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Effect of Measurement Errors on the Separate and Combined Ratio
and Product Estimators in Stratified Random Sampling

Housila P. Singh  Namrata Karpe
Vikram University,
Ujjain India

Separate and combined ratio, product and difference estimators are introduced for population mean £, of

a study variable Y using auxiliary variable X in stratified sampling when the observations are
contaminated with measurement errors. The bias and mean squared error of the proposed estimators have
been derived under large sample approximation and their properties are analyzed. Generalized versions of
these estimators are given along with their properties.

Key words: Auxiliary variate, bias, mean squared error, measurement error, study variate.

Introduction

Statistical procedures for the analysis of data
presume that observations are correct
measurements for the characteristics being
studied. When applied to a real world data set, it
is assumed it is possible to take measurements
without error on the theoretical construct of the
variables. This is untenable in many applied
situations when observation errors are a rule
rather than an exception.

Hence, an auxiliary variable is
commonly used in survey sampling to improve
the precision of estimates. When auxiliary
variable information is available researchers are
able to utilize it in methods of estimation to
obtain the most efficient estimator. Examples are
ratio, product and regression estimation
methods. Using auxiliary information at the
estimation stage, a large number of estimation
procedures for approximating the population

mean [, of a study variable Y have been

proposed and their properties studied based on
data originating under various kinds of sampling
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schemes and under the supposition that
observations have been recorded without error.
Such an assumption may not be tenable in actual
practice and data may contain observational or
measurement errors due to various reasons
(Cochran, 1968; Sukhatme, 1984).

Chandhok and Han (1990) have studied
the properties of a ratio estimator under two
sampling schemes; simple random sampling
without replacement and the Mizuno scheme
when measurement errors are present. Shalabh
(1997) studied the properties of the classical
ratio estimator in simple random sampling when
the data on both the characteristics Y (study
variable) and X (auxiliary variable) are subject to
measurement errors. Manisha and Singh (2001),
Maneesha and Singh (2002) and Singh and
Karpe (2008a) have also considered the problem
of estimating the population mean using
auxiliary information in the presence of
measurement errors. Later Singh and Karpe
(2008b, 2009a, 2009c) studied the effect of
measurement errors on the classes of estimators
proposed for population variance and coefficient
of variation. This article discusses the properties
of separate and combined ratio and product
estimators in stratified random sampling when
the data are subject to measurement errors on
both the characteristics ¥ and X.
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Suggested Estimators
Separate Ratio Estimator in Stratified Random
Sampling in the Presence of Measurement
Errors
Consider a finite population

U =(u,,u,,..,u,) of size N and let Y and X
respectively be the study and auxiliary variables
associated with each unit u; = (j=12,..,N)
of the population. Let the population of size N
be stratified into L strata with the A" stratum

containing N, units, where 4 =12,..,L such

L
that Z N, = N . A simple random sample size

h=1
n, is drawn without replacement from the 4"

L

stratum such that Znh =n. Let (yhl.,xhi) be
n=1

the observed pair values instead of true pair

values (Y ir X ,”.) of two characteristics (Y, X) on

" unit of the A" stratum, where i = 1,2,..,N,

and 2 =12,..., L. In addition, let:

hll hzl

L L
(yst = ZWhyh’)_Cst = thfhj )

=
(quh

L L
(/uy = ZWh:uYhHuX = ZWh:uXh]
h=1 h=1

|
_N_h;yhiquh =

)

h i=1
and

be the samples means and population means of

is the

(Y, X) respectively, where W, =

stratum weight. Let the observational or

measurement errors be

-7,

1

Uy = Vi 2.1

and

389

Vs 2.2)

1

=X,

1

_Xhi

which are stochastic in nature and are

. : 2
uncorrelated with mean zero and variances o7,

and O'Ifh respectively. Further let p, be the

population correlation coefficient between Y and
Xin the A" stratum.

