 
( )Nu,...,u,uU 21=  of size N and let Y and X 

respectively be the study and auxiliary variables 
associated with each unit ( )N,...,,ju j 21==  

of the population. Let the population of size N 
be stratified into L strata with the hth stratum 
containing hN  units, where L,...,,h 21=  such 

that NN
L

h
h =

=1

. A simple random sample size 

hn  is drawn without replacement from the hth 

stratum such that nn
L

h
h =

=1

. Let ( )hihi x,y  be 

the observed pair values instead of true pair 
values ( )hihi X,Y  of two characteristics (Y, X) on 
ith unit of the hth stratum, where hN,...,,i 21=  

and L,...,,h 21= . In addition, let: 
 









== 

==

hh n

i
hi

h
h

n

i
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h
h x

n
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n
y

11

11
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

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L

h
hhst

L

h
hhst xWx,yWy

11
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

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==
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i
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h
Xh
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i
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h
Yh x

N
,y

N 11

11 μμ , 

and 


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


 == 
==
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h
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L

h
YhhY W,W

11
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be the samples means and population means of 

(Y, X) respectively, where 
N
NW h

h =  is the 

stratum weight. Let the observational or 
measurement errors be 
 

hihihi Yyu −=      (2.1) 

and 

hihihi Xxv −=      (2.2) 

 
which are stochastic in nature and are 

uncorrelated with mean zero and variances 2
Uhσ  

and 2
Vhσ  respectively. Further let hρ  be the 

population correlation coefficient between Y and 
X in the hth stratum. 

For simplicity in exposition, assume that 
s'uhi  and s'vhi  are uncorrelated although 

( )hihi X,Y  are correlated; such a specification 

can be relaxed at the cost of some algebraic 
complexity. It is also assumed that the finite 
population correction terms ( )hf−1  and 

( )f−1  can be ignored where 
h

h
h N

nf =  and 

N
n

f = . 

To estimate the population mean Yμ , 
the traditional unbiased estimator (i.e., stratified 
sample mean) sty  is used, but it does not utilize 

the sample information on auxiliary 
characteristic X. Assuming that Xhμ  is known 

and is different from zero, this method yields a 
separate ratio estimator of the population mean 

Yμ : 
L

Xh
RS h h

h 1 h

t W y .
x=

μ=               (2.3) 

 
To obtain the bias and mean squared error of 

RSt : ( )
hyYhhy δμ += 1 , and ( )

hxXhhx δμ += 1 , 

such that 
 

( ) ( ) 0==
hh xy EE δδ  

 

( )
Yhh

Yh

Yh

Uh

h

Yh
y n

C
n
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h θσ
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( ) XhYhh
h

xy CC
n

E
hh

ρδδ 1= , 

where 

Yh

Yh
YhC

μ
σ

= , 

Xh

Xh
XhC

μ
σ

= , 

22

2

YhUh

Uh
Yh σσ

σθ
+

= , 

and 

. 

 
Expressing (2.3) in terms of  as 
 

( )( ) 1

1

11 −

=

++= hh xyYh

L

h
hRS Wt δδμ      (2.4) 

 

Assuming 1<
hxδ , the right hand side of (2.4) 

is expanded as 
 

( ) h h

h

h

h h h h

h h h h

2
L

x x

RS h Yh y 3
h 1 x

L y x y x

h Yh 2 2 3
h 1 x y x x

1
t W 1

...

1
W

...

=

=

 − δ + δ
 = μ + δ
 −δ + 

+ δ − δ − δ δ  = μ  
+δ + δ δ − −δ +  




 

 
Neglecting terms of having power greater 
than two, results in 
 

h h h h

h h h

L y x y x

RS h Yh 2 2
h 1 x y x

1
t W

=

+ δ − δ − δ δ  = μ  
+δ + δ δ  

 , 

 

h h h h

h h h

L y x y x

RS Y h Yh 2 2
h 1 x y x

t W
=

δ − δ − δ δ  = μ + μ  
+δ + δ δ  

 , 

 

( ) h h h h

h h h

L y x y x

RS Y h Yh 2 2
h 1 x y x

t W
=

δ − δ − δ δ  − μ = μ  
+δ + δ δ  

 , 

(2.5) 

Taking the expectation of both sides of (2.5) 
results in the bias of RSt  to the first degree of 

approximation, 
 

( ) ( )hXh
Xhh

Xh
Yh

L

h
hRS K

n
CWtB θ
θ

μ −







=

=

1
2

1

   (2.6) 

 
where 









=

Xh

Yh
hh C

CK ρ . 

