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Power Analyses When Comparing Trimmed Means

Rand R. Wilcox
Department o f Psychology 

University o f Southern California

H. J. Keselman 
Department o f Psychology 

University o f Manitoba

Given a random sample from each o f two independent groups, this article takes up the problem of estimating power, as 
well as a power curve, when comparing 20% trimmed means with a percentile bootstrap method. Many methods were 
considered, but only one was found to be satisfactory in terms o f obtaining both a point estimate o f power as well as a 
(one-sided) confidence interval. The method is illustrated with data from a reading study where theory suggests two 
groups should differ but nonsignificant results were obtained.

Keywords: Bootstrap, Robust methods 

Introduction

Power is a fundamental concern when comparing measures 
of location corresponding to two independent groups. Of 
course, when we fail to detect a difference, this might be 
because there is little or no difference between the mea­
sures oflocation, or perhaps the sample size was inadequate 
for detecting a difference that is substantively important. 
Surely the best-known and most commonly used method 
when addressing power is to assume both groups have 
normal distributions with a common variance, specify a 
(standardized) difference between means, choose 1 - P , 
the desired probability of rejecting the hypothesis o f equal 
means for this specified difference, and then determine the 
required sample size to achieve this goal. Cohen (1977) 
provided an excellent summary of this strategy.

Another but less commonly used method for deal­
ing with power is to use a post hoc analysis. That is, col­
lect data, and based on the observed values estimate power 
or determine what sample size is required to achieve a
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desired amount o f power. As is evident, power is not an 
issue if  the null hypothesis is rejected, but otherwise it is. 
A classic illustration o f this approach is the two-stage strat­
egy derived by Stein (1945). Extensions o f the method to 
two or more groups have been proposed by various re­
searchers during the ensuing years, a summary of which 
can be found in W ilcox (1996). Included are exact 
heterosecedastic methods when sampling from normal dis­
tributions. That is, under normality, both the probability o f 
a Type I error and power can be simultaneously controlled. 
Other approaches to controlling power are reviewed by 
Hewett and Spurrier (1983).

Our goal in this paper is to consider how power 
analyses might be made when comparing 2 0 % trimmed 
means rather than means. But unlike Stein-type procedures, 
our goal is to obtain both a point estimate o f power plus a 
one-sided confidence interval. That is, if  we fail to reject, 
we want to estimate power, based on the observed data. In 
particular, we want to estimate the power curve, the prob­
ability o f rejecting as a function o f the difference between 
the population trimmed means.

Our interest in 20% trimmed means stems from 
both its theoretical advantages summarized by Staudte and 
Sheather (1990) and Huber (1981), among others, plus its 
practical advantages when trying to deal with nonnormality. 
In particular, methods based on 20% trimmed means pro­
vide good control over Type I errors for a broader range of 
situations versus methods based on means, they maintain 
relatively high power under arbitrarily small departures 
from normality that destroy power when using means, and 
they provide accurate confidence intervals over a much

24



25 WILCOX & KESELMAN

broader range o f situations versus conventional methods 
for means. Theory and simulations also indicate that 
trimmed means do a better job o f reducing bias when test­
ing hypotheses. Student’s two-sample t, for example, is bi­
ased, meaning that the probability o f rejecting is not mini­
mized when the null hypothesis is true.

That is, power can decrease as the difference be­
tween the means increases. Comparing 20% trimmed means 
with a percentile bootstrap method virtually eliminates this 
problem among situations considered in extant publica­
tions. Moreover, the percentile bootstrap, used in conjunc­
tion with 2 0 % trimmed means, performs remarkably well 
when the goal is to use a test that is reasonably equal-tailed. 
For a nontechnical summary o f the many problems associ­
ated with means in particular and least squares in general, 
and how modem robust methods address these problems, 
see Wilcox (2001a). For a recent review of problems asso­
ciated with conventional methods, see Keselman, Huberty, 
Lix, Olejnik, Cribbie, Donohue, Kowalchuk, Lowman,

sample size under normality when using Student’s t. The 
left panel o f Figure 1 shows two normal curves having 
means 0 and 1 and a common variance o f one. Let

A = t lZ £ L ,  
a

where //j and a j  are the mean and variance associated 

with the 7 th group ( j = l ,2 ), and by assum ption

2 2 2
a i = a 2 = a  • Cohen argued that for normal distributions

A = .8  is a large effect, so from this view surely we want 
power to be reasonably high for the situation depicted in 
Figure 1. If we sample twenty-five observations from each 
group and test for equal means at the .05 level, power is 
.96. So based on this power analysis under normality, 
sample sizes o f 25 would seem to suffice. But suppose we 
sample from the two distributions shown in the right panel 
instead. As is evident, they appear to be very similar to the
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Petosky, Keselman, and Levin (1998). Readers interested 
in the practical details o f how to apply robust methods can 
refer to Wilcox (1997).

