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A Comparison between Unbiased Ridge and Least Squares Regression Methods 
Using Simulation Technique 

 
Mowafaq M. Al-Kassab Omar Q. Qwaider 

Al-al Bayt University, 
Mafraq, Jordan 

 
 

The parameters of the multiple linear regression are estimated using least squares ( LSB̂ ) and unbiased 

ridge regression methods ( ( )JKIB ,ˆ ). Data was created for fourteen independent variables with four 
different values of correlation between these variables using Monte Carlo techniques. The above methods 
were compared using the mean squares error criterion. Results show that the unbiased ridge method is 
preferable to the least squares method. 
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Introduction 
Consider the linear regression model: 
 

UBXY += **
                 (1.1) 

 

where 
*X  is a ))1(( +× pn  matrix of predictor 

variables of full rank, 
*Y  is a )1( ×n  response 

vector, B  is a )1)1(( ×+p  vector of parameters 

and U  is a )1( ×n  vector of errors with 

0)( =UE  and IUCov 2)( σ= . When 
multicollinearity exists, the least squares 

estimate ( ) 1*T * *T *

LSB̂ X X X Y
−

=  is unstable, 

and many different methods have been proposed 
to control multicollinearity (Hoerl & Kennard, 
1970). 
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An alternative to the linear regression method is 
the unbiased ridge estimate 
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The unbiased ridge estimate regression, 

( )JKIB ,ˆ , has advantages and disadvantages. It 
is effective in practice but it is a complicated 

function of K , thus it is necessary to use rather 
complicated equations when employing some 
popular methods such as the Crouse, Jin and 

Hanumare (1995) criterion to select K  
(Swindel, 1976). 
 
The General Multiple Linear Regression Model 

The general multiple linear regression 
model is 



AL-KASSAB & QWAIDER 
 

489 
 

* * * *
i 0 1 i1 2 i2 p ip iY B B X B X ... B X U= + + + + +  

i 1,2,...,n=                       (2.1) 
 

where PBBBB ,.....,,, 210  are the regression 

coefficients and ),0(~ 2σNUi  is the random 

error associated with the observations. In matrix 
notation model (2-1) can be written as 
 
 
 
 
 
 
 
 
 

UBXY += **
, 

 

where 
*Y  is a )1( ×n  column vector of 

observations on the dependent variable, *X  is 
a )1)1(( ×+p  matrix resulting from n  

observations on P  explanatory variables 
**

2
*
1 ,.....,, pXXX  where the first column of 1’s 

represent the intercept term, that is, 1*
0 =X , 

and ),0(~ 2σNU  is )1( ×n  column vector 
of errors. 

Assumptions of the standardized model 
are: 

1. 0)( =UE  

2. IUUEUVar T 2)()( σ==  

3. Rank ( X *) = P where np <  
 
The ordinary least squares estimators are given 

by ( ) 1*T * *T *
LSB̂ X X X Y .

−
=  

 
Properties of Ordinary Least Squares Estimators 
 
1. Unbiasedness: 

An estimator, B


, is said to be unbiased 

estimator of B  if the expected value of B


 

equals B , that is, ( ) BBE LS =ˆ . (Casella & 

Berger, 2002) 
 
2. Variance: 

( ) ( ) 1
**2ˆ

−
= XXBVar T

LS σ
 

 
3. Mean squared error: 
 

( ) ( ) ( )

( ) ( ) ( )

( )

P P 2

i i
i 1 i 1

P 12 T
LS i

i 1

P
2

LS
i 1 i

ˆ ˆ ˆMSE B Var B Bias(B )

ˆ ˆMSE B Var B tr X X

1ˆMSE B

= =

−

=

=

= +

 = = σ

= σ

 



 
(2.2) 

 
Unbiased Ridge Estimator 

Ridge regression, which was proposed 
by Horel and Kennard (1970), suggests the use 

of KXX T + , where K  is a diagonal matrix 

rather than XX T
, so that the resulting 

estimators of B  are known as the ridge 
regression estimators and are given by: 
 

YXKXXB TT 1)(ˆ −+=           (3.1) 
 
Horel and Kennard (1970) suggested two forms 

for K . First, if pK kI , 0 k 1 = < < . 