 
Squaring both sides of (2.5), neglecting terms of 

 having power greater than two and then 
taking the expectation of both sides gives the 
mean squared error of RSt  to the first degree of 

approximation as 
 

( )

( )
RS

2 2 2L
2 Yh Yh Xh
h h Xh

h 1 h Yh Xh

MSE t

C C
W 1 2K

n=

=

   μ + − θ   θ θ   


 

(2.7) 
 
The variance of sty  is: 

 

( )
Yhh

YhYh
L

h
hst n

CWyVar
θ

μ 22

1

2
=

=            (2.8) 

 
and, from (2.7) and (2.8), 
 

( ) ( )

( )
RS st

2 2L
2 Yh Xh
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MSE t Var y

C
W 1 2K
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which is less than zero if 
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2

XhVh

Vh
Xh σσ

σθ
+

=

s'δ

s'δ

s'δ
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( )

( )

2 2L
2 Yh Xh
h h Xh

h 1 h Xh

h Xh

h
Xh

h
Xh

C
W 1 2K 0

n

or if  1 2K 0

1
or if  K

2

1
or if  K

2

=

 μ − θ <  θ 

− θ <

<
θ

>
θ



   (2.9) 

 
Thus, the proposed separate ratio estimator RSt  

is more efficient than the usual unbiased 
estimator sty  if condition (2.9) holds. 

If the observations on both the variables 
X and Y are recorded without error, then the 
MSE of RSt  at (2.7) reduces to: 

 

( ) ( )[ ]hXhYh
h

Yh
L

h
htRS KCC

n
WtMSE 2122

2

1

2 −+







=

=

μ

(2.10) 
 
Expression (2.10) can be obtained from (2.7) by 
setting 1== YhXh θθ . From (2.7) and (2.10): 

 

( ) ( )RS RS t

2L
2 2 2Yh Yh Xh
h Yh Xh

h 1 h Yh Xh

MSE t MSE t

1 1
W C C

n=

− =

      μ − θ − θ+      θ θ      


(2.11) 
 
which is always positive. Thus, it follows from 
(2.11) that the presence of measurement errors 
associated with both variables are accountable 
for increasing the mean squared error of the 
separate ratio-estimator RSt . 

 
Separate Product Estimator in Stratified Random 
Sampling in the presence of Measurement Errors 

Next, define the product estimators in 
stratified random sampling in the presence of 
measurement errors of the population mean Yμ  
as 


=

=
L

h Xh

h
hhPS

xyWt
1 μ

              (2.12) 

Express (2.12) in terms of  as 
 

( )( )
hh xyYh

L

h
hPS Wt δδμ ++=

=

11
1

   (2.13) 

 

Assuming that 1<
hxδ , the right hand side of 

(2.13) is expanded as 
 

{ }
hhhh xyxyYh

L

h
hPS Wt δδδδμ +++=

=

1
1

, 

 

{ }
hhhh xyxyYh

L

h
hYPS Wt δδδδμμ +++= 

=1

, 

 
or 

( ) { }
hhhh xyxyYh

L

h
hYPS Wt δδδδμμ ++=− 

=1

, 

(2.14) 
 
and taking the expectation of both sides of (2.14) 
results in the bias of PSt  to the first degree of 

approximation, 
 

( ) hXhYh

L

h
hPS KCWtB 2

1

μ
=

=          (2.15) 

 
Squaring both sides of (2.14) and neglecting 
terms of  having power greater than two and 
taking expectations of both sides, provides the 
mean squared error of PSt  to the first degree of 

approximation as 
 

( ) ( )







++








=

=
Xhh

Xh

Xh

Yh

Yh

h

Yh
L

h
hPS KCC

n
WtMSE θ

θθ
μ

21
222

1

2

(2.16) 
 
From (2.16) and (2.8) 
 

( ) ( )

( )
RS st

2 2L
2 Yh Xh
h h Xh

h 1 h Xh

MSEP t Var y

C
W 1 2K

n=

− =

 μ + θ  θ 


 

 
which is less than zero if 

s'δ

s'δ
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( )

( )

2 2L
2 Yh Xh
h h Xh

h 1 h Xh

h Xh

h
Xh

C
W 1 2K 0

n

or if 1 2K 0

1
or if K

2

=

 μ + θ <  θ 

+ θ <

< −
θ



     (2.17) 

 
Thus, the proposed separate product estimator 

PSt  is more efficient than the usual unbiased 

estimator sty  if condition (2.17) holds. 

If the observations on both the variables 
X and Y are recorded without error, then the 
MSE of the separate product estimator PSt  is 

given by 
 

( ) ( )[ ]hXhYh
h

Yh
L

h
htRS KCC

n
WtMSE 2122

2

1

2 ++







=

=

μ

(2.18) 
 
Expression (2.18) can be obtained from (2.16) 
by setting 1== YhXh θθ . From (2.16) and 

(2.18): 
 

( ) ( )PS PS t

2L
2 2 2Yh Yh Xh
h Yh Xh

h 1 h Yh Xh

MSE t MSE t

1 1
W C C .

n=

− =

      μ − θ − θ+      θ θ      


(2.19) 
 
which is always positive. Thus, it follows from 
(2.19) that the presence of measurement errors 
associated with both variables are accountable 
for increasing the mean squared error of the 
separate product-estimator PSt . 

