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Ridge Regression Based on Some Robust Estimators 
 

Hatice Samkar Ozlem Alpu 
Eskisehir Osmangazi University, 

Turkey 
 

 
Robust ridge methods based on M, S, MM and GM estimators are examined in the presence of 
multicollinearity and outliers. GMWalker, using the LS estimator as the initial estimator is used. S and MM 
estimators are also used as initial estimators with the aim of evaluating the two alternatives as biased 
robust methods. 
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Introduction 
One of the main problems in regression 
estimation methods is multicollinearity. 
Multicollinearity is the term used to describe 
cases in which the regressors are correlated 
among themselves. The ridge regression model 
has been advocated in the literature as an 
alternative to LS estimation for the 
multicollinearity problem; in this method, which 
was proposed by Hoerl & Kennard (1970a, b), 
ridge estimators are used instead of LS 
estimators. 

Another common problem in regression 
estimation methods is that of non-normal errors. 
The term simply means that the error 
distributions have fatter tails than the normal 
distribution. These fat-tailed distributions are 
more prone than the normal distribution to 
produce outliers, or extreme observations in the 
data. When outliers exist in the data, the use of 
robust estimators reduces their effects. 
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In the case of where both 

multicollinearity and outliers exist, the use of 
robust ridge regression is suggested. Robust 
ridge regression analysis has attracted the 
attention of some researchers in the literature. 
Holland (1973) gave the formulas for and 
derivation of ridge regression methods when 
weights are associated with each observation, 
and proposed the combination of ridge 
regression with robust regression methods. 
Askin & Montgomery (1980) presented a 
method based on augmented data sets for 
combining biased and robust regression 
techniques. Their estimates were constrained 
robust estimates, using an appropriately chosen 
ridge, Stein shrinkage or principal components 
constraint. Walker (1984) modified Askin and 
Montgomery’s approach to allow the use of GM 
estimators instead of M estimators (Simpson & 
Montgomery, 1996). Silvapulle (1991) proposed 
a new class of ridge type M estimators obtained 
by using M estimators instead of LS estimators. 
In addition, he suggested a procedure for 
choosing the optimal value of the biasing 
parameter (k) adaptively. 

Arslan & Billor (1996) proposed two 
alternative ridge type GM estimators to handle 
simultaneously multicollinearity and the 
existence of outliers. To reduce the effect of 
outliers, they computed robust estimates for k, 
and used these estimates to obtain robust ridge 
estimates for the regression coefficients. 
Another robust ridge regression estimator was 
suggested by Pfaffenberger & Dielman (1990). 
This estimator combines properties of the LAV 
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(Least Absolute Value) estimator and the ridge 
estimator, and is called RLAV (Ridge Least 
Absolute Value) estimator. Simpson & 
Montgomery (1996) proposed a biased-robust 
estimator that uses a multistage GM estimator 
with fully iterated ridge regression to control 
both influence and collinearity in the regression 
data set. Simpson & Montgomery (1998a) also 
evaluated existing and proposed robust methods 
relative to their performance on a 
comprehensive group of datasets with and 
without outliers. In addition, Simpson & 
Montgomery (1998b) developed and evaluated 
new robust regression procedures and compared 
their performance to the best alternatives 
currently available, in terms of efficiency, 
breakdown, and bounded influence. They 
offered the better performing alternatives as 
possible methods for use in a robust regression 
scenario.  

Wisnowski, Simpson & Montgomery 
(2002) introduced a robust regression estimator 
that performs well regardless of the quantity and 
configuration of outliers. They show that the 
best available estimators are vulnerable when 
the outliers are extreme in the regressor space 
(high leverage). Their proposed compound 
estimator modified recently published methods 
with an improved initial estimate and measure of 
leverage. 

In this study, robust ridge regression 
methods based on M, S, MM and GM estimators 
are examined in the presence of both outliers 
and multicollinearity. The computation of GM 
estimates requires two stages of parameter 
estimation, an initial estimate that provides a 
good starting point and a secondary estimate 
with iterations to a final estimate. LS is used as 
the initial estimator of GM in the study. In 
addition, S and MM estimators are used as initial 
estimators, with the aim of evaluating two 
alternatives as biased robust methods, as they 
are the top two robust estimation methods and 
are also highly efficient and effective against 
most types of outlier configurations. The 
performance of the robust ridge estimators is 
examined by using mean square error (MSE) on 
a hospital manpower dataset (Myers, 1990). 
 
 
 

Methodology 
Ridge Regression 

Consider the linear model 
 

εXβy += ,                      (2.1) 
 
where y is a vector of n response values, X is an 
n× p  matrix of rank p, β  is a vector such that 

E( ) 0=ε , and 2Var( ) σ= nε I . All variables in 

this model are corrected for their means and 
scaled to unit length, so that XX'  is in 
correlation form. 

