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Nonlinear Trigonometric Transformation Time Series Modeling 
 

K. A. Bashiru O. E. Olowofeso S. A. Owabumoye 
Osun State University, 

Osogbo, Osun State 
Federal University Of Technology, 

Akure Ondo State, Nigeria 
 

 
The nonlinear trigonometric transformation and augmented nonlinear trigonometric transformation with a 
polynomial of order two was examined. The two models were tested and compared using daily mean 
temperatures for 6 major towns in Nigeria with different rates of missing values. The results were used to 
determine the consistency and efficiency of the models formulated. 
 
Key words: Nonlinear time series, polynomial, consistency, efficiency, missing value, model and 

forecasting. 
 
 

Introduction 
Time series analysis is an important technique 
used in many disciplines, including physics, 
engineering, finance, economics, meteorology, 
biology, medicine, hydrology, oceanography and 
geomorphology (Terasvirta & Anderson, 1992). 
This technique is primarily used to infer 
properties of a system by the analysis of a 
measured time record (data) (Priestley, 1988); 
this is accomplished by fitting a representative 
model to the data with an aim of discovering the 
underlying structure as closely as possible. 

Traditional time series analysis is based 
on assumptions of linearity and stationarity. 
However, time series analysis (Box & Jenkins, 
1970; Brock & Potter, 1993) has nonlinear 
features such as cycles, asymmetries, bursts, 
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jumps, chaos, thresholds and heteroscedasticity, 
and mixtures of these must also be taken into 
account. Thus, a problem arises regarding a 
suitable definition of a nonlinear model because 
not every time series analysis is purely linear: 
the nonlinear class clearly encompasses a large 
number of possible choices. For these reasons, 
non-linear time series analysis is a rapidly 
developing area and there have been major 
developments in model building and forecasting 
(De Gooijer & Kumar, 1992). 

The growing interest in studying 
nonlinear and non-stationary time series models 
in many practical problems stems from the 
inherently non-linear nature of many phenomena 
in physics, engineering, meteorology, medicine, 
hydrology, oceanography, economics and 
finance, that is, many real world problems do 
not satisfy the assumptions of linearity and/or 
stationarity (Bates & Watts, 1988; DeGooijer & 
Kumar, 1992; Sugihara & May, 1990). 
Therefore, for many real time series data, 
nonlinear models are more appropriate than 
linear models for accurately describing the 
dynamic of the series and making multi-step-
ahead forecast (Tsay, 1986; Barnett, Powell & 
Tauchen, 1991; Olowofeso, 2006). For example, 
financial markets and trends are influenced by 
climatic factors like daily temperature, amount 
of rainfall and intensity of sun, these are areas 
where a need exists to explain behaviors that are 
far from being even approximately linear. 
Nonlinear models would be more appropriate for 
forecasting and accurately describing returns and 
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volatility. Thus, the need for the further 
development of the theory and applications for 
nonlinear models is essential, and, because there 
are an enormous number of nonlinear models 
available for modeling and forecasting economic 
time series, research should help provide 
guidance for choosing the best model for a 
particular application (Robinson, 1983). 
 

Methodology 
The model proposed by Gallant (1981) called 
the Augmented Nonlinear Parametric Time 
Series Model (ANPTSM) was used in this study 
and a second model was formulated based on the 
Least Square Method Modified Nonlinear 
Trigonometric Transformation Time Series 
Model (MNTTTSM). 
 
Data 

Data used in this study were daily mean 
of temperatures from 1987 to 1996 for Ikeja, 
Ibadan, Ilorin, Minna and Zaria. The data were 
collected from the Meteorological Centre-
Oshodi Lagos. 
 