 
Separate Difference Estimator in Stratified 
Random Sampling in the presence of 
Measurement Errors 

A separate difference estimator is 
defined in stratified random sampling in the 
presence of measurement errors for population 
mean Yμ , as 

( ){ }
=

−+=
L

h
hXhhhhdS xdyWt

1

μ      (2.20) 

where sdh '  are suitably chosen constants. 

It can be observed that the estimator dSt  

is an unbiased estimator for the population mean 

Yμ , and the variance of dSt  is given by 

 

( ) ( ) ( )
( )

2L
h h h2

dS h
h 1 h h

Var y d Var x
Var t W

2Cov y , x=

 + =  
−  

  

(2.21) 
where 

( )
Yhh

Yh

h

UhYh
h nn

yVar
θ

σσσ 222

=
+

= , 

 

( )
Xhh

Xh

h

VhXh
h nn

xVar
θ

σσσ 222

=
+

= , 

 

( ) YXh
h

Xh

h

YXh
hh nn

x,yCov βσσ 2

== , 

 

( )
( )( ) ( )( ){ }

YXh hi hi

hi hi hi hi

Cov y , x

E y E y x E x

σ =

= − −  

and 

2
Xh

YXh
YXh σ

σβ = . 

Thus, 
 

( )

( )

2 2 2L
2 2h Yh Xh

dS h h XY YXh
h 1 h Yh Xh

2 2 2L
h Yh Xh

h h YXh Xh
h 1 h Yh Xh

W
Var t d 2d

n

W
d d 2

n

=

=

 σ σ= + − σ β θ θ 
 σ σ= + − β θ θ θ 




 (2.22) 

 
which is minimized for 
 

XhYXhhd θβ=                  (2.23) 

 

where 
2
Xh

YXh
YXh σ

σβ =  is the population regression 

coefficient of Y on X in the hth stratum. Thus, the 
resulting (minimum) variance of dSt  is given by 
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( )








−= 
=

22
2

1

2

XhXhYXh
Yh

Yh
L

h h

h
dS n

WtVar.min σθβ
θ
σ

 

or 

( ) ( )YhXhh

L

h Yhh

Yhh
dS n

WtVar.min θθρ
θ
σ 2

1

22

1−=
=

 

(2.24) 
 
When data are recorded without error for the 
variables X and Y, the variance of dSt  at (2.22) 

reduces to: 
 

( ) ( ){ }YXhhXhhYh

L

h h

h
tdS dd

n
WtVar βσσ 222

1

2

−+=
=

 

(2.25) 
 
From (2.22) and (2.25): 
 

( ) ( )dS dS t

2L
2 2h Yh Xh
Yh h

h 1 h Yh Xh

Var t Var t

W 1 1
d 0.

n=

− =

    − θ − θ σ + ≥    θ θ     


 

(2.26) 
 
Observe from (2.26) that the presence of 
measurement error in both the variables X an Y 
inflates the variance of dSt . The expression 

(2.25) is minimized for: 
 

YXhhd β=                     (2.27) 

 
and the resulting (minimum) variance of dSt  in 

the absence of measurement errors is given by 
 

( ) ( )22

1

2

1 hYh

L

h h

h
tdS n

WtVar.min ρσ −=
=

     (2.28) 

 
From (2.24) and (2.28): 
 

( ) ( )

( )

dS dS t

2 2L
2h Yh Yh
h Xh

h 1 h Yh

min .Var t min .Var t

W 1
1

n=

− =

  σ − θ + ρ − θ  θ   


 

(2.29) 
 

It is observed from (2.29) that the difference [
( ) ( )tdSdS tVar.mintVar.min − ], is always 

positive. Thus, the presence of measurement 
errors in both variables X and Y inflates the 
variance of dSt  at optimum condition, which 

disturbs the optimal properties of the difference 
estimator dSt . 

 
A Separate Class of Estimators in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

Whatever the sample chosen, let 
( )hh x,y  assume values in a bounded, closed 

subset, hP , of the two-dimensional real space 

containing the point ( )XhYh ,μμ . Following an 

approach similar to that adopted by Srivatava 
(1971, 1980) for defining a class of estimators of 
the population Yhμ , consider the class of 

estimators of the population Yμ , defined by 
 

( )hh

L

h
hhS x,ytWt 

=

=
1

,           (2.30) 

 
where ( )hhh x,yt  is a function of ( )hh x,y  

 
( ) YhXhYhh ,t μμμ =              (2.31) 

 

( ) ( )
( )

( )
h h

h Yh Xh
h1 Yh Xh

h y ,x

Yh Xh

t ,
t ,

y

,

1

∂ μ μ
 μ μ =

∂

= μ μ
=

 

 
such that it satisfies the following conditions: 
 

i. The function ( )hhh x,yt  is continuous and 

bounded in hP ; and 

ii. The first, second and third order partial 
derivatives of ( )hhh x,yt  exist and are 

continuous and bounded in hP . 
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Expanding the function ( )hhh x,yt  about the 

point ( ) ( )XhYhhh ,x,y μμ=  in a third-order 

partial derivative, results in 
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( )( ) ( )
( ) ( )