Substituting this in equation (3.1), results in 
 

T 1 T
pB̂(k) (X X kI ) X Y−= +      (3.2) 

 

and, using eigenvalues and eigenvectors, )(ˆ kB  
can be expressed as 
 

p
1 T T

j j j
j 1

B̂(k) ( k) V V X Y.−

=

= +    (3.3) 

 
Second, if i iK diag(k ), k 0 i 1,2,...., p  = > = , 

then 
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TT
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1)()(ˆ      (3.4) 

 
Swindle (1976) illustrated a technique 

for combining prior information with ridge 
regression that extended Hoerl and Kennard’s 
model as follows: 
 

)()(),( 1 kJYXkIXXJkIB TT ++= −
 

(3.5) 
 
with J  being a fixed vector of prior estimate of 
B . Swindle showed that there exists a value k 
which gives a smaller MSE than the least 
squares estimator for any fixed prior 
information, J . 

Definition (1): A prior mean J  is said 
to be good if the difference 

ˆ ˆMSE(B(K)) MSE(B(kI, J))−  is positive for 

all positive values k  when both )(ˆ kB  and 

),(ˆ JkIB  are computed by using the same 

value of k  (Pliskin, 1987). 
Remark: The restriction 0>k  is made 

because, if 0=k  then 
 

YXXXJkIBkBB TT
LS

1)(),(ˆ)(ˆˆ −===  

 
for all J , thereby implying that all three 
estimators have the same risk. In this study, it 
was found that the vector of prior information 
J  depends on the arithmetic mean of the least 
squares estimators multiplying by a vector 
whose elements are ones, that is 
 

1
1

ˆ

×
=



















=


p

p

i
iLS

I
p

B
J                (3.6) 

 
 
 
 
Unbiasedness of Ridge Estimators: Theorem (1) 

Consider the standard linear regression 
model (2.1), where U  is normally distributed 

),0( 2 IN σ , and the least square estimator, B̂  is 

normally distributed ))(,( 12 −XXBN Tσ . The 

prior information J  is independent of LSB̂ , 

and J  is normally distributed ),( VBN . Also 

assume that V  has full rank covariance matrix 
and that the convex estimator is 

JCIBCJCB LS )(ˆ),( −+= , where I is the 

PP×  identity matrix and C is a PP×  matrix. 
The optimal C in terms of minimum MSE is 
then 

2 T 1 1C V( (X X) V)− −= σ +           (3.7) 
 

Corollary (1): Suppose B̂  is an 
estimator of B  with mean B  and covariance 
matrix  , and J  is prior information with 

mean B  and covariance matrix V . Further 

assume that if J  is uncorrelated with B̂ , and 

V  and   are of full rank, then the convex 

estimator ),( JCB  has a minimum MSE of 
optimal value 
 

 −+= 1)(VVC               (3.8) 

 
Theorem (2): Unbiased Ridge Estimate of B  
(Crouse, et al., 1995) 

Let LSB̂  have a distribution with mean 

B  and covariance 
2 T 1(X X)−σ , denoted by 

))(,( 12 −XXBN Tσ , as in the linear model. 

Similarly, let J  be distributed 
2

N(B, ( )I)
k

σ
 for 

k 0,>  and define LS
ˆB(C,J) CB (I C)J= + − ; 

then, for the optimal value C  in terms of 
minimum MSE 

T 1 TˆB(C,J) B(kI,J) (X X kI) (X Y KJ)−= = + + , 

and ),( JCB  is an unbiased estimate of B . 
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Proof: Assuming that 
2

J ~ N(B, ( )I)
k

σ
 

and, from corollary (1), B̂  has a distribution 
with mean B  and covariance 

2 T 1(X X)−= σ , that is, B̂ ~ N(B, ) , it is 

found that J  is distributed with mean B  and 

covariance 

2

V ( )I
k

σ
=  denoted by 

J ~ N(B, V) . Substituting this into equation 
(3.8) results in 
 

( )
12 2

12 T

1

T 1

1T 1

Ĉ X X I
k k

I I
(X X) I

k k

k(X X) I

−
−

−
−

−−

σ σ
= σ +

= +

= +

 
 
 

  
    

  

 

 

Substituting JCIBCJCB )(ˆ),( −+= , results 
in 

( ) ( )( ) ( )

( )( )

11 1T T T

11T

B C,J k X X I X X X Y

I k X X I J                 

−− −

−−

= +

+ − + 
 
 

 
and 

( ) ( )( )
( )( )

1T T

11T

B C, J X X kI X Y

I k X X I J                  +

−

−−

= +

− + 
 
 

. 

