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As a variation of ranked set sampling (RSS); double ranked set sampling (DRSS) was introduced by Al-Saleh 
and Al-Kadiri (2000), and it has been used only for estimating the mean of the population. In this paper DRSS 
will be used for estimating the distribution function (cdf). The efficiency of the proposed estimators will be 
obtained when ranking is perfect.  Some inference on the distribution function will be drawn based on 
Kolomgrov-Smirnov statistic. It will be shown that using DRSS will increase the efficiency in this case. 
 
Key words: Double ranked set sample, distribution function estimation, Kolomgrov-Smirnov, ranked set. 
  
 

Introduction 
 
In some practical situations, collecting units from 
the population is not too costly comparing with 
quantification of the sampling units.  A large 
number of those units may be identified to 
represent the population of interest and yet only a 
carefully selected subsample is to be quantified. 
This potential for observational economy was 
recognized for estimating the mean pasture and 
forge by McIntyre (1952).  He proposed a method, 
later called ranked set sampling (RSS) by Halls 
and Dell (1966), currently under active 
investigation. 

RSS procedure can be described as 
follows: Identify a group of sampling units 
randomly from the target population. Then, 
randomly partition the group into disjoint subsets 
each having a pre-assigned sizer r, in the most 
practical situations, the size r will be 2, 3 or 4.   
Then, rank each subset by a suitable method of 
ranking such as prior information, visual 
inspection or by the experimenter himself. 
 In terms of sampling notation, 
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where Xj(i) denotes the i-th ordered statistic in the 
j-th set. Then the i-th ordered statistic from the i-th 
subset will be quantified, i = 1, …, r. Then  
X X Xr r1 1 2 2( ) ( ) ( ), ,...,  will be obtained. The 

whole process can be repeated  k-times, to get a 
RSS of size n = kr. The resulting sample is called 
the balanced ranked set sample (RSS).  Through 
all the paper, only balanced RSS will be used.  

Al-Saleh and Al-Kadiri (2000) extended 
RSS to double rank set sample (DRSS).  DRSS 
can be described as follows:  

1. Identify r3 elements from the target 
population and divide these elements 
randomly into r subsets each of size r2 
elements.  

2. Use usual RSS procedure to obtain r RSS 
each of size r.  

3. Apply again the RSS procedure in Step 2, 
on the r RSS’s.   

We may repeat steps 1, 2 and 3 k-times to obtain 
DRSS sample of size n = rk. In DRSS, ranking in 
the second stage is easier than ranking in the first 
stage, (see Al-Saleh and Al-Kadiri, 2000). 

Moreover, an up-to-date annotated 
bibliography for RSS can be found in Kaur et al., 
(1995) and Patil et al. (1999).   Stokes and Sager 
(1988) estimate the distribution functions, F(x) 
say, for a random variable X by the empirical cdf 
(F*) based on  the RSS, which will be given in 
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Section 2. They pointed out that, F*(t) is an 
unbiased for F(t) and is more efficient than the 
empirical distribution function of a SRS 

))t(F̂(  of size n with 

[ ](t)iF1(t)iF
m

1i2kr

1(t))*Var(F −∑
=

= , where 

1)ir(i,F(t)I(t)(i)F(t)iF +−==           (1.1) 

for perfect ranking, and )1ir,i(I )t(F +−  is the 

incomplete beta ratio function. 
 