S

Yh h Yh h1 Yh Xh

h Xh h2 Yh Xh

2

h Yh h11 Yh Xh

h Yh h Xh h12 Yh Xh

2L
h Xh h22 Yh Xh

h
3h 1 * *

h Yh h111 h h

2 * *
h Yh h Xh h122 h h

2 *
h Yh h Xh h112 h

t

y t ,

x t ,

y t ,
1

2 y x t ,
2

x t ,W

y t y , x

3 y x t y , x1

6 3 y x t y , x

=

=

μ + − μ μ μ

+ − μ μ μ

 − μ μ μ
  + + − μ − μ μ μ 
 

+ − μ μ μ  

− μ

+ − μ − μ
+

+ − μ − μ



( )
( ) ( )

*
h

3 * *
h Xh h222 h hx t y , x

 
 
 
 
 
 
 
 
 
        

  
  
  
+ − μ    

(2.32) 
 

where ( ){ }YhhYh
*
h yy μθμ −+= , 

( ){ }XhhXh
*
h xx μθμ −+= , 10 << θ  and θ  

may depend on ( )*
h

*
h x,y , and ( )*

h
*
hhijk x,yt  

denotes the third order partial derivative of 

( )*
h

*
hh x,yt  with respect to ( )hh x,y  at the point 

( )hh x,y = ( )*
h

*
h x,y . 

Taking the expectation of (2.32) the bias 
of the estimator St  up to the terms of the order 

1−n is obtained 
 

( ) ( ) ( )
( ) ( )

L
h h22 Yh Xh

S h
h 1 h h h12 Yh Xh

Var x t ,1
B t W ,

2 2Cov y , x t ,=

μ μ +  =  
μ μ  


 
or 

( ) ( )

( )
( )

( )

2
Xh2L

h22 Yh Xhh
XhS

h 1 h
YXh h12 Yh Xh

2 2L
h22 Yh Xhh Yh

h 1 h Xh YXh h12 Yh Xh

t ,W1
B t

2 n
2 t ,

t ,W1
.

2 n 2 t ,

=

=

 σ μ μ θ=  
 + σ μ μ 

μ μ σ  =  θ + β μ μ  




(2.33) 

 

Up to the terms of order 1−n , the MSE of St  is : 

 

( )
( )

( ) ( )
( ) ( )

( )

( )

( )

( ){ }

h
L

2 2
S h h h 2 Yh Xh

h 1

h h h12 Yh Xh

2 2
2Yh Xh2L
h 2 Yh Xhh

Yh Xh
h 1 h

YXh h 2 Yh Xh

2 2
Yh Xh2L h 2 Yh Xh

h
Yh Xh

h 1 h
h2 Yh Xh YXh Xh

Var y
1

MSE t W Var x t ,
2

2Cov y , x t ,

t ,W

n
2 t ,

t ,W

n
t , 2

=

=

=

 
 

= + μ μ 
 + μ μ 

 σ σ+ μ μ θ θ=  
 + σ μ μ 
 σ σ+ μ μ θ θ=  
 μ μ + β θ 







(2.34) 
 
The MSE( St ) is minimized for 

 

( ) YXh
h12 Yh Xh Xh2

Xh

YXh Xh

t ,
 σμ μ = − θ σ 

= −β θ
    (2.35) 

 
Thus, the resulting minimum MSE of St  is 

given by 

( ) ( )
=

−=
L

h
YhXhh

Yhh

Yhh
S n

WtMSE.min
1

2
22

1 θθρ
θ
σ

 

(2.36) 
 
Theorem 2.1 

Based on the previous discussion, the 
following theorem is put forth. To the first 
degree of approximation, 
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( ) ( )
=

−≥
L

h
YhXhh

Yhh

Yhh
S n

WtMSE
1

2
22

1 θθρ
θ
σ

, 

 
with equality holding if 
 

( ) =XhYhh ,t μμ12 XhYXhθβ− . 

 
Note the lower bound of the MSEs of the 
separate class of estimators St  at (2.30) in the 

variance of the optimum separate difference 
estimator (OSDE) 
 

( ){ }hYhhh

L

h
hSd xdyWt −+= 

=
μ0

1
0  

 
with 

XhYXhhd θβ=0 , 

 
which shows that the estimators belonging to the 
class of separate estimators St  at (2.30) are 

asymptotically no more efficient than the 
optimum difference estimator (ODE) Sdt 0 . 

Any parametric function ( )hhh x,yt  

satisfying conditions (i) and (ii) can define an 

Yhμ . The class of such estimators is very large. 