For simplicity in exposition, assume that
u,'s and v,'s are uncorrelated although

(Yhi,X hl.) are correlated; such a specification

can be relaxed at the cost of some algebraic
complexity. It is also assumed that the finite

population (1-f,) and

(I- f) can be ignored where f,

correction  terms

n
=—" and
h

To estimate the population mean g,
the traditional unbiased estimator (i.e., stratified
sample mean) ), is used, but it does not utilize
the sample information on  auxiliary
characteristic X. Assuming that f,, is known

and is different from zero, this method yields a
separate ratio estimator of the population mean

Hy:
Z W, ¥, LiXh

h

2.3)

To obtain the bias and mean squared error of

tes 2 V) = :uYh(l+5)7h )’ and x, = [y, (1+§7c,, )’
such that
(5;,, )= (5;,, )=
C: bors C:
E(s2 |48 |— _En
( yh) n, " O-;h 1,6y, ,
E(52 )= S 14 th _Cn
' n, Oy 1,6y,
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1
=—PCuCys

where

and

Expressing (2.3) in terms of 0's as

L

tes = S Wty (146, N146. ) 24
h=1

Assuming ‘é}h‘ <1, the right hand side of (2.4)

is expanded as

L 1-8_ +8;
tRs:;whuYhmmm)[_ss j

. 148, =5, -5, 5,
— W h h h h
R T

Neglecting terms of J's having power greater
than two, results in
L 1+8, -8, ~8,8,
s = Z Wiy, ,
1
- 85, =85, —8;,8;,
=ly +Q Wi )
v 2 Wibb +82 +8, &2

Yo Xn

. 52 +6. &
h=1 Yo Xn

L S?h - 8ih - 6?11 Sih
(tRS_p’Y):ZWh!J“Yh 52 45 & ,

h=1 Yn o Xn

2.5)
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Taking the expectation of both sides of (2.5)
results in the bias of 7, to the first degree of

approximation,

2

L
C
— W,U Xh
hzzll h Yh( 0

h™ Xh

C
K, :ph(CYh]-
Xn

Squaring both sides of (2.5), neglecting terms of
J's having power greater than two and then
taking the expectation of both sides gives the
mean squared error of 7,¢ to the first degree of

j(l ~0,K,) (2.6)

where

approximation as

MSE (tys) =
L 2 2 2
thz (Hyh J{th n Cin (1_2KheXh )}
h=1 n, ) 8y, Oy
(2.7)
The variance of y, is
C2
Var(3., )= Z w2 g gy

n,6y,
and, from (2.7) and (2.8),

MSE (tys) = Var (3,) =

2 2
iw}f (ﬁj%(l—ﬂ(hem)
h=1

n, Xh

which is less than zero if
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2 2
[ﬁjﬁ(l—mhex}lk 0
n, )06y,

orif (1-2K,0,,)<0

L
2 Wy

h=1

(2.9)
or if —<K,
Xh
. 1
orif K, >
20y,

Thus, the proposed separate ratio estimator 7,

more efficient than the usual unbiased
estimator y, if condition (2.9) holds.

is

If the observations on both the variables
X and Y are recorded without error, then the

MSE of ¢, at (2.7) reduces to:

MSE(t 5 )

Zth(ﬂyh

h=1 h

J[C)%h + C2 (1 - 2Kh )]
(2.10)

Expression (2.10) can be obtained from (2.7) by
setting 8, = 6,, =1.From (2.7) and (2.10):

«

2.11)

MSE (tes

L
2 Wy

h=l1

)~ MSE(iy,), =
(o) e[
ny, 0y, 0

which is always positive. Thus, it follows from
(2.11) that the presence of measurement errors
associated with both variables are accountable
for increasing the mean squared error of the

eXh

Xh

separate ratio-estimator £ .