 

Multiplying ( ) 1T 1K(X X) I
−− +  by 

T T 1X X(X X)−
, 

results in 
 

( )( )
( ) ( )( )( )

( )( )
( )( )

1T T

11 1T T T

1T T

1T T

B(C, J) X X kI X Y

I X X X X k X X I J

X X kI X Y

I X X (X X) kI J

    

   

−

−− −

−

−

= + +

− +

= +

+ − +

 

Adding and subtracting kI  to XX T , 
 

( )
( )( )( )

( )
( )( )

1T T

1T T

1T T

1T

X X kI X Y
B(C, J)

I X X kI kI X X kI J

X X kI X Y

I k X X kI I J

−

−

−

−

+ +
=

− + − +

+ +
=

+ + −

 
 
  
 
 
 
  
 

 
Simplifying the above results in: 
 

T 1 T

ˆB(C,J) B(kI,J)

(X X kI) (X Y kJ)−

=

= + +
  (3.9) 

 
Swindle (1976) did not propose a 

method for estimating the parameter k , 
however, Crouse, et al. (1995) proposed a 
procedure to estimate k, as follows: 
 

2

T 2 T 1

T 2 T 1

2

T

P
,

ˆ ˆ(B J) (B J) tr(X X)
ˆ ˆ ˆk if (B J) (B J) tr(X X) 0

P
, o.w.

ˆ ˆ(B J) (B J)

   

−

−

 σ
 − − −σ= − − −σ >
 σ
 − −

(3.10) 
 

If 2σ  is unknown, then 2σ  can be estimated by 
an unbiased estimator, 
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2

T 2 T 1

T 2 T 1

2

T

Ps
,

ˆ ˆ(B J) (B J) s tr(X X)
ˆ ˆ ˆk if (B J) (B J) tr(X X) 0

Ps
, o.w.

ˆ ˆ(B J) (B J)

   

−

−


 − − −= − − −σ >


 − −

(3.11) 
 
Properties of the Unbiased Ridge Estimators 
 
1. Unbiasedness: 
 

( )( )ˆE B kI, J B=  

 
2. Variance: 

( )( )
( )

2 i
i 2

i i

ˆVar B kI, J
k

= σ
+


  

 
3. Mean Square’s Error: 
 

( )( )

( )
( )

( )

2P P P
2 i

i i2 2
i 1 i 1 i 1i i i i

ˆMSE B kI, J

I
k B J

k k= = =

=

− + σ
+ +

 
 
 

   

 
(3.12) 

 
 

Methodology 
Model Description and Monte Carlo Simulation 

This research used a Monte Carlo study 
to examine the properties of least squares and 
unbiased ridge methods. The properties were 
then compared in the sense of the MSE, which 
was evaluated using equations (2.2) and (3.12) 
respectively. Thirty observations (n=30) were 
generated for each of fourteen (p=14) 
explanatory variables; the explanatory variables 
were generated using the device: 
 

* 2 1 2 * *
ij ij i15

* *
ij ij

X (1 ) Z Z ( j 1,2,...,m i 1,2,...,30)

X Z ( j m 1,m 2,...,14 i 1,2,...,30)

  . 

  . 

 = − α + α = =


= = + + =

 

 

Where ijZ  are independent standard normal 

pseudo-random numbers, i15Z  is the ith element 

of the column vector of random error 15Z , α  is 

specified so that the correlation between any two 

explanatory variables is given by 
2α . The n 

observations for the dependent variable Y  are 
determined by: 
 

i 1 i1 2 i2 14 i14 iY X X ..... X U

i 1, 2,....,30

= λ + λ + + λ +

=
 

 

where iU  are independent normal 
2(0, )σ  

pseudo-numbers evaluated by: i i15 15U Z Z= − , 

and Y  is standardized using unit length scale. 
 