To help motivate this paper we begin with the 
usual planning strategy o f determining an appropriate

Figure 1

i distributions shown in the left panel, only the curves in the
l right panel do not extend as far up the y-axis. Now Student’s

t has power .28 so the sample sizes are inadequate if  a

! difference of jli1 -  ju2 =1 is judged to be important.
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The distributions in the right panel o f Figure 1 
are from the family o f mixed (or contaminated) normals. 
For the particular mixed normal considered here, sampling 
is from a standard normal distribution with probability .9, 
and with probability .1 an observation is sampled from a 
normal distribution with mean zero and standard devia­
tion ten. The resulting distribution is very similar to a stan­
dard normal (in the Kolmogorov sense), but there is a cru­
cial difference. The mixed normals in the right panel of 
Figure 1 have variances 10.9 and this is why power is rela­
tively low. That is, a very slight departure from normality 
can result in very low power rendering our choice for 
sample sizes inadequate when conventional power analy­
ses are made. This result follows immediately fromTukey 
(1960) as well as from general results on robustness sum­
marized in Huber (1981), Staudte and Sheather (1990) and 
Wilcox (1997).

When attention is restricted to means, a Stein-type 

method o f power analysis will tend to catch the error just 
described once observations are available. A member of 
this class o f methods that can be used in the situation at 
hand was derived by Bishop and Dudewicz (1978). (Re­
lated methods derived by Hochberg, 1975, and Tamhane, 
1977, can be used to control the length of a confidence 
interval.) Once data are available, the Bishop-Dudewicz 
method indicates how many additional observations are 
required to achieve some specified level o f power given a 
difference between the means that is deemed important. If 
few or no additional observations are required, this indi­
cates that the original sample size was adequate. Briefly, 
the required sample size depends on the sample variances. 
Not surprisingly, the larger the sample variances, the larger 
the required number o f observations in order to achieve 
high power. Because the sample variances tend to be large 
when sampling from the mixed normal distribution con­
sidered here, versus sampling from a normal, the Bishop- 
Dudewicz method will tend to detect the fact that the origi­
nal sample sizes were inadequate for the situation depicted 
in the right panel o f Figure 1.

An obvious concern is that obtaining additional 
observations can be difficult. What would be nice is a 
method that achieves high power in both o f the situations 
depicted in Figure 1. Methods based on a 20% trimmed 
mean accomplish this goal. For the normal distributions, if  
we apply Yuen’s (1974) method for trimmed means, power 
is .89 (based on a simulation with 10,000 replications), 
and for the contaminated normals it is .78. That is, rela­
tively little power is lost under normality versus using 
means, and power is not destroyed under a small departure 
from normality. This is one of several reasons 20% trimmed 
means have appeal. But if  we fail to reject when compar­
ing 2 0 % trimmed means, again we have the issue o f as­
sessing why. That is, an estimate o f power becomes im­
portant.

A natural strategy for assessing power, when us­
ing trimmed means, is to use some analog o f the Bishop- 
Dudewicz method. Theoretical results leading to Yuen’s 
(1974) method (e.g., Staudte and Sheather, 1990; Wilcox, 
1997) suggest an obvious analog, but we found that in simu­
lations, control over power was unsatisfactory. Various 
modifications were tried, but all o f them gave unsatisfac­
tory results. There are some rather obvious bootstrap meth­
ods for estimating power (e.g., Efron & Tibshirani, 1993). 
Unfortunately, the estimate can be rather inaccurate with 
small or even moderately large sample sizes. (Some o f the 
many variations that were considered and found to be un­
satisfactory are briefly described below.) Yet, another con­
cern is that Yuen’s method can be less satisfactory than 
two basic bootstrap methods for comparing trimmed means 
(e.g., Wilcox, 1997).