Separate Product Estimator in Stratified Random
Sampling in the presence of Measurement Errors

Next, define the product estimators in
stratified random sampling in the presence of
measurement errors of the population mean

as

2.12)

L _
X
_ = h
ps = Z W,y
h=1 Hx,
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Express (2.12) in terms of 0's as

L
tps = D Wiy, (1+ 5 )i+ 5 ) @13)

h=1

Assuming that ‘é}h‘ <1, the right hand side of
(2.13) is expanded as

b

+5 +5 +0- O-

Vi~ X

L
pPs = Z Wiy, {1

h=1

L
=Uy + Z Wty {59,, + 5)?h + 5911 57% }’

h=1

or

(tps — 1t +8. +6; 0;

Yn o Xp }’

(2.14)

ZWhﬂYh .,

and taking the expectation of both sides of (2.14)
results in the bias of 7, to the first degree of

approximation,

L
tps)= D W, Cy, K (2.15)

h=1

Squaring both sides of (2.14) and neglecting
terms of &’s having power greater than two and
taking expectations of both sides, provides the
mean squared error of 7,¢ to the first degree of

approximation as

L 2 2 2
MSE(t,5)=> W} (” o j[ g”’ o (1+2k,0,,)
Yh Xh

h=1 I’lh
(2.16)

From (2.16) and (2.8)

MSEP(

L
2 W

h=1

tRS ) - Var(yst ) =
Hf{h C?(h

—yh 1 Xh (142K 0
12 ]S 1120,

which is less than zero if
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C—i‘h(l+2Kh6Xh)<0

Xh

ol

h=1 n,
or if (1+2K, 8y, ) <0
1
20,

(2.17)

orif K, <—

Thus, the proposed separate product estimator
t,g 1s more efficient than the usual unbiased
estimator ), if condition (2.17) holds.

If the observations on both the variables
X and Y are recorded without error, then the

MSE of the separate product estimator 7, is
given by

n,

MSE(t,,, ) ZW{‘UY” j[c3h+c§h(1+21< )
2.18)

Expression (2.18) can be obtained from (2.16)

by setting 6,, =6,, =1. From (2.16) and
(2.18):
MSE(tPS)_MSE(tPS )t =

L
2 W,

h=1

2
1-0 1-0
(HYhJK thcih_’_( Xh
n, Oy O
which is always positive. Thus, it follows from
(2.19) that the presence of measurement errors
associated with both variables are accountable

for increasing the mean squared error of the
separate product-estimator .

<)

(2.19)

Separate Difference Estimator in Stratified

Random Sampling in the presence of
Measurement Errors
A separate difference estimator is

defined in stratified random sampling in the
presence of measurement errors for population

mean [, , as

L
Lys = th{)_}h +dh(:u)01 - X, )}
h=1

(2.20)
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where d,'s are suitably chosen constants.

It can be observed that the estimator 7
is an unbiased estimator for the population mean
MU, , and the variance of 7 is given by

v i Var(y, )+d; Var(X,)
ar (
bt —2Cov(¥,,X,)
2.21)
where
_\ oi+0? Yoz
Var(yh): Yhn Uh — . ;h ,
h hY'Yh
_\ O +0; o’
Var(xh): th Vh — . ;h ,
h h* Xh
N o’
Cov(yh’xh): nYXh :n_XhﬁYXh’
h h

Oyx, = COV(Yhi’Xhi)
= E{(yhi _E(Yhi))(xhi _E(Xhi))}
and

O-YXh

ﬂYXh -

Xh
Thus,

W, | o2 o
Var(t) =S S B 203, |

h=1 1y Yh Xh
L w2 (o2 -
S, B, 29,0,
h=t Dy Yh Xh
(2.22)
which is minimized for
d, = ﬂYXhHXh (2.23)

Oy . . .
where f,,, = Lz)ﬂ' is the population regression
Xh

coefficient of ¥ on X in the 4" stratum. Thus, the
resulting (minimum) variance of ¢, is given by
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LW? | o
min.Var(tdS ) = Z—h 2 _B.0,,0,
=y | Oy,
or
LW o;,
min. Var dS Z : ( pthhHYh)
= 1,0y,

(2.24)

When data are recorded without error for the
variables X and Y, the variance of 7, at (2.22)
reduces to:

2

L
Var dS Z nh {O-}%h +d, O-)Z(h (dh 2B )}
= Ny,
(2.25)
From (2.22) and (2.25):
Var(tds ) _Var(tds)t =