 

Results 
The primary purpose of this research was to 
compare the MSE of the considered estimators, 
thus, the MSE for all estimators was evaluated. 
In addition, the efficiency of each estimator was 
evaluated. Thirteen experiments using Monte 
Carlo methods were conducted. The results of 
each experiment consist of five tables. The 
tables display the MSE of each estimator under 
one of five levels of correlation between 
explanatory variables. One set of experimental 
results is presented and consists of tables 
displaying the MSE of the least square and 
unbiased ridge methods for the desired 
correlation coefficients. 
 
 

Conclusion 
As shown in Tables 1-5, based on the thirteen 
experiments, it is concluded that the unbiased 
ridge method is preferable to the least square 
method because it results in smaller MSE 
values. 
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Table 1: Correlation Coefficient 
2α = 0.35 

MSE Using 
Unbiased Ridge

MSE Using 
Least Squares 

Correlation 
Between 

0.122822 25.4000 X1,X2 

0.0039352 23.1838 X1-X3 

0.0368124 30.7029 X1-X4 

0.144270 36.5401 X1-X5 

0.0714341 28.5695 X1-X6 

0.0241636 25.3975 X1-X7 

0.128423 36.4954 X1-X8 

0.0045159 46.5005 X1-X9 

0.0355173 1.57386 X1-X10 

0.0231471 27.4589 X1-X11 

0.0382758 38.3113 X1-X12 

0.0080928 39.3052 X1-X13 

0.0331327 46.2861 X1-X14 
 

Table 2: Correlation Coefficient 
2α = 0.51 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0444524 26.2279 X1,X2 

0.0111884 24.3146 X1-X3 

0.0029957 33.2860 X1-X4 

0.006178 45.0645 X1-X5 

0.0064171 33.4187 X1-X6 

0.0451311 29.1076 X1-X7 

0.0554930 44.4291 X1-X8 

0.0508783 61.7260 X1-X9 

0.0113255 29.6791 X1-X10 

0.0075011 33.2142 X1-X11 

0.0162912 47.9239 X1-X12 

0.0027323 49.6498 X1-X13 

0.0129765 68.5781 X1-X14 
 

Table 3: Correlation Coefficient 
2α = 0.67 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0295791 28.3239 X1,X2 

0.0084244 26.6763 X1-X3 

0.0066016 38.7922 X1-X4 

0.015094 61.6469 X1-X5 

0.0242642 42.9897 X1-X6 

0.0174133 37.0921 X1-X7 

0.0087105 59.5534 X1-X8 

0.0000733 91.8063 X1-X9 

0.0059245 38.3784 X1-X10 

0.0023228 44.8721 X1-X11 

0.0110501 66.4587 X1-X12 

0.0075445 69.5876 X1-X13 

0.0031203 113.142 X1-X14 
 

Table 4: Correlation Coefficient 
2α = 0.84 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0079587 35.6903 X1,X2 

0.0061240 34.3758 X1-X3 

0.0004140 57.3043 X1-X4 

0.042486 115.0238 X1-X5 

0.0159949 74.0384 X1-X6 

0.0030147 64.4310 X1-X7 

0.0007958 107.380 X1-X8 

0.0025083 189.863 X1-X9 

0.0057765 68.1341 X1-X10 

0.0018858 83.3222 X1-X11 

0.0037824 125.433 X1-X12 

0.0039350 132.940 X1-X13 

0.0037324 259.746 X1-X14 
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Table 5: Correlation Coefficient 
2α = 0.99 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0064327 253.630 X1,X2 

0.0011331 250.785 X1-X3 

0.0098181 606.225 X1-X4 

0.026003 1645.7712 X1-X5 

0.0078642 974.1748 X1-X6 

0.0048502 900.5158 X1-X7 

0.0158666 1461.07 X1-X8 

0.0170372 3049.69 X1-X9 

0.0026540 976.803 X1-X10 

0.0011670 1218.541 X1-X11 

0.0043619 1787.02 X1-X12 

0.0040964 1908.30 X1-X13 

0.0038209 4586.19 X1-X14 
 


	Journal of Modern Applied Statistical Methods
	11-1-2010

	A Comparison between Unbiased Ridge and Least Squares Regression Methods Using Simulation Technique
	Mowafaq M. Al-Kassab
	Omar Q. Qwaider
	Recommended Citation


	Microsoft Word - toc_vol9_no2