For example, the following estimators: 
 

h

h

Yh
L

h
hhS x

yWt
α

μ








=

=1
1 , 

 





















−=

=

h

Yh

h
L

h
hhS

xyWt
α

μ
2

1
2 , 

 

( ){ }XhhhXh

Xh
L

h
hhS x

yWt
μαμ

μ
−+

=
=1

3 , 

 

{ ( )}Xhhh

L

h
hhS xyWt μα −+=

=1
4 , 

 
are particular members of a proposed class of 
estimator where hα  is a suitably chosen 

constant. The optimum value of constant hα  in 

41toj,tSj = , which minimizes the mean 

squared error of the resulting estimator are 
obtained from (2.36). 

It follows from (2.7). (2.8), (2.16) and 
(2.34) that the proposed separate class of 
estimators St  is more efficient than: 

 
i. the usual unbiased estimator sty  if 

{ }
( )

{ }

YXh Xh

h2 Yh Xh

YXh Xh

min . 0,

t .

max. 0,

−β θ

< μ μ <

−β θ

              (2.37) 

 
ii. the separate ratio estimator RSy  if 

( ){ }
( )
( ){ }

h h YXh Xh

h 2 Yh Xh

h h YXh Xh

min . R , R 2

t .

max . R , R 2

− − β θ

< μ μ <

− − β θ

   (2.38) 

 
iii. the separate product estimator PSy  if 

( ){ }
( )
( ){ }

h h YXh Xh

h2 Yh Xh

h h YXh Xh

min . R , R 2

t .

max . R , R 2

− + β θ

< μ μ <

− + β θ

   (2.39) 

 
A Combined Ratio Estimator in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

For the estimation of population mean, 

Yμ , the following combined ratio estimator is 
defined in the presence of measurement errors: 
 

st

X
stRC x

yt μ
=                  (2.40) 

 
To the first degree of approximation, the bias 
and mean squared error of the combined ratio 
estimator RCt  are respectively given by 

 
 



EFFECT OF MEASUREMENT ERRORS ON PRODUCT ESTIMATORS 

396 
 

( ) ( )

( )

2 22L
Xh Vhh h Xh Yh

RC Y 2
h 1 h X X Y

2 2 2L
h Xh YXh Xh

Y 2
h 1 h X Xh X Y

2 2L
h Xh YXh

Y 2
h 1 h X Xh X

2 2L
h Xh

YXh Xh
h 1X h Xh

W
B t

n

W

n

W R

n

W1
R

n

=

=

=

=

 σ + σ ρ σ σ
 = μ −

μ μ μ  
 σ β σ= μ − μ θ μ μ 

 σ β= μ − μ θ μ 
  σ= −β θ μ θ 








(2.41) 

and 
 

( )

( )

RC

2 2 2L
h Yh Xh

YXh Xh
h 1 h Yh Xh

MSE t

W
R R 2

n=

=

  σ σ+ − β θ  θ θ  


(2.42) 
 
From (2.8) and (2.42): 
 

( ) ( )

( )

st RC

2 2L
h Xh

YXh Xh
h 1 h Xh

Var y MSE t

W
R R 2 ,

n=

− =

 σ− − β θ θ 


 

 
which is positive if 
 

2

1

1

2
2

2

1

2

>













=

=

L

h
Xh

h

h

Xh

Xh
YXh

L

h h

h

n
W

R

n
W

σ

θ
σβ

            (2.43) 

 
When the data are recorded without error then 
the expression (2.42) reduces to: 
 

( ) ( )[ ]YXhXhYh

L

h h

h
tRC RR

n
WtMSE βσσ 222

1

2

−+= 
=

 

(2.44) 
 
From (2.42) and (2.44): 
 

( ) ( )RC RC t

2L
2 2 2h Yh Xh
Yh Xh

h 1 h Yh Xh

MSE y MSE t

W 1 1
R

n=

− =

    − θ − θσ + σ    θ θ    


 

(2.45) 
 
which is always positive. It follows that the 
presence of measurement errors in both the 
variables X and Y inflates the MSE( RCt ). 

 
A Combined Product Estimator in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

The following combined product 
estimator is defined for the population mean Yμ  
in the presence of measurement errors as: 
 

st
PC st

X

x
t y .=

μ
                   (2.46) 

 
The exact bias and mean squared error to the 
first degree of approximation of the combined 
ratio estimator PCt  are respectively given by 
 

( ) 
=









=

L

h X

XhYXh

h

h
YPC n

W
tB

1

22

μ
σβμ      (2.47) 

and 
 

( ) ( )











+








+= 

=
XhYXh

Xh

Xh

Yh

Yh
L

h h

h
PC RR

n
WtMSE θβ

θ
σ

θ
σ

2
22

1

2

(2.48) 
 
From (2.8) and (2.48): 
 

( ) ( )

( )

st PC

2 2L
h Xh

YXh Xh
h 1 h Xh

Var y MSE t

W
R R 2

n=

− =

 σ− + β θ θ 


  (2.49) 

 
which is positive if 
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2

1

1

2
2

2

1

2

−<













=

=

L

h
Xh

h

h

Xh

Xh
YXh

L

h h

h

n
WR

n
W

σ

θ
σβ

        (2.50) 