L 2 _ _
Zﬂ{(—l eYhJciﬁdﬁ (—1 O ]}zo.
h=1 Ny 0y, 05,

Observe from (2.26) that the presence of
measurement error in both the variables X an Y

inflates the variance of 7,. The expression

(2.25) is minimized for:

d, =By 2.27)

and the resulting (minimum) variance of 7, in

the absence of measurement errors is given by

2

w,
min Var(ts) Zn_o'yh( _p;) (2.28)
=1 Ny,
From (2.24) and (2.28):

min.Var (t, )—min.Var (t,
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It is observed from (2.29) that the difference [
min .Var(tds )— min .Var(tds )t I, s

positive. Thus, the presence of measurement
errors in both variables X and Y inflates the

always

variance of 7, at optimum condition, which

disturbs the optimal properties of the difference
estimator 7 .

A Separate Class of Estimators in Stratified

Random Sampling in the Presence of
Measurement Errors
Whatever the sample chosen, let

(fh,)?h) assume values in a bounded, closed
subset, P,, of the two-dimensional real space

containing the point (y,,4,,). Following an

approach similar to that adopted by Srivatava
(1971, 1980) for defining a class of estimators of

the population f,,, consider the class of

estimators of the population £, , defined by

L

Iy = thth(yh’fh)’

h=1

(2.30)

where ¢, (fh,)_ch) is a function of (yh,fh)

L (quhnuXh ) = Uy, (2.31)
At (My, 1
=1, (MYhauxh)=%
Yh (Fn-%n)

(“Yh’uxh)
1

such that it satisfies the following conditions:

i. The function ¢, (fh,)?h) is continuous and
bounded in P, ; and

ii. The first, second and third order partial
derivatives of £, (fh,)_ch) exist and are

continuous and bounded in P, .
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Expanding the function ¢, (fh,)?h) about the

point (fh LX), )= (,uYh ,,uXh) in a third-order
partial derivative, results in

t =
_MYh +(yh _uYh)th] (uYh’uXh)
+(ih —Mxn ) thz (HYhs“Xh )

(yh —Myp )2 thll (uYh’MXh)
+-9+2 (yh —Myp ) (ih —MUxn ) oo (MYh >Myp )

iwh +(§h ~Hxn )2 thon (UYhauXh)
h=1 — 3 R —
(Yh _uyh) LONTY (Yh’Xh)
1 +3(?h _“Yh)(ih —Hxy )2 th122 (y;af};)
6 +3(yh —Hyy )2 (ih —Hxn )thnz (?; ,i;)

+(ih ~MHxn )3 th02 (?;ai;)
(2.32)

where )_’; = {/uYh + e(yh — My, )},
X, ={uy, +0(x, —u,)}, 0<O<1 and 6
may depend on ()7;,)_5;), and 7, (f;,f;)
denotes the third order partial derivative of
t) ()7; X, ) with respect to (}h ,)?h) at the point
(,.%,)=(,.%).

Taking the expectation of (2.32) the bias

of the estimator 7, up to the terms of the order

-1 . .
n~ 1is obtained

ZCOV(yh, ) h12 (MYh’uXh)

h 1

or

ZL: {Var Xi ) tas (Hyps My ) + }’

2
GXh t

liﬁ e_Xh h22 (I‘J‘Yh’HXh)

N

=1 Ilh
+26YXhthl2 (MYh’uXh)

_1 L Woor, |t (HYh’MXh)
2533 0,0y, | +2Byxnthns (uYh’MXh)
(2.33)

Up to the terms of order 7", the MSE of £, is :

Var(Yh)
2
MSE (t ZW +Var (X, )t} (Kyps My )
24T -~
+2COV(yh’ Xy ) Lot (“’Yh sMxp )
o2, o
L W? — +_Xhtiz (MY}ﬂMXh)
:Zn_h eYh eXh
T 4200ty (s )
S, Ok
:ZL:W_h2 0, + 0, tho (Mvh’MXh)
=~ n
e {thz (uYh’uXh)+2BYXheXh

(2.34)

The MSE( ¢ ) is minimized for

9
thia (Ko )=—( YX“JG
hi2 Yh > Xh Gih Xh (235)