Model Formulation 

Consider the format shown in Table 1. 
In this model, up to 9 years were considered and 
the model is formulated based on the data as 
shown in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assumption and Notation for the Models 
Let: 

Xt,i,k = value of occurrence for day t of Month i 
in the year k; 

Xt,k = mean occurrence for day t of year k; 
X*

i,k = mean occurrence for month i of year k; 
X*y

K = overall yearly mean for the sampled 
month; 

X*m
i = overall monthly mean for the sampled 

year; 
t = the position of the day from the first day of 

the Month. 1 ≤ t ≤ 31; 
ti = the sum of days in month i for 1 ≤ i ≤ 12; 
tik = the sum of days from the initial sampled 

month of initial sampled year to month i 
of year k; 

ti* = the sum of days from the initial sampled 
month to month I; 

k = the position of a particular year from an 
initial sample year for −∞ ≤ k ≤ ∞; 

n = the number of sampled years; 
m = the number of sampled months; and 
X* = Grand Mean occurrence for k year(s) 

examined. 
The first model was reviewed based on 

the assumption that the sum of the occurrences 
were presented monthly, where ith month 
represents the month i for 1 ≤ i ≤ 12 which is to 
be modeled using the number of days in each 
month (see Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Model Formulation for a Particular Year 

t/i 1 2 3 4 5 6 7 8 9 10 11 12 Σxi/12 

1 x1,1,k x1,2,k x1,3,k x1,4,k x1,5,k x1,6,k x1,7,k x1,8,k x1,9,k x1,10,k x1,11,k x1,12,k X 1 

2 x2,1,k x2,2,k x2,3,k x2,4,k x2,5,k x2,6,k x2,7,k x2,8,k x2,9,k x2,10,k x2,11,k x2,12,k X 2 

t xt,1,k xt,2,k xt,3,k xt,4,k xt,5,k xt,6,k xt,7,k xt,8,k xt,9,k xt,10,k xt,11,k xt,12,k X t 

 *
1,k x*

2,k x*
3,k x*

4,k x*
5,k x*

6,k x*
7,k x*

8,k x*
9,k x*

10,k x*
11,k x*

12,k Σ x*
i,k/12 

 
Table 2: Model Data Formulation 

t/ik 1 2 3 … ik Σxi/ik 

1 x1,1,1 x1,2,1 x1,3,1 … x1,i,k X 1,k 

2 x2,1,1 x2,2,1 x2,3,1 … x2,i,k X 2,k 

t xt,1,1 xt,2,1 xt,3,1 … xt,i,k X t,k 

 x*
1,k x*

2,k x*
3,k … x*

i,k Σx*
i,k/ik= X 
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Augmented Nonlinear Parametric Time Series 
Model (ANPTSM) 

Trigonometric (sine and cosine) 
transformation augmented with polynomial of 
order two was applied to formulate the model 
across the year, that is, the monthly mean 
sample and the least square methods were used 
for estimating the model’s parameters as 
follows. Let the equation be of the form 
 

( ) ( )2
t,i,k 1 2 ik 3 ik iX a a tSin t a t Cos t

1  i 12

= + + + ε
≤ ≤

 

(3.0) 
 
The expected value of Xt,i,k is X*

i,k then the 
equation can be reformed as below to estimate 
the parameters; a1, a2 and a3 using Least Square 
Method. 
 

( ) ( )* 2
i,k 1 2 i ik 3 i ik iX a a t Sin t a t Cos t

1  i 12

= + + + ε
≤ ≤

 

(3.1) 
 

( ) ( )( )* 2
i i,k 1 2 i ik 3 i ikX a a t Sin t a t Cos t∴ε = − + +

 
(3.2) 

Let Σεi
2 = S 

 

( ) ( )( )* 2 2
i,k 1 2 i ik 3 i ikS (X a a t Sin t a t Cos t )= Σ − + +  

(3.3) 
 
Differentiating 3.3 with respect to a1, a2, a3, a3, 
as 

0
1

→
∂
∂
a
S

 

 
 
 
 
 
 
 
 
 
 
results in 
 

( ) ( )* 2
i,k 1 2 i ik 3 i ikX ma a t Sin t   a t Cos tΣ = + Σ + Σ  

(3.4) 
 
where m is the number of the monthly sample 
mean examined. Similarly, as 
 

0
2

→
∂
∂
a
S

 

then 
 

( ) ( )* 2 2
i ik i,k 1 i ik 2 i ik

3
3 i ik ik

t Sin t X a t Sin t a t Sin (t )

                            a t Sin(t )Cos(t )

Σ = Σ + Σ

+ Σ
 

(3.5) 
and as 

0
3

→
∂
∂
a
S

 

then 
 

( ) ( )
( ) ( )

( )

2 * 2
1i ik i,k  i ik

3
2 i ik ik

4 2
3 i ik

t Cos t X a t Cos t

                             a t Sin t Cos t

                              a t Cos t

Σ = Σ

+ Σ

+ Σ

 

(3.6) 
 
Simultaneously solving equations 3.4, 3.5 and 
3.6 using Cramer’s Rule results in equations 3.7-
3.10. 
 