One o f these is the percentile t bootstrap and an­
other is the percentile method. It is known that when com­
paring means, the percentile t bootstrap outperforms the 
percentile method (e.g., Westfall & Young, 1993). How­
ever, for trimmed means, there is little separating the two 
methods when comparing two groups. But when there are 
more than two groups, the percentile method begins to per­
form better, in terms o f probability coverage and Type I 
errors, than the percentile t (Wilcox, 2001b). Moreover, 
results in Singh (1998) suggest how the power o f both boot­
strap methods might be improved. Wilcox (2001b) found 
that Singh’s approach, when applied to the percentile 
method, gives reasonable control over the probability o f a 
Type I error if  the smallest sample size is at least 15. But 
when using the percentile t, Singh’s method performed 
rather poorly. For these reasons we focus on the percentile 
bootstrap method.

Our goal, therefore, is to find a reasonable point 
estimate o f power and to assess the accuracy o f this esti­
mate by computing a .95 one-sided confidence interval, 
the idea being that we want a conservative estimate o f  
power. For example, if  we estimate power to be .8 , and our 
one-sided confidence interval for the actual amount o f  
power is (.7, 1), then we can be reasonably certain that 
power is at least .7 and this can be used to judge the sample 
sizes under consideration. (Of course we could compute a 
two-sided confidence interval for the estimated power, but 
the upper end o f such a confidence interval seems less in­
teresting than the lower end.)

Methodology

For two independent groups let X tj  be a randomly sampled

observation for th e /h group, (/' = 1,2; i =  1, ..., «.). The 
corresponding population 2 0 % trimmed means are labeled

Htl and nt2 and the goal is to test

H o • Mt! = Mt2
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We begin by describing the method for testing H0 after 

which we turn to the problem o f estimating power.

For the jth group let X *1j,...,X*n,j  be a bootstrap

sample. That is, for each j ,  the values X*1j,...,X*n,j are ob­

tained by randomly sampling, with replacement, n. values 

from X*1j,...,X*n,j. Let p* = P(X*t1 > X*t2), where for the  jth

group X*tj is the 2 0 % trimmed mean based on the boot­

strap sample. (See Wilcox (1997, p. 32) for details on how 
to compute a trimmed mean.) That is, p* is the probability 
that, when resampling from the empirical distribution as­
sociated with the first and second groups, a bootstrap 
sample trimmed mean from group 1 is greater than the 
bootstrap sample trimmed mean from group 2. Notice that 
p*  reflects the degree to which the empirical distributions 
differ. If  the empirical distributions are identical, then p*  
= .5. Moreover, if  the null hypothesis o f equal trimmed 
means is true, then results in Hall (1986a), in combination 
with the influence function o f the trimmed mean, imply 
that p* should have, approximately, a uniform distribution. 
The reason is that

case H 0 is rejected if  p*m < a /2 ,  where as usual a  is the 

desired probability  o f a Type I error. Then pow er is

l-f} = p(p*m <a/2) when H 0 is false. One o f our failed

attempts at estimating power was to approximate the boot­
strap sampling distribution of the bootstrap trimmed means 
with a normal distribution. The mean and variance o f this 
distribution are easily estimated using well-known proper­
ties o f the trimmed mean. But the resulting estimate of 
power was found to be unsatisfactory. Next we tried a 
Comish-Fisher approximation o f the bootstrap sampling 
distributions using results in Wilcox (1994). Again esti­
mated power was unsatisfactory.

A method that was partially successful was a 
nested bootstrap estimate o f power. This approach pro­
vided a reasonably unbiased estimate o f the true power 
level under a shift model, but the standard error o f the es­
timate was such that the assessed power might be inaccu­
rate to the point o f being misleading. That is, in many situ­
ations the actual amount of power is over-estimated, giv­
ing a false sense that the sample sizes used are adequate. 
What is needed is some way o f computing confidence in­
tervals for the actual power level, but a reasonable method 
for accomplishing this goal, when using the nested boot­
strap, has not been found.