= _BYXheXh

Thus, the resulting minimum MSE of 7, is

given by
L WZO_Z
min -MSE(ts )= ZM(I = P66y, )
h=1 1,0y,
(2.36)
Theorem 2.1

Based on the previous discussion, the
following theorem is put forth. To the first
degree of approximation,
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2 2
Wh O-Yh

nheYh (1 - pf@x,ﬁm )’

MSE(ts)=

h=1
with equality holding if

Lia (/‘Yh’ﬂ)(h ) =~ Brab -

Note the lower bound of the MSEs of the
separate class of estimators #¢ at (2.30) in the

variance of the optimum separate difference
estimator (OSDE)

L
Lios = th {?h + dOh (:UYh =X}, )}
=l

with
dOh = ﬂYXheXh ’

which shows that the estimators belonging to the
class of separate estimators 7, at (2.30) are
asymptotically no more efficient than the
optimum difference estimator (ODE) ¢, .

Any parametric function ¢, (fh,)?h)
satisfying conditions (i) and (ii) can define an
MUy, . The class of such estimators is very large.
For example, the following estimators:

L
- My,
t W,y ,
SR SACHE PR Y
L
ts4 th{?h"‘ah(fh_ﬂXh)}’

are particular members of a proposed class of

estimator where ¢, 1is a suitably chosen

395

constant. The optimum value of constant ¢, in
tg,J= 1to4, which minimizes the mean

squared error of the resulting estimator are
obtained from (2.36).

It follows from (2.7). (2.8), (2.16) and
(2.34) that the proposed separate class of

estimators #, is more efficient than:

i.  the usual unbiased estimator y, if
min.{0, By, 0xx |

<ty (Myp iy ) <
max.{0,—Byx,0x, }

(2.37)

ii.  the separate ratio estimator Vg if
min.{-R,.(R, —2B,x,0x, )]
<ty (M ) <
max .{—Rh, (Ry = 2ByxnOx )}

(2.38)

iii.  the separate product estimator y ¢ if
min {R,.—(R, +2B,,,04, )}

<t (Hyn b ) <
max .{Rh = (R, +2Byx,0x, )}

(2.39)

in Stratified
Presence of

A Combined Ratio Estimator
Random Sampling in the
Measurement Errors

For the estimation of population mean,
MU, , the following combined ratio estimator is

defined in the presence of measurement errors:

= Hx

Ire =V =
xS[

(2.40)

To the first degree of approximation, the bias
and mean squared error of the combined ratio

estimator 7, are respectively given by
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L W? _(Giﬁczwl) P, 0,0
B(tRC):“’YZ h _ ~ PuO9xuCvn
h=1 1y i My Hyly
[ o B
Y
h=1 1y _M?(eXh Uxly ]
L Wos R By |
:HYZ h ¥ Xh : _ Pyxh
h=1 1y UxOyx, My |
1 L WZ 2
= _jz b Oxn (R BYXh Xh)
Uy )43 1m0y,
(2.41)
and
MSE(tRC)=
L W2 GZ 62
Z : Yh+R[ - (R_2BYXheXh)
v 0y, | Oy, Oxn
(2.42)
From (2.8) and (2.42):
Var(y, )-MSE(ty.) =
L W2
_z (eXh] ZBYXh Xh)
h Xh
which is positive if
L o
7, ()
h=1 Ny, 0, 1
5 >— (2.43)
w,
Rzio-)(h
h=1 nh

When the data are recorded without error then
the expression (2.42) reduces to:

[O-l%h + Ro-)z(h (R - ZﬁYXh )]

(2.44)

L 2
MSE(ZRC )z = ZW_h

h=1 l’lh

From (2.42) and (2.44):

|
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MSE(?RC)_MSE(tRC )t =
iﬁ[[l_e%jﬁih+R2(1_9thcih:|
0 0

= Yh Xh

= n,
(2.45)

which is always positive. It follows that the
presence of measurement errors in both the

variables X and Y inflates the MSE(? ).