 
 
 
 
 

Table 3: Months and Sums of Occurrences Modeled 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan   

i 1 2 3 4 5 6 7 8 9 10 11 12 13 … ik 

t 31 281/4 31 30 31 30 31 31 30 31 30 31 31 … ti 

ti 31 591/4 901/4 1201/4 1511/4 1811/4 2121/4 2431/4 2731/4 3041/4 3341/4 3651/4 3961/4 … t 
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Therefore, from equations 3.7, 3.8, 3.9 and 3.10, 
the following result: 
 

a1 = 

0

1

Δ
Δ

                           (3.11) 

 

a2 = 

0

2

Δ
Δ

                           (3.12) 

 

a3 = 

0

3

Δ
Δ

                           (3.13) 

 
Next, substituting 3.11, 3.12 and 3.13 into 3.1 
gives: 
 

* 231 2
i,k ik ik

0 0 0

X tSin(t ) t Cos(t ).
Λ ΔΔ Δ= + +

Δ Δ Δ
 

(3.14) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because X*

i,k is the expected value of Xt,i,k, 
equation 3.14 can  be rewritten as 
 

231 2
t,i,k ik ik

0 0 0

X tSin(t ) t Cos(t ).
Λ ΔΔ Δ= + +

Δ Δ Δ
 

(3.15) 
 
Models 3.14 and 3.15 would only be visible 
provided there is an occurrence within a month 
of any sampled year. 
 
Modified Nonlinear Trigonometric 
Transformation Time Series Model 
(MNTTTSM) 

In a situation where a whole month of 
data is missing, the above model may be 
difficult to apply and a different model would be 
needed. The model for such occurrence is 
formulated as follows. If the data in 3.2 are 
reformed such that the monthly means are those 
shown in Table 4. Consider: 
 

( )*
i,k i iX  a bsin t *= + + ε         (3.16) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 4 2 3 2
0 i ik i ik i ik ik

4 2 2 3
i ik i ik i ik i ik i ik ik

2 3 2 2 2
i ik i ik i ik i i i ik

m{ t Sin t t Cos t ( t Sin t Cos t ) }

t Sin t { t Sin t t Cos t t Cos t t Sin t Cos t }

t Cos t { t Sin t t Sin t Cos t t Cos t t Sin t }

Δ = Σ Σ − Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

       (3.7) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

* 2 2 4 2 3 2
1 i,k i ik i ik i ik ik

* 4 2 2 * 3
i ik i ik i,k ik i ik i,k i ik ik

2 * 3 2 * 2 2
i ik i ik i,k i ik ik i ik i,k i ik

X { t Sin t t Cos t ( t Sin t Cos t ) }

t Sin t { t Sin t X t Cos t t Cos t X t Sin t Cos t }

t Cos t { t Sin t  X t Sin t Cos t t Cos t  X t Sin t }

Δ = Σ Σ Σ − Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

(3.8) 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* 4 2 2 * 3
2 i ik i,k i ik i ik i,k i ik ik

* 4 2 2 3
i,k i ik i ik i ik i ik ik

2 2 * 2 *
i ik i ik i ik i,k i ik i ik i,k

m{ t Sin t X t Cos t ( t Cos t X t Sin t Cos t }

X { t Sin t t Cos t t Cos t t Sin t Cos t }

t Cos t { t Sin t t Cos t X t Cos t t Sin t X }

Δ = Σ Σ − Σ Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

  (3.9) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 * 3 *
3 i ik i ik i,k i ik i i ik i,k