Now we describe the one method we have found 
so far that gives good results, in simulations, under a shift 
model. (Handling situations where distributions have un­
equal variances is discussed below.) As is evident, power 
is related to the standard errors of the trimmed means. 
Roughly, the strategy is to devise a function for estimating 
power when distributions are normal, where the estimate 
is based on some specified difference between the popula­

tion trimmed means, say 5 = \atl -  \it2, and the standard er­

ror o f x t] -  X t2. Then, given data, an estimate o f  power is

obtained simply by estimating the standard error and plug­
ging it into the function just described. That is, we esti­

mate 1 - β = P(p*m ≤ α/2). To get a one-sided .95 confidence 

interval for the actual power level, we compute a one-sided 
.95 confidence interval using a percentile bootstrap in con­
junction with our power function. To elaborate, temporarily 

consider a single random sample, X n. L e tX (l) < X (2) 

< ... < X ( , be the order statistics and let
(n)

Set g  = [.2n], where [.2n] is the greatest integer ≤  .2n .  
The (20%) Winsorized sample mean is

plus a remainder term that goes to zero as n gets large, 
where IF(Xi) is the influence function (e.g., Staudte & 
Sheather, 1990). That is, the sample trimmed mean can be 
written as an average o f independent identically distrib­
uted random variables. That p*  converges to a uniform 
distribution under the null hypothesis also follows from 
general results in Hall (1986b). Consequently, the closer 

p*  is to 0  o r  1 , the more evidence there is that the null 

hypothesis should be rejected. Reject H0 : μt1 = μt2 at the 

α  level if p* ≤ α / 2 or if  p * ≥ 1 -  α / 2 .

The value o f p*  can be estimated in a simple 

manner. For the jth group, obtain B  bootstrap trimmed means

X *btj, b=1,...,B. Let Ib=1 if  X *bt1 > X *bt2, otherwise Ib=0, where

X*btj is the trimmed mean based on the bth bootstrap sample.

Then an estimate o f p*  is

The hypothesis o f equal trimmed means is rejected if  

p*  ≤ α/2  or p *  ≤  1  - α/2  It is readily verified that the hy­

pothesis testing procedure just described is the percen­
tile bootstrap method. Furthermore, the view o f the per­
centile bootstrap just given provides a useful way of ad­
dressing power.

For convenience, let p *m = min(p*, 1-p*) in which
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where dj is the value o f d  for the / h group, and given a 8 

we now estimate power with y (, S). But this estimate 

will not be exact, so we need a one-sided confidence inter­
val to get a conservative estimate o f power. To do this we 

use a percentile bootstrap method. We generate bootstrap 
samples from each group in the manner already described

and for the bth bootstrap sample we let s i  be the bootstrap

estimate o f the standard error which can be used to obtain 
a bootstrap estimate o f power. This estimate is labeled

G*b = Yb(8, ^ ) ,  b = 1 ,..., B. Letting g[j) <... < be these 

B  values written in ascending order, and setting L = [.05w],

we take G(L) as the lower end o f our .95 confidence inter­

val for the actual power, y . We have tried both B  = 800 

and B  = 2,000. Based on the simulations below, all indica­
tions are that B  = 2 ,000  offers no practical value over B  = 
800, so B = 800 is assumed henceforth.

Results

A two-step simulation study was used to check our power 
estimation method for both normal and non-normal distri­
butions. The first step was to use simulations, based on 
10,000 replications, to estimate the actual power for four 
types o f distributions: Normal, symmetric with heavy tails, 
asymmetric with relatively light tails, and asymmetric with 

relatively heavy tails. That is, we chose a set o f S values 

so that the true power, γ ,  would have a reasonable range 

o f values between 0 and 1. (The actual values for y will be 

described momentarily.)
Given n1 and n2, we generated observations for 

both groups and increased the values in the second group 

by δ .  Then for each replication we rejected the hypoth­

esis o f equal trimmed means if  p*m < a/2, and y was esti­

mated with the proportion o f times H 0 was rejected.
In the second step, we ran another simulation 

where power is estimated with our proposed method. That 
is, for each replication we computed S  which then is used 

to obtain a point estimate o f γ ,  then we used our bootstrap 

method to compute a .95 confidence interval for γ ,  and 

the actual probability coverage was estimated with the pro­

portion o f confidence intervals containing the value o f y 

determined in step 1. The nominal probability coverage 
was set at .95, so the intended probability o f not contain­
ing the true power is a  = .05. That is, we estimate a  with 
a , the proportion o f intervals not containing the true power.