A Combined Product Estimator in Stratified

Random Sampling in the Presence of
Measurement Errors
The following combined product

estimator is defined for the population mean 4,
in the presence of measurement errors as:

X
— X st
tPC - yst

X

(2.46)

The exact bias and mean squared error to the
first degree of approximation of the combined
ratio estimator 7. are respectively given by

L(w? o
B(tpc):luyz[_hjﬂmh X (2.47)
h=1\_ 1y X
and
L WZ[O'Z o’
MSE(tPC)=Z L by R (R+2ﬂYXh9Xh)
h=1 1, LaYh Xh
(2.48)
From (2.8) and (2.48):
Var(y, ) —MSE(t,.)=
L 2 2.49
_ZW ( th R+2BYXheXh) ( )
1y, Oy,

which is positive if
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s7ig,, {”]

h=1 1y Oy

<——  (2.50)

L W2
Rziho-i’h

h=1 nh
Assuming that the observations for X and Y be

recorded without error, then expression (2.48)
reduces to:

2

L W
~loh + RO (R +2 )
h=1 h

MSE(tPC )t =
(2.51)

which can be obtained from (2.48) by setting
0,, =0,, =1.From (2.48) and (2.51):

1-0
On

(2.52)

MSE (tPC ) —MSE (tPC)

=S

h=1 1y Yh

) =

Ou, +R2(

which is always positive. Expression (2.52) is
the same as that obtained in (2.45). Thus, the
presence of measurement errors in both
variables X and Y are responsible for increasing
the MSE of the combined product estimator . .

A Combined Difference Estimator in Stratified
Random Sampling in the presence of
Measurement Errors

A combined difference estimator in
stratified random sampling is defined in the
presence of measurement errors for a population

mean, [l ,as

tie =¥, +d(u, —%,) (2.53)

where d is a suitably chosen constant. It can be
seen that the combined difference estimator £,

is unbiased. The variance of ¢, is given by
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Var(tdc ) =
=Var(y, )+d*(X,)-2dCov(y,,X,)

Low? [ <2 2
- Z Lt {GYh +d’ [GXh j_szYXh:| (2.54)

v 0y, | Oy, Xh

L w2 [ <2 L owr2 [ <2
— z Wi [ O + dzz Wi [ O

h=1 1y Yh v 0y, (O,

(2.55)

Thus, the resulting minimum variance of f,. is

given by

LW 2
Z iﬂ YXh O-)zrh

:

min Var(t,. )=

N (O-)%h]_ {”:1 M
h=1 Oy,

0y,
(2.56)

h=1 nh

Assume the data associated with variables X and
Y are recorded without error; in such a case, the
expressions (2.54) reduce to:

L W2 2
0 2
L W2 0_2 {h:l n ﬂYXho-Xh}
min Var(t,.)=> —| |- !
= ny, \ Oy,

eXh
(2.57)

h=1 nh

From (2.54) and (2.57):
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Var(tdc)—Var(tdc)t =

L 2 _ L 2 _
W Gih(l ew}rdzzwh ih[l eXh]
0 h=1 O

(¢)
Yh n,
(2.58)

which is always positive. It follows from (2.56)
that the presence of measurement errors in both

variables X and Y enhances the variance of 7.

regardless of the value of d.
The Var(l‘ dc) at (2.57) is minimized for

L W
Znihﬁwmo')z(h
d= h:IL ’;/V ; (2.59)
Zih )2(h
h=1 Ny

Combining (2.59) with (2.57) results in the
minimum value of Var(y,,) as

(i Whﬂma;hj

L W2 - N
min.Var(tdc)t =y Lo, - = - d >
h=1 M ZWh o2
Xh
h=1 Ny
(2.60)

From (2.56) and (2.58):

min.Var(t,. )—min.Var(t,.) =

L w2 _
W Gih[l eth
Oy

2.61)

It can be observed from (2.61) that the
difference [min Var(t . )—min Var(t,.) ) ]t is

always positive. Thus the presence of
measurement error in both variables X and Y

L WZ L W2 02
thg(h} Zh(Xh
h=1 1y e (PN N
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inflates the variance of f,. at their optimum
conditions, which disturbs the optimal properties
of the difference estimator 7 ..