If the columns of X are multicollinear, 
then the least-squares estimator of β , namely 

yXX)X(β 1 ′′= −ˆ , is an unreliable estimator due 
to the large variances associated with its 
elements. The most popular of the methods that 
can be used to cope with multicollinearity is 
ridge regression. This method, developed by 
Hoerl & Kennard (1970a, b), is based on adding 
a positive constant k to the diagonal element of 

XX' . This leads to a biased estimator Rβ  of β , 

called the ridge estimator and given by: 
 

1ˆ ( )k −′ ′= +R nβ X X I X y             (2.2) 

 
When both outliers and multicollinearity occur 
in a dataset, it would seem beneficial to combine 
methods designed to deal with these problems 
individually. Thus, robust ridge estimators will 
be resistant to multicollinearity problems and 
will be less affected by outliers. 
 
Robust Ridge Regression 

The following formula is used to 
compute robust ridge estimates: 
 

* 1ˆ ˆ( )RobustRidge Robustk −′ ′= +β X X I X Xβ , 

(2.3) 
 

where ˆ
Robustβ  denotes the coefficient estimates 

from the robust estimators. Many methods of 
selecting appropriate k* values have been 
proposed in the literature. In this study, the 
method proposed by Hoerl, Kennard & Baldwin 
(HKB) (1975), based on LS estimators, has been 
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used for the selection of the k* value, building on 
robust estimators: 
 

2
* ˆ.

ˆ ˆ
Robust

Robust Robust

pk σ
=

′β β
,               (2.4) 

 

Where p is the number of regressors, and 2ˆ Robustσ  

is the robust scale estimator. 
 
Robust Estimations 

The most popular of all robust 
estimation techniques is M estimation, proposed 
by Huber (1964). The M estimator minimizes 
the objective function 
 

n

i 1

ˆ
min iy

ρ
s=

 ′− β
 
 
 

 ix
β

. 

 
Differentiating the objective function with 
respect to the coefficients β , defining ′ψ = ρ , 
and setting the partial derivates to 0, the system 
of equations can be written 
 

n

i 1

ˆ
min . 0iy

s
ψ

=

 ′− β
  =
 
 

 i
i

x
x

β
, 

 
where s is a robust estimate of scale. 

GM estimators are a natural extension of 
M estimators (Walker, 1984). GM estimation is 
multistage estimation with two desirable 
properties, efficiency and bounded influence. 
These estimators bound the influence of the 
observations both in the x and y direction by 
using weight functions. The GM estimators are 
solutions to the normal equations 
 

1

ˆ
0

n
i

i
i i

y
s

π ψ
π=

 ′− β
  =
 
 

 i
i

x
x , 

 
where the iπ  denote the weights. This estimator 

was developed by Schweppe (Simpson & 
Montgomery, 1998a). 

In the literature, several GM estimation 
approaches are suggested using various 
combinations of GM components (objective 

function, initial estimate, scale estimate, π -
weight function, etc.). The GM estimation 
approach of Walker (1984) is one of the 
approaches. The GM approach of Walker uses 
the Schweppe objective function that 
downweights outliers with high leverage points 
only if the corresponding residual is large. It is 
recommended to use the LS as the initial 
estimator and a non-iterated MAD as the 
estimate of scale. Convergence to the final 
estimate is obtained by using iteratively 
reweighted LS (Wisnowski, Montgomery & 
Simpson, 2001). 

In this study, Walker’s (1984) GM 
method and two alternative GM estimation 
approaches have been used. In the first 
approach, the Schweppe function, Huber’s Ψ , 
min(1,c|DFFITS|-1) and S estimation are used 
instead of LS for the objective function, leverage 
function, π -weight function, initial and scale 
estimation, respectively. Final parameter 
estimates are found by iteratively reweighted 
LS. 

S estimators developed by Rousseeuw & 
Yohai (1984) are based on the minimization of 
the dispersion of the residuals. The S estimator 
is given by 
 

1ˆ
min ( ( ),..., ( ))ns e e

β
β β , 

 
and the scale estimator is 
 

1
ˆ ˆˆ ( ( ),..., ( ))ns e eσ β β= . 

 
The dispersion function 1( ( ),..., ( ))ns e eβ β  is 

found as the solution to 
1

1 n
i

i

e
n s

ρ
=

 
 
 

 =K, where 

K is a constant and (.)ρ  is the residual function. 
Rousseeuw & Yohai (1984) suggest using the 
following function: 
 

2 4 6

2 4

2

        
2 2 6( )

                            
6

x x x x c
c cx

c x c
ρ


− + ≤= 

 >
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The 50% breakdown point of the S estimators is 
achieved by taking c=1.548 and K=0.1995 
(Rousseeuw & Leroy, 1987). 