 
Assuming that the observations for X and Y be 
recorded without error, then expression (2.48) 
reduces to: 
 

( ) ( )[ ]YXhXhYh

L

h h

h
tPC RR

n
WtMSE βσσ 222

1

2

++= 
=

 

(2.51) 
 
which can be obtained from (2.48) by setting 

1== XhYh θθ . From (2.48) and (2.51): 

 
( ) ( )PC PC t

2L
2 2 2h Yh Xh
Yh Xh

h 1 h Yh Xh

MSE t MSE t

W 1 1
R

n=

− =

    − θ − θσ + σ    θ θ    
  

(2.52) 
 
which is always positive. Expression (2.52) is 
the same as that obtained in (2.45). Thus, the 
presence of measurement errors in both 
variables X and Y are responsible for increasing 
the MSE of the combined product estimator PCt . 
 
A Combined Difference Estimator in Stratified 
Random Sampling in the presence of 
Measurement Errors 

A combined difference estimator in 
stratified random sampling is defined in the 
presence of measurement errors for a population 
mean, Yμ , as 
 

( )stXstdC xdyt −+= μ            (2.53) 

 
where d  is a suitably chosen constant. It can be 
seen that the combined difference estimator dCt  

is unbiased. The variance of dCt  is given by 

 

( )
( ) ( ) ( )
dC

2
st st st st

2 2 2L
2h Yh Xh

YXh
h 1 h Yh Xh

2 2 2 2L L
2h Yh h Xh

h 1 h 1h Yh h Xh
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h 1 h
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W
d 2d

n

W W
d

n n

W
   2d

n

=

= =

=

=

= + −

  σ σ= + − σ  θ θ  
   σ σ= +   θ θ   

− β σ



 



(2.54) 

 
which is minimized for 
 





=

=





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


=

L

h Xh
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h

h

XhYXh

L

h h

h

n
W
n

W

d

1
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2

1

2

θ
σ

σβ
              (2.55) 

 
Thus, the resulting minimum variance of dCt  is 

given by 
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

=

=

=
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


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
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

−
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1

22
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1

22

θ
σ

σβ

θ
σ

(2.56) 
 
Assume the data associated with variables X and 
Y are recorded without error; in such a case, the 
expressions (2.54) reduce to: 
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




=

=

=










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

−



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


=

L

h Xh
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h

h

XhYXh

L

h h

h

L
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h

h
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n
W
n

W

n
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1
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2

2

1

2

1

22

θ
σ

σβ

θ
σ

(2.57) 
From (2.54) and (2.57): 
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( ) ( )dC dC t

2 2L L
2 2 2h Yh h Xh
Yh Xh

h 1 h 1h Yh h Xh

Var t Var t

W 1 W 1
d

n n= =

− =

   − θ − θσ + σ   θ θ   
 

(2.58) 
 
which is always positive. It follows from (2.56) 
that the presence of measurement errors in both 
variables X and Y enhances the variance of dCt  

regardless of the value of d. 
The ( )dCtVar  at (2.57) is minimized for 

 





=

==
L

h
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h

h

XhYXh

L

h h

h

n
W

n
W

d

1
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1

2

σ

σβ
                (2.59) 

 
Combining (2.59) with (2.57) results in the 
minimum value of ( )styVar  as 
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=

=
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(2.60) 
 
From (2.56) and (2.58): 
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2L
2h Yh
Yh
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YXh Xh 2 2 2L L
h 1 h 2h h Xh
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=

=

=
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 − θσ  θ 
 − θσ  θ   + β σ 

    σ   σ   θ     






 
(2.61) 

 
It can be observed from (2.61) that the 
difference ( ) ( )[ ]ttdCdC tVar.mintVar.min −  is 

always positive. Thus the presence of 
measurement error in both variables X and Y 

inflates the variance of dCt  at their optimum 

conditions, which disturbs the optimal properties 
of the difference estimator dCt . 

 
A Combined Class of Estimators in Stratified 
Random Sampling in the presence of 
Measurement Errors 

Following the same procedure as 
adopted by Srivastava (1971, 1980) a class of 
combined estimators of the population mean Yμ  
in the presence of measurement errors is 
suggested, such as 
 

( )ststC x,ytt = ,                 (2.62) 

 
where ( )stst x,yt  is a function of ( )stst x,y  such 

that 
( ) YXY ,t μμμ =                (2.63) 

 

( ) ( )
( )

11
1 =

∂
∂

=
XY ,st

XY
XY y

,t,t
μμ

μμμμ , 

 
and satisfies the same conditions as given in 2.4 
for St . 

Expanding the function ( )stst x,yt  about 

the point ( )stst x,y = ( )XY ,μμ  in a third-order 

Taylor’s series results in 
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or 
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  
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(2.64)

 

 

where ( ){ }YstY
*
st yy μξμ −+= , 

( ){ }XstX
*
st xx μξμ −+= , and 10 << ξ . Also, 

ξ  may depend on ( )*
st

*
st x,y  and ( )*

st
*
stijk x,yt  

denotes the third order partial derivative of 
( )stst x,yt  with respect to ( )stst x,y  at the point 

( )stst x,y = ( )*
st

*
st x,y . 