Basic Setting of DRSS 
 
Let r1 Y,...,Y  be a DRSS, and assume that 

)(yig~iY  with df, mean and variance are: 

*
iµ(y),iG  and 2*

iσ , respectively. Al-Saleh and 

Al-Kadiri (2000) showed that:  

 (i) (y)ig
r

1ir
1f(y) ∑

=
= ,           (1.2)  

 (ii) )(yiG
r

1ir
1F(y) ∑

=
= ,          (1.3)  

 (iii) *
i

r

1ir
1

µ=µ ∑
=

 ,          (1.4)  

 (iv) 
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









µ−µ+σ=σ ∑∑

==

2*
i

r

1i

2*
i

r

1i

2 )(
r
1

,    (1.5)  

where f, F, µ and 2σ  are the pdf, cdf, mean and 
variance of the population.  
 In this paper, we will consider the problem 
of estimating the distribution function F using 
DRSS. In Section 2, the empirical cdf estimator 

based on DRSS )DRF̂(  will be considered. The 
efficiency between the DRSS estimator and those 
estimators based on SRS and RSS will be obtained 
when ranking is perfect. In Section 3 the 
Kolmogrov-Smirnov statistic will be studied based 
on a DRSS. Also, a confidence interval of F(t) will 
be constructed using the Kolmogrov-Smirnov 
statistic based on DRSS. 

Estimating The Distribution Functions Using 
DRSS 
 
 In this Section the distribution function 
will be estimated using the DRSS, in the cases 
where ranking is perfect and when ranking is 
imperfect. The suggested estimator will be 
compared with the cdf estimators based on SRS 
and RSS via their variances. 
 
Definition and Some Basic Results 
 For the l-th cycle, let }rlY,...,2lY,1l{Y , 

l = 1, …, k, be a DRSS of size r, and assume that 
Yi has the probability density function (pdf) gi(y) 
and the cdf Gi(y). Note that gi(y) is the density of 
the i-th ordered statistic of a RSS with densities 

(r)f,...,(2)f,(1)f  and distribution functions 

(r)F,...,(2)F,(1)F  respectively. Then  





 −∏

+=
∏
=

∑∑
=

= (t)(L)F1
r

1jL
(t)(L)F

j

1LSj

r

ij
(y)G i

                 
             (2.1)  
where the set Si consists of all permutations 

)ri,...,2i,1(i  of 1, 2, …, r for which ji...1i <<  

and ri...ji <<+1  (see Al-Saleh and Al-Kadiri, 

2000).  

 Let F̂,DRF̂  and F* be the edf’s 
(empirical distribution functions) of DRSS, SRS 
and RSS from the population with cdf F, then:  

]tY[I
kr
1)t(DRF̂ ij

r

1i

k

1j
≤= ∑∑

==
          (2.2)  

]tX[I
kr
1)t(F̂ i

rk

1i
≤= ∑

=
           (2.3)  

]ti(i)jI[X
r

1i

k

1jkr
1(t)*F ≤∑

=
∑
=

=           (2.4)  

respectively, where I(.) is the indicator function. 
Then, we have the following results.   
a) F(t)DR(t)]F̂E[ =   
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b) )]t(G1)[t(G
kr
1))t(DRF̂var( ii

r

1i
2 −= ∑

=
,

           
             (2.5) 
  
(see the Appendix for the prove of these results.) 
Also, we show in the Appendix that 

2/1))]t(DRF̂[var())]t(DRF̂(E)t(DRF̂[ −  
converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  Moreover, it can be shown that an unbiased 
estimator of  

)]t(DRF̂[var  is given by  

)]t(Ĝ1)[t(Ĝ
r)1k(

1)]t(DRF̂[var ii
r

1i
2

^
−

−
= ∑

=
, 

             (2.6) 

where ]tY[I
k
1)t(Ĝ ij

k

1j
i ≤= ∑

=
 is the edf based 

on all k of the i-th judgment order statistic and 
hence it can be shown also that 

2/1^
)]]t(DRF̂[var/[))]t(DRF̂(E)t(DRF̂[ −

 converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed. (See the Appendix for the prove of the above 
results.) Therefore, when k is large for a specified 
value t, an approximate 100(1-α)% confidence 
interval for F(t) is 

 )]t(DRF̂[varZ)t(DRF̂
^

2/α±          (2.7)  
Finally, as a special case when r = 2, it 

can be shown that  )]t(F̂var[)]t(DRF̂var[ ≤  

and )]t(*Fvar[)]t(DRF̂var[ ≤ . (See the 
Appendix Lemma 2 for the prove of this results.)  
 