2 * 2 *
i ik i ik i ik i,k i ik i ik i,k

* 3 2 2 2
i,k i ik i ik ik i ik i ik

m{ t Sin t t Cos t X ( t Sin t Cos t t Sin t X }

t Sin t { t Sin t t Cos t X t Cos t t Sin t X }

X { t Sin t t Sin t Cos t t Cos t t Sin t

Δ = Σ Σ − Σ Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

  (3.10) 
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where 

i

1
1 i 12 ,  1 t 365

4
≤ ≤ ≤ ≤  

 
If the expected value of X*

i,k is X*m
i, then 

equation 3.16 can take the form 
 

( )*m
i  i iX a b sin t *= + + ε        (3.17) 

where 

i

1
1 i 12 ,  1 t * 365

4
≤ ≤ ≤ ≤  

 
An ordinary least square method was used in 
estimating the parameters a and b. If Sm = εi

2
 = Σ 

(X*m
i  -(a+bsin(ti

*))2, then differentiating with 
respect to a and b 
 

( )( )*m *m
i i

S
2 X a bsin t

a

∂ = − Σ − +
∂

 

as 

0→
∂

∂
a

Sm  

 

( )*m *
i i ð X 12a b sin t Σ = + Σ        (3.18) 

 
Also, 
 

( ) ( )( )( )* *m *m
i i  i

S
2 (sin t X a bsin t

b

∂ = − Σ − +
∂

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

as 

0→
∂

∂
b

Sm  

 

( ) ( ) ( )*m * 2 *
i i i isin t *  X a sin t b sin t Σ = Σ + Σ

(3.19) 
 
Using Cramer’s Rule to solve equations 3.18 
and 3.19 simultaneously, results in: 
 

( )22 * *
4 i i

*m 2 * * *m *
5 i i i i i

* *m *m *
6 i i i i

12 Sin (t ) Sin(t )

X Sin (t ) Sin(t )X Sin(t )

12 Sin(t )X X Sin(t )

Δ = Σ − Σ

Δ = Σ Σ − Σ Σ

Δ = Σ − Σ Σ
 
where parameters 
 

( )
*m 2 * * *m *

5 i i i i i
 22 * *

4 i i

X Sin (t ) Sin(t )X Sin(t )
a 

12 Sin (t ) Sin(t )  

Δ Σ Σ − Σ Σ= =
Δ Σ − Σ

(3.20) 
 
and 
 

( )
* *m *m *

6 i i i i
22 * *

4 i i

12 Sin(t )X X Sin(t )
b

12 Sin (t ) Sin(t )

Δ Σ − Σ Σ= =
Δ Σ − Σ

 

(3.21) 
 
Therefore, the model for monthly occurrence is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Modified Nonlinear Trigonometric Transformation Time Series Model Data 

t/i 1 2 3 4 5 6 7 8 9 10 11 12 Σxi/12 

1 X*
1,1 X*

2,1 X*
3,1 X*

4,1 X*
5,1 X*

6,1 X*
7,1 X*

8,1 X*
9,1 X*

10,1 X*
11,1 X*

12,1 X*y
1 

2 X*
1,2 X*

2,2 X*
3,2 X*

4,2 X*
5,2 X*

6,2 X*
7,2 X*

8,2 X*
9,2 X*

10,2 X*
11,2 X*

12,2 X*y
2 

k X*
1,k X*

2,k X*
3,k X*

4,k X*
5,k X*

6,k X*
7,k X*

8,k X*
9,k X*

10,k X*
11,k X*

12,k X*y
k 

 x*m
1 x*m

2 x*m
3 x*m

4 x*m
5 x*m

6 x*m
7 x*m

8 x*m
9 x*m

10 x*m
11 x*m Σx*m

,i = X*12 
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* *5 6

4 4

( )m
i iX Sin tΔ Δ= +

Δ Δ
         (3.22) 

 
Because X*m

i is an expected value for X*
i,k then 

equation 3.22 can be rewritten as 
 

)( *

4

6

4

5
,

*
iki tSinX

Δ
Δ

+
Δ
Δ

=        (3.23) 

 
Similarly, along the sampled year X*y

K = c + d 
Sin(λk) for -∞ ≤ k ≤ +∞, 15≤ λ≤ 75. The λ must 
be chosen such that Σ εi = 0, Σεi

2 is as small as 
possible. 