Taking the expectation of (2.64) 
provides the bias of the estimator Ct  up to the 

terms of the order 1−n , 
 

( ) ( ) ( )
( ) ( )

st 22 Y X

C

st st 12 Y X

Var x t ,1
B t ,

2 2Cov y , x t ,

μ μ  =  
+ μ μ  

 

 

( ) ( )

( )

( )

( )

2
Xh2L

22 Y Xh
XhC

h 1 h
YXh 12 Y X

2 2L
h Yh

22 Y X
h 1 h Xh

2L
2h

YXh Xh 12 Y X
h 1 h

t ,W1
B t

2 n
2 t ,

W
t ,

n1

2 W
2 t ,

n

=

=

=

 σ μ μ θ=  
 + σ μ μ 

 σ μ μ θ =
 
+ β σ μ μ 
 







 

(2.65) 
 

Squaring both sides of (2.64) and neglecting 
terms ( ) ( )XstYst xandy μμ −−  having power 

greater than two results in 
 

( )
( ) ( )

( ) ( )
( ) ( )

2 2
st Y 1 Y X

2 2
C Y st X 2 Y X

st st 12 Y X

y t ,

t x t ,

2Cov y , x t ,

 − μ μ μ
 
 − μ = + − μ μ μ
 
+ μ μ  

 

 
Noting that ( )XY ,t μμ1 =1 and taking the 
expectation of both sides of the above 
expression, provides the mean squared error of 
the class of combined estimators Ct  as 

 

( ) ( ) ( ) ( )
( ) ( )

st st 22 Y X

C

st st 2 Y X

Var y Var x t ,
MSE t ,

2Cov y , x t ,

+ μ μ 
=  

+ μ μ  
 
or 

( ) ( )

( )

( )

( )

2 2
2Yh Xh2L
2 Y Xh

Yh XhC
h 1 h

YXh 2 Y X

2 2 2 2L L
2h Yh h Xh
2 Y X

h 1 h 1h Yh h Xh

2L
2h

YXh Xh 2 Y X
h 1 h

t ,W
MSE t

n
2 t ,

W W
t ,

n n

W
2 t ,

n

=

= =

=

 σ σ+ μ μ θ θ=  
 + σ μ μ 

 σ σ+ μ μ θ θ =
 
+ β σ μ μ 
 



 


(2.66) 

 
which is minimized for 
 

( )








−=





=

=

Xh

Xh
L

h h

h

XhYXh

L

h h

h

XY

n
W
n

W

,t

θ
σ

σβ
μμ

2

1

2

2

1

2

2       (2.67) 

 
Thus the resulting minimum MSE of Ct  is given 

by 
 



EFFECT OF MEASUREMENT ERRORS ON PRODUCT ESTIMATORS 

400 
 

( )C

22L
2h

YXh Xh2 2L
h 1 hh Yh

2 2L
h 1 h Yh h Xh

h 1 h Xh

min.MSE t

W
nW

n W
n

=

=

=

=

 
β σ  σ  − θ  σ 
 θ 






     (2.68) 

 
Theorem 2.2 

Based on the above, the following 
theorem is put forth. To the first degree of 
approximation, 
 

( )





































−







≥






=

=

= L

h Xh

Xh

h

h

XhYXh

L

h h

h

L

h Yh

Yh

h

h
C

n
W
n

W

n
WtMSE

1

22

2

2

1

2

1

22

θ
σ

σβ

θ
σ

 
with equality holding if 
 

( )








−=





=

=

Xh

Xh
L

h h

h

XhYXh

L

h h

h

XY

n
W
n

W

,t

θ
σ

σβ
μμ

2

1

2

2

1

2

2 . 

 
Note that the lower bound of the MSE of the 
combined class of estimators Ct  at (2.62) is the 

variance of the optimum combined difference 
estimator (OCDE) 
 

( )stXstCd xdyt −+= μ00         (2.69) 

with 
2L

2h
YXh Xh

h 1 h
0 2 2L

h Xh

h 1 h Xh

W

n
d ,

W

n

=

=

β σ
=

 σ
 θ 




 

 
which demonstrates that the estimators belonging 
to the class of combined estimators Ct  at (2.62) 

are asymptotically no more efficient than the 
optimum difference estimator (ODE) Cdt 0  at 

(2.69). 

Any parametric function ( )stst x,yt  

satisfying the regularity conditions as described 
for tC, can define a Yμ . The class of such 
estimators is very large. For example, the 
following estimators: 
 

ψ
μ









=

st

Y
stC x

yt 1 , 

 





















−=

ψ

μY

st
stC

xyt 22 , 

 

( ){ }XstX

X
stC x

yt
μψμ

μ
−+

=3 , 

 
{ ( )}XststC xyt μψ −+=4 , 

 
are particular members of the proposed class of 
estimator, where ψ  is a suitably chosen 

constant. The optimum value of constant ψ  in 

41toj,t jC =  which minimizes the mean 

squared error of the resulting estimator are 
obtained from (2.68). 