Efficiency of DRF̂  
 The edf is used for making pointwise 
estimates of F(t), as well as for making inference 
concerning the overall population distribution. In 
this section, we will examine the magnitude of the 

improvement in precision that results when 

estimating F(t) by )t(DRF̂  rather than by )t(F̂  
or F*(t).  
 Now, the relative precision (RP) of the 
double ranked set to the simple random sampling 
estimator and to ranked set sample estimator, are 
defined by: 

  
)]t(DRF̂var[

)]t(F̂var[)t(RP1 =   
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r)t(G)t(F
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)]t(DRF̂var[

)]t(*Fvar[)t(RP2 =  

 

(t)2
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r

1i
rF(t)

(t)2
(i)F

r

1i
rF(t)

∑
=

−

∑
=

−

=    

                      (2.9)  
   
 Table 1 and Table 2 show the value of 

))p(F(RP 1
1

−  and ))p(F(RP 1
2

−  
respectively, for some values of p and r = 2, 3, 4, 
5. It can be noticed that both of 1RP  and 2RP  
are monotone increasing from p = 0 to    p = 0.5,   
to achieve their maximum at p = 0.5. Also, they 
are symmetric about p = 0.5. Table 1 and Table 2 
show that the gain in efficiency from DRSS for 
estimation of F(t) is substantial when the ranking 
can be done perfectly. 
 
 
 
 
 
 
 
 
 
 



ON DISTRIBUTION FUNCTION ESTIMATION USING DOUBLE RANKED SET   446

Table 1. ))p(F(RP 1
1

−  when ranking of X is 
perfect. 

P 
r  0.0

1 
0.0
5 

0.1
0 

0.1
5 

0.2
0 

0.3
0 

0.4
0 

0.5
0 

2 1.0
1 

1.0
5 

1.1
2 

1.1
9 

1.2
7 

1.4
4 

1.5
8 

1.6
4 

3 1.0
2 

1.1
1 

1.2
6 

1.4
2 

1.6
0 

1.9
1 

2.0
8 

2.1
2 

4 1.0
3 

1.1
8 

1.4
1 

1.6
8 

1.9
4 

2.3
2 

2.5
2 

2.6
0 

5 1.0
4 

1.2
5 

1.5
8 

1.9
5 

2.2
9 

2.8
8 

3.4
3 

4.2
7 

 
 
Table 2. ))p(F(RP 1

2
−  when ranking of X is 

perfect. 
P 

R 0.0
1 

0.0
5 

0.1
0 

0.1
5 

0.2
0 

0.3
0 

0.4
0 

0.5
0 

2 1.0
0 

1.0
0 

1.0
2 

1.0
4 

1.0
7 

1.1
4 

1.2
0 

1.2
3 

3 1.0
0 

1.0
1 

1.0
5 

1.1
1 

1.1
7 

1.2
8 

1.3
2 

1.3
3 

4 1.0
0 

1.0
3 

1.1
0 

1.1
8 

1.2
6 

1.3
6 

1.4
0 

1.4
2 

5 1.0
0 

1.0
4 

1.1
4 

1.2
6 

1.3
6 

1.5
3 

1.7
2 

2.1
0 

 
Inference on the distribution function 
 Because the distribution function F can be 
estimated more efficiently from a double ranked 
set sample than from a SRS and a RSS, it is 
suffices to note that the statistics based on an 
estimate of F(t), such as the Kolmogrov-Smirnov 
statistic, would be improved in some sense as well.   