If Sy = εi
2

 = Σ (X*y
K -(c+dsin(λk))2 then 

 

y *y
K

S
2 (X  (c dsin( k))

c

∂
= − Σ − + λ

∂
 

as 

0→
∂

∂
c

S y
 

 
*y

K ð X  nc d sin( k) Σ = + Σ λ       (3.24) 

 
Also, 
 

y *y
K

S
2 (sin( k) X (c dsin( k)))

d

∂
= − Σ λ − + λ

∂
 

 
as 

0→
∂
∂

d
S y

 

 
*y 2

K ð sin( k) X  c sin( k) d sin ( k) Σ λ = Σ λ + Σ λ
 

(3.25) 
 
Solving equations 3.24 and 3.25 simultaneously 
using Cramer’s Rule results in 
 

2 2
7

*y 2 *y
8 k k

*y *y
9 k k

n Sin ( k) ( Sin( k))

X Sin ( k) Sin( k)X Sin( k)

n Sin( k)X X Sin( k)

Δ = Σ λ − Σ λ

Δ = Σ Σ λ − Σ λ Σ λ

Δ = Σ λ − Σ Σ λ
 
 

 
Where the parameters 
 

*y 2 *y
8 k k

2 2
7

X Sin ( k) Sin( k)X Sin( k)
c

n Sin ( k) ( Sin( k))

Δ Σ Σ λ − Σ λ Σ λ= =
Δ Σ λ − Σ λ

 

(3.26) 
and 
 

*y *y
9 k k

2 2
7

n Sin( k)X X Sin( k)
d

n Sin ( k) ( Sin( k))

Δ Σ λ − Σ Σ λ= =
Δ Σ λ − Σ λ

 

(3.27) 
 

*y 8 9
k

7 7

X Sin( k)
Δ Δ∴ = + λ
Δ Δ

         (3.28) 

 
The method of placing expected 

occurrences in a contingency table of a Chi-
square was applied using equations 3.23 and 
3.28 to obtain the model to find the daily 
occurrences for a particular month of a particular 
year. Therefore, the model for expected daily 
occurrences is 
 

k
y

k
y

i
m

kit X
XXnX

*

**

,,

))((

Σ
=             (3.29) 

 
Substituting 3.23 and 3.28 into 3.29, results in 
 

 







Δ
Δ

+
Δ
Δ









Δ
Δ

+
Δ
Δ









Δ
Δ

+
Δ
Δ

=
)(

)()(

7

9

7

8

7

9

7

8*

4

6

4

5

,,

kSin

kSintSinn
X

i

kit

λ

λ

(3.30) 
 

Results 
Model Analysis and Discussion 

The data on the daily mean temperature 
for Ikeja, Ibadan, Ilorin, Minna and Zaria 
collected from the Meteorological Centre-
Oshodi Lagos were used. The parameters of the 
models were estimated and the fitted models for 
each zone are shown in Table 5 for Ikeja, 
Ibadan, Ilorin and Minna for ANPTSM. Data for 
the daily mean temperature was used to estimate 
the parameters. The fitted model for Zaria could  
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not be formulated due to the fact that many 
months of data were missing. 

Table 6 shows the fitted models for 
Ikeja, Ibadan,Ilorin, Minna and Zaria for 
MNTTTSM using the daily mean temperature 
data to estimate their parameters. The fitted 
model for Zaria was formulated because 
MNTTTSM has the strength of addressing the 
problem of missing values. Thus, although many 
months’ data were missing from Zaria’s daily 
mean temperature, MNTTTSM parameters 
could  still  be  estimated.  This  is  one  of  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
advantages of MNTTTSM over ANPTSM. 

Table 7 shows that the results of the 
Pearson Product Moment Correlation 
coefficients and Spearman Brown’s rank Order 
Correlation coefficients for Ikeja, Ibadan, Ilorin 
and Minna are highly and positively correlated, 
indicating a strong relationship between the 
actual data and estimated data for the daily mean 
temperature. In Zaria the correlation coefficient 
for MNTTTSM is positive but low which may 
indicate a weak relationship between the actual 
and estimated daily mean temperatures. 