is known. W hen the standard error t  is not known we sim­
ply estimate it with

and the sample Winsor zed sum o f the squared devia­
tions is

The (20%) sample Winsorized variance is

Letting σω2  be the population W insorized variance, theo­
retical results, based on the influence function o f the 20% 
trimmed mean, indicate that the squared standard error o f 
the sample trimmed mean is

(e.g., Staudte & Sheather, 1990). Following Yuen (1974), 
we estimate this squared standard error with

where h = n -  2g  is the "effective" sample size. O f course 

one could use instead s 2w/ (.36n), but in small sample sizes

d  has been found to perform better when testing hypoth­
eses (Wilcox, 1997). There is no indication that the alter­
nate estimate o f the standard error provides added value 
for the problem at hand, so d  is used henceforth. Returning 
to the two-sample case, let

be the population squared standard error o f Xt1 -  X t2, where 

σ2wj is the population Winsorized variance for the jth group. 

Our immediate goal is to find a function that determines 

power under normality given δ  and τ .  We have been un­

successful at finding an analytic function that has practical 
value, so we determined our required function by setting 
n1 = n2 =  100 and via simulations based on 10,000 replica­

tions, we then determined the function γ  that approximates 

power for a wide range o f γ  values corresponding to δ = 0  

up to a δ  for which power is close to one. Details about 

how to compute γ  are in an appendix. We then checked 

the accuracy o f this function when sample sizes are small 
and equal (nl = n2 = 2 0 ) and when sample sizes are un­
equal (nl = 20 and n2 = 40).

So given a γ ,  now we have a function for esti­

mating power under normality and when the standard error
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In our simulations, observations were generated 
from g-and-h distributions which includes normal distri­
butions as a special case. If  Z is a standard normal random 
variable, then an observation, X, from the g-and-h distri­
bution is given by

When g  = 0, this last expression is taken to be

X  = ZehZ2/2 The case g=h=  0 corresponds to a standard 
normal random variable. With g= 0, X  has a symmetric 
distribution with increasingly heavier tails as h gets large. 
As g  increases from 0, the distribution becomes more 
skewed. Hoaglin (1985) gave a detailed description o f the 
g-and-h distribution. (For some additional properties, see 
Wilcox, 1997.) Table 1 lists the skewness (k1) and kurtosis 
(k2) for the four distributions considered here. When h>  1/

k  and g  > 0, E(X - u ) k  is not defined and the correspond­

ing entry in Table 1 is left blank. It might be argued that 
g =h=1 is an unrealistic departure from normality, but one 
of our goals is to determine how our method performs 
under seemingly extreme conditions.

Table 1: Some properties o f the g-and-h distribution.

overestimates power. So in practical terms, if  our technique 

indicates that power is low for given values o f δ  , n1 and 

n2, all indications are that this is indeed the case. If  the 
estimated power is judged to be sufficiently high, our simu­
lations indicate that this will be the case for a shift model 
(where distributions differ in location only), or situations 
where distributions are symmetric. So we have some per­
spective on whether the sample sizes are sufficiently large. 
But for skewed distributions having unequal variances, the 
actual power might be less than what is indicated. So 
progress has been made for some important special cases, 
but more needs to be done.

Table 2: Estimates o f α ,  nx n2= 20.

Table 2 contains a  values (estimated one-sided 

probability coverage for y ) for n{ = n2= 20. Simulations 

were conducted with nx = 20 and n2 = 40; similar results 
were obtained with other sample sizes and are not reported. 
Next, we ran simulations with n l = 40 and n2 = 20, but the 
second group has a standard deviation four times as large 
as the first group. For normal distributions the results were:

Similar results were obtained when sampling from 
a symmetric heavy-tailed distribution, but unsatisfactory 
results were obtained when sampling from the two skewed

distributions considered here. More precisely, the a  val­
ues now exceed .1. Setting n1 = n2 = 40 does not correct 
th is p rob lem . T hat is, our p ro p o sed  m ethod now

An Illustration
We illustra te  our m ethod w ith data from  a 

reading study. (The data were generously supplied by 
Frank Manis, Department o f Psychology, University o f 
Southern California.) For one o f the measures studied, 
theoretical arguments suggest that two particular groups

Note: δ  = μ t 1 -  μ t2 ,  a  : estimate o f α ,  y : actual power 

being estimated.