In the second GM approach considered, 
the objective, leverage and π -weight functions 
are calculated as in the first GM approach, and 
the MM estimator is used for the initial and scale 
estimation. The MM estimator is a high 
breakdown and high efficiency estimator with 
three stages. The initial estimate is a high 
breakdown estimate using an S estimate. The 
second stage computes an M estimate of the 
scale of the errors from the initial S estimate 
residuals. 

The last step is an M estimate of the 
regression parameters using a redescending ψ  
function that assigns a weight of 0.0 to 
abnormally large residuals (Wisnowski, 
Montgomery & Simpson, 2001). Because MM 
estimation combines high breakdown value 
estimation and M estimation, it has both a high 
breakdown property and a higher statistical 
efficiency than S estimation (Chen, 2002). 
Although MM estimation does not theoretically 
bound the possible influence, it performs very 
well in some high leverage outlier situations 
(Simpson & Montgomery, 1998). 
 
MSE Criterion for Robust Ridge Estimators 

To illustrate the performance of robust 
ridge estimators, the MSE criterion proposed by 
Silvapulle (1991) is used for M estimation and 
that of Arslan & Billor (1996) for GM 
estimation. The MSE of the robust ridge 
estimators based on the M and GM estimators is 
as follows: 
 

*

2*
* 2

*
1 1

ˆ( ( ))

( )

Robust

n n
i

i i ii
i i i

MSE k

kk
k

α
λ λ Ω

λ
−

= =

=

 
+ +  + 

 

α

, 

 

Robust ii
1

ˆ( )
p

i
MSE Ω

=

α = , 

 
where Ω  is a (pxp) ˆcov( )Robustα  matrix, and iλ  

are the eigenvalues of ′X X . Any estimator α̂  

of α  has a corresponding estimator ( )ˆ ˆβ = Pα , 

such that ˆˆ( ) ( )MSE MSEα = β , where ˆ( )MSE β

refers to the total MSE, { }ˆ ˆ( ) ( )E ′β − β β − β  

(Silvapulle, 1991; Arslan & Billor, 1996). 
 

Results 
A hospital manpower dataset taken from Myers 
(1990) was examined as an example to compare 
the performance of the considered estimators. 
This example contains five regressors and one 
response variable. Because the data have been 
standardized, the model does not include the 
intercept term, thus, the XX′  matrix is in the 
form of a correlation matrix: 
 

′X X

1.000 0.907 0.999 0.936 0.671

0.907 1.000 0.907 0.910 0.447

0.999 0.907 1.000 0.933 0.671 .

0.936 0.910 0.933 1.000 0.463

0.671 0.447 0.671 0.623 1.000

 
 
 
 =
 
 
  

 

 
The matrix XX′  has eigenvalues =1λ 4.197, 

=2λ 0.667, =3λ 0.095, 4λ = 0.041, 5λ =
0.0001. It is observed that the regressors are 
moderately to highly correlated. Moreover,

1 5( / ) (4.1971/ 0.0001) 83942λ λ = = , which 

implies the existence of multicollinearity in the 
dataset. 
In addition, in Figure 1, 

6 7 8 10 12 15 16 17, , , , , ,  and x x x x x x x x  are flagged as 

outliers or leverage points, and the points 

6 6 7 7( , ), ( , ),y x y x  8 8 10 10( , ), ( , ),y x y x

12 12 15 15( , ), ( , ),y x y x  16 16 17 17( , ) and ( , )y x y x
are regression outliers. The points 

8 8 10 10( , ), ( , ),y x y x  12 12 15 15( , ), ( , ),y x y x

16 16 17 17( , ) and ( , )y x y x are called bad leverage 

points. Regression outliers for which x values 
are not leverage points are called outliers in the y 
direction. In Figure 1, the points 

6 6 7 7( , ), ( , )y x y x  are outliers in the y direction 

as well. 
In the presence of outliers in the data, 

the use of robust methods provides more stable 
parameter estimates. With this aim, initial robust 
regression estimates have first been calculated to  
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obtain robust ridge estimates in the presence of 
both multicollinearity and outliers; these 
estimates are given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Table 1, the 1β̂  value of the 

M estimator is found to have a negative sign. 

This value is inconsistent with the 1β̂  values  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtained from the S and MM estimators. In the 
presence of multicollinearity in a dataset, the 
signs of parameters can be found to be different 

from expectations. The sign of the 1β̂  value can 

be said to occur inversely due to the potential 
effects of multicollinearity. In addition, the 
magnitudes of the parameter values for the M 
estimator are fairly different from those of the S 
and MM estimators. It is thought that the S and 
MM estimates are better than the M estimates 
because the scale estimates of S and MM are 
more efficient than the M estimates. 

Second, biasing parameters (k*) have 
been found by using the estimates in Table 1. 
Robust ridge estimates via the biasing 
parameters are calculated and shown in Table 2. 