Table 5: The Fitted Models for ANPTSM 
Zones Augmented Nonlinear Parametric Time Series Model (ANPTSM) 

IKEJA ( ) ( )226.88642582 0.047971536tSin 0.000143793 Cost t tik ik+ −  

IBADAN ( ) 2

ik ik
26.36612286 0.054847742tSin 0.0000344912t Cost t+ −  

ILORIN ( ) ( )tt ikCos2

ik
000833551.04tSin0.0481158726.2476883 t −+  

MINNA ( ) ( )ttt ikik CostSin 2
00073.0062853.072428.25 −+  

ZARIA − 

 
Table 6: The Fitted Models for MNTTTSM 

Zones Modified Nonlinear Trigonometric Transformation Time Series Model (MNTTTSM) 

IKEJA 


=

+

++
10

1

*

)601311.088996.26(

)6013116.088996.26)(420072.187226.26(10

K

i

kSin

kSinSint  

IBADAN 


=

+

++
10

1

*

)901311.036761.26(

)9013535.036761.26)(591834.136749.26(10

K

i

kSin

kSinSint  

ILORIN 


=

+

++
10

1

*

)45409024.040106.26(

)45409024.040106.26)(816182.145708.26(10

K

i

kSin

kSinSint  

MINNA 


=

+

++
10

1

*

)90112148.067047.27(

)90112148.067047.27)(508736.256143.27(10

K

i

kSin

kSinSint  

ZARIA 


=

+

++
10

1

*

)90222282.000445.25(

)90222282.000445.25)(210108.198532.24(10

K

i

kSin

kSinSint  



BASHIRU, OLOWOFESO & OWABUMOYE 
 

477 
 

Apart from Ibadan, in which the 
correlation coefficient in ANPTSM is greater 
than MNTTTSM and Ikeja which has equal 
correlation coefficients, all other Zones, the 
correlation coefficient in MNTTTSM is greater 
than ANPTSM. This indicates that MNTTTSM 
shows a stronger relationship between the actual 
and estimated values than does ANPTSM. 
Although the relationship between actual and 
estimated values of MNTTTSM in Zaria is weak 
but positive, that of ANPTSM could not be 
estimated due to the large number of missing 
values in the data. Also, all of the correlations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are significant at the 0.01 level (2-tailed). 
As shown in Table 8, the mean of the 

actual and estimated values for each zones of all 
models are almost equal; differences are due to 
approximation (truncation error) during 
calculation. Also, the mean of the actual and 
estimated values of MNTTTSM are closer than 
those of ANPTSM, which implies that 
MNTTTSM estimates better than ANPTSM. It 
was also discovered from results in Table 8 that 
the more missing values in the data, the weaker 
the ANPTSM is in estimating, while in 
MNTTTSM, the model maintains its precision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Correlation Coefficients 

Zones Types 
ANPTSM MNTTTSM 

Coefficients Sig. Coefficients Sig. 

IKEJA 
Pearson’s r 0.607 .000 0.607 .000 

Spearman’s Rho 0.620 .000 0.620 .000 

IBADAN 
Pearson’s r 0.594 .000 0.575 .000 

Spearman’s Rho 0.622 .000 0.584 .000 

ILORIN 
Pearson’s r 0.503 .000 0.589 .000 

Spearman’s Rho 0.560 .000 0.612 .000 

MINNA 
Pearson’s r 0.596 .000 0.676 .000 

Spearman’s Rho 0.656 .000 0.686 .000 

ZARIA 
Pearson’s r - - 0.419 .000 

Spearman’s Rho - - 0.445 .000 
 
 

Table 8: Comparison of ANPTSM and MNTTSM Means 

Zones N 
ANPTSM MNTTTSM 

Actual Estimated Actual Estimated 

IKEJA 3,660 26.9077 26.8759 26.9077 26.8759 

IBADAN 3,601 26.3749 26.3756 26.3749 26.3791 

ILORIN 3,580 26.4558 26.2443 26.4558 26.4593 

MINNA 3,362 27.5489 26.3611 27.5489 27.5559 

ZARIA 3,588 - - 25.0514 25.0172 
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Table 9 shows that the standard 
deviations for MNTTTSM are less than those of 
ANPTSM which indicates that MNTTTSM is 
better in estimating and forecasting than 
ANPTSM. Similarly, apart from the standard 
error of ANPTSM and MNTTTSM of Ikeja, 
which are equal, it may be observed that the 
standard errors for MNTTTSM were also 
smaller than those of ANPTSM, which indicates 
that MNTTTSM is better in estimating and 
forecasting than ANPTSM for time series data 
with missing values. 