It follows from (2.42), (2.8), (2.48) and 
(2.66) that the proposed separate class of 
estimators Ct  is more efficient than: 

 
i. the usual unbiased estimator sty  if 

 

( )

L

h YXh Xh
h 1

L

h
h 1

2 Y X

L

h YXh Xh
h 1

L

h
h 1

2 p
min. 0,

p

t .

2 p
max. 0,

p

=

=

=

=

 − β θ  
 
 
  
< μ μ <

 − β θ  
 
 
  









        (2.70) 

 
ii. the combined ratio estimator CSy  if 
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( )

L

h YXh Xh
h 1

L

h
h 1

2 Yh Xh

L

h YXh Xh
h 1

L

h
h 1

p
min . R,R 2

p

t .

p
max. R,R 2

p

=

=

=

=

  β θ    − − 
      

< μ μ <

  β θ    − − 
      









      (2.71) 

 
iii. the combined product estimator PCy  if 

 

( )

L

h YXh Xh
h 1

L

h
h 1

2 Yh Xh

L

h YXh Xh
h 1

L

h
h 1

p
min . R, R 2

p

t .

p
max. R, R 2

p

=

=

=

=

  β θ    − − − 
      

< μ μ <

  β θ    − − − 
      









     (2.72) 

 
where 


=









=

L

h Xh

Xh

h

h
h n

Wp
1

22

θ
σ

. 

 
Theoretical Comparisons 

From (2.7) (or (2.36)) and (2.42) (or 
(2.68)): 
 

( ) ( )

( ) ( )

RS S RC

2 2L
2 2h Xh

YXh Xh h YXh Xh
h 1 h Xh

MSE t or t MSE t

W
R R

n=

− =

 σ  −β θ − −β θ   θ 


 
which is positive if 
 

( ) ( )22
XhYXhhXhYXh RR θβθβ −>−      (3.1) 

 

It follows that RSt  will be more efficient than 

RCt  if and only if ( )XhYXhθβ  is nearer to hR  

than to R.  
From (2.16) and (2.48): 

 

( ) ( )

( ) ( )

PS PC

2 2L
2 2h Xh

YXh Xh h YXh Xh
h 1 h Xh

MSE t MSE t

W
R R

n=

− =

 σ  + β θ − + β θ   θ 

 
which is positive if 
 

( ) ( )22
XhYXhhXhYXh RR θβθβ +>+      (3.2) 

 
Thus, the separate product estimator PCt  is more 

efficient than the combined product estimator 

PCt  if the inequality (3.2) holds. 

From (2.24) and (2.56): 
 

( ) ( )dC dS

22L
2h

YXh Xh 2L
h 1 h 2 2h

YXh Xh Xh2 2L
h 1 hh Xh

h 1 h Xh

22L
2h

YXh Xh2 2L
h 1 hh Xh

h 1 h Xh

2 2 2L
2 2h h Xh
YXh Xh Xh

h 1 h h Xh

min.MSE t min .MSE t

W

n W
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n
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nW

n

W W
   

n n

=
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=

=

=

=

− =

 
β σ    = − β θ σ 
 σ  
 θ 

 
= β σ 

 σ   θ 

   σ− β θ σ  θ  








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L

h 1

2L

h YXh Xh L
h 1 2 2

h YXh XhL
h 1

h
h 1

2L

h YXh Xh L L
2 2h 1

h h YXh XhL
h 1 h 1

h
h 1

p

p
p

p
p p

p
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=

=

=

=

= =

=


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 β θ 
 = − β θ

 β θ  = − β θ 
 
  









 
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( )

2L

h YXh XhL
2 2h 1

h YXh XhL
h 1

h
h 1

L 2

h YXh Xh
h 1
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p
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=

=

=

=

  β θ    = − β θ       

= β θ −








 

(3.3) 
where 





=

== L

h
h

XhYXh

L

h
h

p

p
a

1

1

θβ
 

and 

Xh

Xh

h

h
h n

Wp
θ
σ 22

= . 

 
Observe the expression (3.3) is always 

positive. Thus, unless the term ( )XhYXhθβ  is the 

same from stratum to stratum, the separate 
difference estimator dSt  (or the separate class of 

the estimators St ) at its optimum condition, that 

is, OSDE ( ){ }hYhhh

L

h
hSd xdyWt −+= 

=
μ0

1
0  

with XhYXhhd θβ=0 ) is more efficient than the 

combined difference estimator dCt  (or the 

combined class of the estimators Ct ) at optimum 

(i.e., the OCDE ( )stXstCd xdyt −+= μ00  with 
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2h
YXh Xh

h 1 h
0 2 2L

h Xh

h 1 h Xh

W

n
d

W

n

=

=

β σ
=

 σ
 θ 




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