A Combined Class of Estimators in Stratified

Random Sampling in the presence of
Measurement Errors
Following the same procedure as

adopted by Srivastava (1971, 1980) a class of
combined estimators of the population mean

in the presence of measurement errors is
suggested, such as

te =1(3,.%,), (2.62)
where t(yst,)?”) is a function of (jﬂ,)_cst) such
that

t (:UY’:UX ) = Hy (2.63)

ot (y,
:tl(ﬂy:ﬂx)z l(éui /ux_) =1,
Vst (uy 1ix)

and satisfies the same conditions as given in 2.4
for 5.

Expanding the function t(fst,)_cst) about

the point (fst,)_cst)=(,uy,,ux) in a third-order
Taylor’s series results in

te =

(Yo —hy )t (Ry by )

+(X, — My )t (M, iy )

(Fa—by )t (ysbty)

+2(F5 =My ) (X =y )t (My s By )
(X —h) s (R by

(Fa—my) o (V2,X3)

1B =1y ) (K =1y )t (V20%5)
0 143(¥, =1y )" (K =) 2 (F2-%5)

+(isl —Hx )3 255} (y:t’i:t)

or
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(tc _MY):
_(?st _MY>t1 (Myaux)
+(ist _Mx)tz (Hy>ky)

(yst_uY)ztll(M\HuX)
+2(Fy =1y ) (X =1y )t (Ry s by )

S CHETTHY Lo (TRRTHY

(Vo =ty )t (V2X5)

13T =1y ) (Ko 1) s (V2X0)
0 143(V, —hy )" (Ko —bx) 12 (725
+(Xy —y) o (Vo X2

(2.64)

.)_;:t :{ﬂY +§(yst _:uY)}’
X, ={u, +&(X, —u, )}, and 0< & <1. Also,

& may depend on ( > ;) and tijk(_;,)_c;)
denotes the third order partial derivative of
f(J_/.w)_Cs,) with respect to (yw Yt) at the point

(.)_/st’)_cst)_( st? s*t)

Taking the expectation
provides the bias of the estimator 7.

where

of (2.64)
up to the

terms of the order 1~ R

1{Var(ist)t22 (Ly,My) }

B(t.)=—= ,
(C) 2 +2COV(?st’ist)tl2(HY7ux)

2

(0}
li th _Xhtzz (MY’“X)
2

B(tc): " Oxn
T 20t (M by
- Wio,
1y, (Ky, 1
:l hZ::, heXh 22( Y X)
2
+2Z_BYXhGXh 12 (uya“x)
(2.65)
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Squaring both sides of (2.64) and neglecting
— iy )and (X, — 1, ) having power
greater than two results in

terms (fst

(Fa by )" 6 (o)
(tC _MY )2 = +(ist _uX)ti (MY’MX)
+2COV(yst’§5t ) t12 (HY’““X)

Noting that tl(,uy, Uy )=1 and taking the

expectation of both sides of the above
expression, provides the mean squared error of

the class of combined estimators 7. as

Var(y, )+ Var(X,
+2Cov (¥, X,

Ot (By 1y )

MSE(te)= ) (1t

or
2 2

O
0y O
+26 5t (Hy by )

Fud s

PeD (- e

W2
+22_hBYXhG§(ht2 (“Y oMy )

L
h= Ilh

iﬁ £ (Hy-Hx)

h=l1 Ilh

MSE(t

h c
eXh

(2.66)

which is minimized for

Thus the resulting minimum MSE of f. is given
by

>

2t (s )
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min.MSE(t.)=

W2 ’
G
oo [E80]
1 h eYh ZL:th( th
o 0y, \ Oy,
Theorem 2.2

Based on the above, the following
theorem is put forth. To the first degree of
approximation,

- Vth h
hz:} n, (HYh] L
2

=1 N,

2
ﬁYXh 0-)2(71 }

%)

MSE(t.)>

with equality holding if

t(ty py )=~

Note that the lower bound of the MSE of the
combined class of estimators 7. at (2.62) is the

variance of the optimum combined difference
estimator (OCDE)