In particular, we observe that the null 
distribution of the statistic 

[ ] (t)0FDR(t)F̂  t sup**D −=  is stochastically 

smaller than [ ] (t)0F(t)*F  t supD* −=  and smaller 

than [ ])t(F)t(F̂supD 0t −=  when D**, D* 
and D are all based on the same number of 
measured observations. We mean that 

)d(H)d(H *
k)r(

**
k)r( ≥ and )d(H)d(H k)r(

**
k)r( ≥  

with strict inequality for some d, where 

]dD(p)d(H ***
k)r( ≤=  

)dD(p)d(H **
k)r( ≤=  and  ]dD(p)d(Hrk ≤= . 

Where D, D*, and D** are calculated from a SRS, 
a RSS and a DRSS of size rk respectively.  

This implies that 100(1-α)% of D**, 

which be denoted by **Cα , will always be less 

than or equal to corresponding percentile of the 

statistics D and D*, denoted by αC  and *Cα  

respectively. A confidence band for F based on 

D** is 

  **CDRF̂ α± ,                       (3.1)  

is narrower than the corresponding band based on 

D and D*.  

 In this section, the simulations which we 

done, is true for some finite values of r and k in 

the case of perfect judgment ranking. To find the 

table of critical values of D** )C( **
α  we draw a 

double ranked set sampling s)'i(Y  of size n from 

uniform distribution with parameters 0, 1. Then all 

elements in the sample will be rank )s'X( )i( . 

Now for k=1,  







 −−

≤≤
−

≤≤
= ,0

n
1i)(i)(Y0F

ni1
max,)(i)(Y0F

n
1

ni1
maxmax**D

 

where  

 )i()i(0 X)X(F = . 
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The previous procedure will be repeated 

until we get, **
10000

**
2

**
1 D,...,D,D . Also,  

s'D **
i  will be ranked to find **Cα  such that,  

α−=≤ α 1)C**D(P ** , i.e., the **
(i)D**

αC =  

where [ ]α)10000(1i −= , where [d] is the 

greatest interge of d.  

 Now, Table 3 reports the critical values 

**Cα  for the test statistic D** for α = 0.01, 0.05 

and 0.10 for r = 2, 3, 4, 5 and k = 2, 3, …, 20. The 

table shows that DRSS can result in a substantial 

decrease in width of the simultaneous confidence 

band. The amount of the improvement can be 

described by the quantities,  

 

2

**1
C
CR 










=

α

α
α      (3.2) 

2

**

*
2

C
CR 










=

α

α
α    (3.3)  

 

 

 

 

 

 

 

 

 

 

 

 

 Because 1Rα  and 2Rα  are the square 

of the ratio of confidence-band widths, then they 

can be interpreted as a measure of relative 

precision.  The ratios 1Rα  and 2Rα  are 

computed from the entries of Table 3 ( **Cα ), 

Table 2 )C( *
α  (from Stokes and Sager; 1988) and  

the Table of critical values for the Kolmogrove-

Smirnov statistic D (from Gibbons and 

Chakraborti (1992)).  

 Table 4 gives the values of 1Rα  and 

2Rα  at r = 2,…,5 and k = 2, …, 10. These 

values are comparable with those of Table 1 and 

Table 2. So, 1Rα  and 2Rα  indicate the same 

thing which given by )t(Rp1  and )t(Rp2 , 

when ranking of X is perfect. 
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Table 3.  Critical values of  D** (
**Cα  ) 

 

 

 r=2 r=3 r=4 r=5 

                                               α: 