Table 10 shows that at Ikeja, there is a 
95% chance that the differences between the 
actual and estimated daily mean temperature 
would lie between -0.00749 and 0.07119 in 
ANPTSM and -0.00748 and 0.07118 in 
MNTTTSM. Similarly, at Ibadan; -0.0462 and 
0.04473 in ANPTSM and -0.0496 and 0.04114 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in MNTTTSM, at Ilorin; 0.1505 and 0.2723 in 
ANPTSM and -0.0592 and 0.05218 in 
MNTTTSM, at Minna; 1.1155 and 1.2601 in 
model I and -0.0689 and 0.05482 in MNTTTSM 
while in Zaria is between -0.0546 and 0.12310. 

It was also discovered that the range of 
the confidence interval for MNTTTSM is less 
than that of ANPTSM for Ikeja and Ibadan. In 
Ilorin and Minna, the lower confidence intervals 
of differences for ANPTSM are positive which 
indicates a 95% chance that the differences 
between their actual and estimated daily 
temperature (actual – estimate) are positive 
while those of MNTTTSM are not. This implies 
that the estimated daily temperatures for 
ANPTSM at Ilorin and Minna were under-
estimated. Hence MNTTTSM is better in 
estimating and forecasting than ANPTSM when 
there are missing values in the time series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9: Comparison of ANPTSM and MNTTSM’S Standard Deviation and 
Standard Error of Differences 

Zones 
ANPTSM MNTTTSM 

Std. Dev. 
Std. Error of 

the Mean 
Std. Dev. 

Std. Error of 
the Mean 

IKEJA 1.2138 0.02006 1.2137 0.02006 

IBADAN 1.3913 0.02319 1.3882 0.02313 

ILORIN 1.8585 0.03106 1.6996 0.02841 

MINNA 2.1381 0.03688 1.8293 0.03155 

ZARIA - - 2.7152 0.04533 

 
 

Table 10: Comparison of ANPTSM and MNTTTSM’s 95 % Confidence Interval of 
the Difference 

Zones 
ANPTSM MNTTTSM 

Lower Upper Lower Upper 

IKEJA -0.00749 0.07119 -0.00748 0.07118 

IBADAN -0.0462 0.04473 -0.0496 0.04114 

ILORIN 0.1505 0.2723 -0.0592 0.05218 

MINNA 1.1155 1.2601 -0.0689 0.05482 

ZARIA - - -0.0546 0.12310 
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Conclusion 
The two models tested in this study were the 
Augmented Nonlinear Parametric Time Series 
Model (ANPTSM) and the Modified Nonlinear 
Trigonometric Transformation Time Series 
Model (MNTTTSM). Both models were tested 
using daily mean temperatures at Ikeja, Ibadan, 
Ilorin, Minna and Zaria, and the results were 
analyzed. It was discovered that ANPTSM could 
be used in forecasting provided the data is 
having few missing values. However 
MNTTTSM estimates forecasts better than 
ANPTSM in estimating missing values and 
forecasting. Based on results of this study, 
MNTTTSM is more efficient in estimating 
missing values and forecasts better than 
ANPTSM. 

The beauty of a good model developed 
for nonlinear time series modeling is the ability 
to forecast better, the new method MNTTTTSM 
is therefore recommended for numerical 
solutions for a nonlinear model with missing 
values due to its higher capacity to address 
missing values. It was also noted that the 
mathematical derivative of MNTTTSM is 
simpler than ANPTSM which did not forecast 
better. Further research could be conducted by 
placing a condition in which data having a year 
or more of missing values is taken into 
consideration. 
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