In Table 2, the sign of 1β̂  value of the M 

estimate is the same as that of the other robust 
ridge estimates. The effect of multicollinearity 

on the sign of the 1β̂  value is removed by using 

ridge regression. The magnitudes of the 
parameter estimates are coherent with each 
other, except ridge regression estimates based on 
M estimates. 

Figure 1: Robust Residuals versus Distances for Hospital Manpower Data 

 

Table 1: Initial Robust Parameter Estimates 

ˆ
Robustβ  M S MM 

1β̂  -0.2159 0.4036 0.5948 

2β̂  0.1782 0.6739 0.6543 

3β̂  1.1891 0.3053 0.1099 

4β̂  -0.0759 -0.3054 -0.2582 

5β̂  -0.1281 -0.0909 -0.0853 

σ̂  0.0264 0.0199 0.0199 
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From Table 2, it is observed that the 
result of MSE based on M estimation is the 
worst among other robust methods. The worst 
value of the scale estimates in Table 1 belongs to 
the M estimates; thus, the results of Table 1 are 
consistent with those of Table 2. The result of 
MSE for GMWalker is the second worst value. GM 
estimators were developed to overcome the 
deficiency of M estimators; Table 2 shows that 
the MSE value of GM is better than that of M. It 
has been noted that GM estimation is multistage, 
while the initial estimates of GMWalker are based 
on LS. The method of LS is not robust in the 
presence of outliers in the data. For this reason, 
the MSE of GMS and GMMM, proposed in the 
study as alternatives to GMWalker, are less than 
that of GMWalker. The MSEs of the GMS and 
GMMM estimates are significantly less than the 
MSEs of the other robust ridge estimates. 
Furthermore, the results of MSEs for robust 
ridge estimates based on MM are less than those 
of the S estimates. 
 

Conclusion 
In this study, in the presence of both 
multicollinearity and outliers in a dataset, a 
biasing parameter k* is calculated using the 
ˆ

Robustβ  and ˆ Robustσ  values obtained from several 

robust methods (M, S, MM, GMWalker, GMS and 
GMMM),    robust   ridge   estimates    are   then 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtained. The performance of the robust 
estimators is affected by the percentage of data 
that are outliers, the location of the outliers in 
the x and y directions and their magnitudes. For 
this reason, the performance of the estimators 
considered must be interpreted in terms of these 
components. 

The performance of ridge estimators 
based on M, S, MM, GMWalker, GMS and GMMM 
estimation methods have been considered for the 
dataset in terms of the MSE criterion. For this 
dataset, the result of MSE from robust ridge 
regression based on M estimation is the worst 
among all robust techniques. Because the data 
includes outliers in both the x and y directions, 
the M estimators cannot bound the outliers in the 
x direction. In this situation, GM estimators, 
which bound the effects of outliers in both the x 
and y directions, are expected to have better 
performance than M estimators. Thus, under 
these circumstances, it has been shown that the 
ridge GM estimators would be preferred. 

However, the result of MSE for 
GMWalker is the second worst value. There are 
several outliers in the x-direction in the data and 
a few of them are extreme. On the other hand, 
the GMWalker method uses LS estimates, which 
are not robust, as initial estimates. In this 
situation, it is expected that the MM and S 
estimators should have better performance in 

Table 2: Robust Ridge Parameter Estimates 

ˆ
Robust Ridgeβ  M S MM GMStandard GMS GMMM 

1β̂  0.4621 0.3329 0.3343 0.3927 0.3600 0.3426 

2β̂  0.1755 0.6663 0.6472 0.4351 0.4913 0.5117 

3β̂  0.5239 0.3540 0.3444 0.4162 0.3874 0.3683 

4β̂  -0.0857 -0.2801 -0.2299 -0.1491 -0.1408 -0.1263 

5β̂  -0.1325 -0.0842 -0.0776 -0.0738 -0.0678 -0.0681 

k* 0.0032 0.0024 0.0023 0.0055 0.0030 0.0031 

MSE 0.0398 0.0249 0.0242 0.0314 0.0209 0.0200 
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terms of MSE, because MM and S estimators are 
high breakdown estimators. 

GMS and GMMM estimates combine the 
properties of high breakdown, efficiency and 
robustness against outliers in the x and y 
directions. Consequently, the MSE of the GMS 
and GMMM estimates are somewhat smaller than 
that of the GMWalker ridge estimates. According 
to this result, it can be said that using robust 
estimation methods as an initial estimator for 
GM give more efficient and high breakdown 
estimates when the dataset contains outliers in 
the x and y directions. As the result, the 
performance of robust ridge regression estimates 
based on GMS and GMMM estimators met 
expectations in terms of the MSE criterion in 
this dataset. 
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