k 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

2 0.43 0.47 0.01 0.36 0.40 0.47 0.13 0.35 0.42 0.28 0.32 0.38 

3 0.33 0.36 0.57 0.27 0.30 0.36 0.24 0.26 0.31 0.21 0.24 0.28 

4 0.27 0.29 0.44 0.22 0.24 0.28 0.19 0.21 0.26 0.17 0.19 0.23 

5 0.23 0.25 0.34 0.19 0.21 0.24 0.17 0.18 0.21 0.15 0.16 0.19 

6 0.20 0.22 0.29 0.16 0.18 0.21 0.14 0.16 0.18 0.13 0.14 0.17 

7 0.18 0.19 0.25 0.15 0.16 0.19 0.13 0.14 0.16 0.12 0.13 0.15 

8 0.16 0.17 0.22 0.13 0.15 0.17 0.11 0.13 0.15 0.10 0.11 0.13 

9 0.15 0.16 0.20 0.12 0.13 0.15 0.11 0.12 0.13 0.10 0.10 0.12 

10 0.14 0.15 0.19 0.11 0.12 0.14 0.10 0.11 0.12 0.09 0.10 0.11 

11 0.13 0.14 0.17 0.10 0.11 0.13 0.09 0.10 0.12 0.08 0.09 0.10 

12 0.12 0.13 0.16 0.10 0.11 0.12 0.08 0.09 0.11 0.08 0.08 0.10 

13 0.11 0.12 0.15 0.09 0.10 0.12 0.08 0.09 0.10 0.07 0.08 0.09 

14 0.10 0.11 0.14 0.09 0.09 0.11 0.08 0.08 0.09 0.07 0.07 0.08 

15 0.09 0.11 0.13 0.08 0.09 0.10 0.07 0.08 0.09 0.06 0.07 0.08 

16 0.09 0.10 0.12 0.08 0.08 0.10 0.07 0.07 0.09 0.06 0.07 0.08 

17 0.09 0.10 0.12 0.07 0.08 0.09 0.07 0.07 0.08 0.06 0.06 0.07 

18 0.09 0.09 0.11 0.07 0.08 0.09 0.06 0.07 0.08 0.06 0.06 0.07 

19 0.08 0.09 0.11 0.07 0.07 0.08 0.06 0.06 0.07 0.05 0.06 0.07 

20 0.08 0.09 0.10 0.07 0.07 0.08 0.06 0.06 0.07 0.05 0.06 0.06 
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Table 4.  The values of 1Rα  and 2Rα  

 

1Rα  

 r= 2 r=3 

α: 

r=4 

 

k  0.01 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

2 1.17 1.76 1.79 1.70 1.72 1.74 1.75 1.65 1.65 

3 2.03 2.09 2.15 2.09 2.05 20.1 2.01 2.14 2.11 

4 2.31 2.41 2.52 2.39 2.51 2.58 2.49 2.47 2.25 

5 0.59 2.69 2.85 2.49 2.62 2.78 2.52 2.60 2.78 

6 2.89 2.98 3.24 3.06 2.97 3.10 2.94 2.85 3.16 

7 2.97 3.39 3.64 .300 3.29 3.20 3.13 3.19 3.52 

8 3.52 3.77 3.80 3.41 3.24 3.45 3.64 3.13 3.48 

9 3.48 3.75 3.79 3.67 3.70 4.27 3.30 3.36 4.31 

10 3.72 3.74 4.24 4.00 4.00 4.29 4.00 3.64 4.34 

2Rα  

2 1.41 1.42 1.34 1.23 1.16 1.18 1.15 1.27 1.22 

3 1.70 1.70 1.62 1.49 1.44 1.43 1.36 1.33 1.27 

4 1.88 2.00 2.08 1.74 1.78 1.74 1.60 1.54 1.42 

5 2.19 2.19 2.30 1.87 1.78 20.1 1.67 1.78 1.78 

6 2.40 2.39 2.56 2.25 2.09 2.18 2.04 1.72 2.09 

7 2.60 2.66 2.83 2.15 2.25 2.33 1.92 2.04 2.07 

8 2.85 3.11 3.06 2.61 2.35 2.52 2.39 2.14 2.15 

9 2.78 3.06 3.02 2.78 2.86 2.78 2.12 2.25 2.61 

10 2.94 3.00 .354 2.98 2.51 2.94 2.56 2.39 2.78 
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Appendix 

Proposition 1. DRF̂  is an unbiased estimator of 
F.  
a) F(t)DR(t)]F̂E[ =   
b) 

)]t(G1)[t(G
kr
1))t(DRF̂var( ii

r

1i
2 −= ∑

=
. 