g  = h = 0

g=l,A = 0

g = 0,A = l

g  = h = 1

δ : 0.2 0.4 0.6 0.8 1.0

α : .022 .015 .011 .018 .015

y : .101 .257 .506 .741 .904

δ : 0.4 0.6 0.8 1.0 1.2

α : .022 .027 .039 .051 .071

T. .208 .382 .571 .734 .842

δ : 0.6 1.0 1.4 1.8 2.2

α : .014 .018 .031 .043 .077

y: .199 .433 .652 .796 .884

δ : 0.8 1.2 1.6 2.0 2.8

α : .014 .025 .039 .065 .120

y: .265 .445 .601 .703 .827
δ : 1.0 1.4 2.0 2.4 3.0

a : .021 .030 .038 .045 .045

y: .189 .314 .539 .685 .859

g h K1 K2

0.0 0.0 0.00 3.00
0.0 1.0 0.00 —

1.0 0.0 6.18 113.9
1.0 1.0 — —
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should differ, but no significant difference was found us­
ing the percentile bootstrap method described previously. 
(Non-significant results were obtained with Student’s t as 
well.) Figure 2 shows an estimate of the power curve for 
these data. (The S-PLUS functions used to create this plot 
are available from the first author upon request.) The up­
per solid line is the estimated power and the lower dashed 
line marks the one-sided confidence interval. The estimate 
is that a difference between the trimmed means o f

Uti -  jut2 =600 corresponds to power equal to .8 , approx­

imately, and the confidence interval indicates that power 
could be as low as .6 . So in this particular case all indica­
tions are that power is inadequate except for a very large 
difference between the trimmed means. That is, the em­
pirical results do not provide a compelling argument that 
the theory is wrong because if  the groups differ by a sub­
stantial amount, there is a low probability of detecting this 
based on the sample sizes used.

Conclusion

The main result in this paper is a method for detecting situ­
ations where power is too low. Our method of estimating 
power provides perspective regarding a shift model regard­
less o f whether the distributions differ in scale. Moreover, 
all indications are that a reasonably accurate estimate of 
power can be had when distributions differ in scale pro­
vided they are symmetric. But more needs to be done. In 
particular, an accurate confidence interval for power is

needed when distributions are skewed and have unequal 
variances. Another goal o f possible interest is a .95 confi­
dence band for the estimated power curve. That is, rather 

than compute a .95 confidence interval for each 8 o f in­

terest, compute a confidence band where for all 8 values, 

the simultaneous probability coverage is .95.
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Appendix

The construction o f our function for estimating power be­
gan by determining power corresponding to multiples o f 
the standard error o f the difference between the trimmed 
means. We considered 36 multiples of the standard error, 

beginning with zero (in which case ntl ~nt2 = 0 ) and end­

ing with 4.375 (meaning that the difference between the 
trimmed means is 4.375 standard errors). These 36 mul­
tiples o f the standard error are given by yi = (i - 1)/8, i = 1, 
..., 36. So, for example,y 36 = 4.375 is the largest difference 
between the trimmed means we considered in standard er­
rors. Let h. (i = 1, . . . ,  36) be given by 500, 540, 607, 706, 
804, 98 1 , 1176, 14 0 2 , 1681, 2008 , 2353, 2769, 3191, 3646, 
4124, 4617, 5101, 5630, 6117, 6602, 7058, 7459, 7812, 
8150, 8479, 8743, 8984, 9168, 9332, 9490, 9607, 9700, 
9782, 9839, 9868.

For example, suppose hx = 500 and /*3 = 706. The 
value h., divided by 1 0 ,0 0 0 , is the power corresponding to

Uti ~ n t2 = y t yl2* .01155 w hen n x = n 2 = 100 and

sampling is from a standard normal distribution. The con­
stant .01155 is approximately equal to the squared stan­
dard error o f the 20% trimmed mean. That is, hi/10000 
gives pow er as a m ultiple o f  the standard  e rro r o f

Xt1 -  X t2 . Thus, for any two distributions, given δ  and

S, an estimate o f the standard error o f Xt1 - Xt2  given by

equation 2, power is estimated as follows: v = [8 * δ /S] +  1, 

w here [.] is the g rea test in teger function , and le t

d = . Then, the estim ated pow er is taken

t o b e  9  = m o d + d * [ l m d - m o o } . In the event v  =  36

hv+1 is taken to be 10000 in the previous equation. I f  v > 

36, y = 1.
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