Lo =Yy +d, (:u ‘fst) (2.69)
with
L WZ
ZThBYthih
dO — h=1 h ,
el (RN NS

which demonstrates that the estimators belonging
to the class of combined estimators 7. at (2.62)
are asymptotically no more efficient than the
optimum difference estimator (ODE) f¢,,. at
(2.69).
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t(.)_/ st? xst )
satisfying the regularity conditions as described

Any parametric function

The class of such
the

for tc, can define a 4, .

estimators is very large.
following estimators:

For example,

t=T My
C3 st — s
{/UX 'H//(xsz —Hy )}

=y, +wlx, —u )l

are particular members of the proposed class of
estimator, where ¥ is a suitably chosen

constant. The optimum value of constant ¥ in

Loy

tc;,j=1to4 which minimizes the mean

squared error of the resulting estimator are
obtained from (2.68).

It follows from (2.42), (2.8), (2.48) and
(2.66) that the proposed separate class of

estimators #. is more efficient than:

i.  the usual unbiased estimator y, if

L
_2thBYXheXh
min.q0,—=—
th
h=1
t, (HyHy ) < (2.70)
L
_2zphBYXheXh
max.< 0,—2=

Pn

=
M-

ii.  the combined ratio estimator )¢ if
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L
thBYXheXh
min.s —R,R-2| 2=

L

zph

h=1

<ty (Hyp by ) < 2.71)

L
thBYXheXh
max.{—R,R-2| 2

L

th

h=l1

iii.  the combined product estimator y,. if

L
thBYXheXh
min.<s—R,-R -2/ 1=

L

zph

h=1

<ty (Hyy M ) < 2.72)

L
thBYXheXh
max.{—R,-R -2 2=

where

Theoretical Comparisons

From (2.7) (or (2.36)) and (2.42) (or

(2.68)):

MSE (tgsorts)—MSE((t,.)=

n,
which is positive if

(R=Bribx)’ > (R, = Byubu) (3.1

2W2£9th[(R ByxOxn)’ _(Rh_BYXheXh)2j|

It follows that 7,; will be more efficient than

trc 1f and only if (ﬂmﬂ)ﬂz) is nearer to R,

than to R.
From (2.16) and (2.48):

MSE (tps ) —~MSE(t,. )=

S ) (R + B0

-1 1y Xh

which is positive if

(R + ﬂYthXh )2 > (Rh + ﬂYXheXh )2 (32)

Thus, the separate product estimator #,. is more

efficient than the combined product estimator
t oo if the inequality (3.2) holds.

From (2.24) and (2.56):
min . MSE (t,. )—min.MSE(t )=
2
{Z 4BYXhGXh}
S (] -
5 0, Oy,

2
! Wy
= (¢
L hz Gih ] [{hz:, n, BYXh Xh}

h=1 l’lh

- Z _hBYXh eXh G?(h }

L 2
{hl k } N 2 o2
= _zphBYXheXh
h=1

Z PiByxnOxn | L L
= h_li— th _thBiXheih
P, h=1 h=1
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. 2
L z P1ByxnOxn
= z Pn = L
= Z Pn

h=l1

= ZL:ph (BYXheXh _a)z

- B%(Xh e?{h

(3.3)

L
thﬂYXhHXh
_ k=l

L
z Py
h=1
and
w? o,

Py = .
n, @y

Observe the expression (3.3) is always
positive. Thus, unless the term (ﬂYXhHXh) is the

same from stratum to stratum, the separate
difference estimator ¢, (or the separate class of

the estimators ) at its optimum condition, that

L
is, OSDE ¢,,s = ZWh {)_/h +d,, (/uYh — X, )}
h=1

with d, = B,,,6,,) is more efficient than the
combined difference estimator #,. (or the
combined class of the estimators £ ) at optimum

(i.e., the OCDE t,,. =y, +d,(u, —X,,) with
L 2
A
z : BYthih
_ b=t Iy
2 2 :
h=l eXh

n,

dO
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