    
Proof: 
From the definition of a DRSS the proof will 
follow simply by using (1.3) and (2.1). 
 
Proposition 2.  

2/1))]t(DRF̂[var())]t(DRF̂(E)t(DRF̂[ −  
converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  
Proof: This follows from rewriting DRF̂ as 

j
k

1j
U

k
1DRF̂ ∑

=
= , where 

r
]tY[I

U ijr

1i
j

≤
= ∑

=
 , then sU j '  are iid, 

therefore the proof follows directely from the 
Central Limit Theorem.  
 
 Lemma1.  

(a) )]t(DRF̂[var
^

 is an unbiased estimator of 

)]t(DRF̂[var .  
where:  

 
 

)]t(Ĝ1)[t(Ĝ
r)1k(

1)]t(DRF̂[var ii
r

1i
2

^
−

−
= ∑

=
    

and ]tY[I
k
1)t(Ĝ ij

k

1j
i ≤= ∑

=
 is the edf 

based on all k of the i-th judgment order 
statistic.  

(b) 

2/1^
)]]t(DRF̂[var/[))]t(DRF̂(E)t(DRF̂[ −

 converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  
Proof:  
(a)  

)]t(Ĝ[E))t(Ĝ(E[
r)1k(

1))]t(DRF̂[var[E 2
ii

r

1i
2

^
−

−
= ∑

=

  

because  )t(G))t(Ĝ(E ii =  
and  
 

2
iij

k

1j
2

2
i )]t(G[])tY[Ivar(

k
1))t(Ĝ(E +≤= ∑

=
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)t(G])tY[Ivar(
k
k 2

ii2 +≤=  

        

k
)t(kG

k
)]t(G1)[t(G 2

iii +
−

=   

     
k

)t(G)1k()t(G 2
ii −+

=  . 

Then  
^

2r
i i i

2
i 1

ˆE[var(FDR(t))]
kG (t) G (t) (k 1)G (t)1
k k(k 1)r =

=

 + −
− −  

∑
  

         

)]t(G1)[t(G
kr
1

ii
r

1i
2 −= ∑

=
  

         )]t(DRF̂var[=   
Part (b) can be shown by noting that:  

 
1  p   

DR(t))F̂(var

DR(t))F̂r(a
^

v
→

 as ∞→k , and 

________________________________________ 
 
 
 

 

because  )t(G  )t(Ĝ i
p

i → .  
Furthermore, by Lemma 1 when k is large for a 
specified value t, an approximate 100(1-α)% 
confidence interval for F(t) is:  
 

 )]t(DRF̂[varZ)t(DRF̂
^

2/α±   
   
Lemma 2.  : For the special case when r = 2, 

(a) )]t(F̂var[)]t(DRF̂var[ ≤   

 (b) )]t(*Fvar[)]t(DRF̂var[ ≤ .  
 
Proof: Let k = 1 and  F(t) = F   

  2
1 FF2)t(F −= , 

2
2 F)t(F = , F2F2F)t(G 34

1 +−= , and  

  43
2 FF2)t(G −= .  

Then   
4

F2F2)]t(F̂var[
2−

=    

 

 
4

F2F4F4F2)]t(*F̂var[
234 +−+−

=  ,  

and  [ ]F2F4F8F4F8F8F2
4
1)]t(DRF̂var[ 245678 +−+−−+−=  .  

Then )]t(F̂var[
4

)1F2FF2F()F1(F2)]t(F̂var[)]t(DRF̂var[
23422

≤
++−−−

−=   

Also, )]t(*Fvar[
4

]1F][F2[]F1[F2)]t(*Fvar[)]t(DRF̂var[
33

≤
+−−

−= ,  

1F0 ≤≤ . 
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