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The maximum likelihood estimator (MLE) is commonly used to estimate the parameters of logistic 
regression models due to its efficiency under a parametric model. However, evidence has shown the MLE 
has an unduly effect on the parameter estimates in the presence of outliers. Robust methods are put 
forward to rectify this problem. This article examines the performance of the MLE and four existing 
robust estimators under different outlier patterns, which are investigated by real data sets and Monte Carlo 
simulation. 
 
Key words: Logistic regression, robust estimates, downweighting, leverage points. 
 
 

Introduction 
Logistic regression models are widely used in 
the field of medical and behavioral sciences. 
These models are used to describe the effect of 
explanatory variables on a binary response 
variable. The logistic regression model assumes 
independent Bernoulli distributed response 
variables with the probability of a positive 
response modeled as  
 

( ) ( )βT
iii xFxXYP === 1  

 
where F is the logistic distribution function, 

p
ix ℜ∈  are vectors of explanatory variables 

and pℜ∈β  is unknown. Such models are 
usually estimated by the maximum likelihood 
estimator (MLE) due to its efficiency under a  
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parametric model. Unfortunately, the MLE is 
very sensitive to outlying observations. 

Pregibon (1981) stated that the 
estimated parameters in logistic regression may 
be severely affected by outliers; hence, several 
robust alternatives which are much less affected 
by outliers are proposed in the literature (for 
example, Pregibon, 1981; Copas, 1988; Kunsch, 
et al., 1989; Carroll & Pederson, 1993; Bianco & 
Yohai, 1996; Croux & Haesbroeck, 2003). The 
goal of this article is to demonstrate a formal 
comparison between the MLE and several robust 
methods for logistic regression through a 
simulation study and real data examples. 
 
Background 

The logistic regression model assumes 
an independent Bernoulli response variable Y
which takes values 1(for success) or 0 (for 
failure). Let ( )pxxX ,...,,1 1=  be a vector of 

independent explanatory variables. Given a 
binary variable Y  and a 1×p  vector X of 
covariates, the logistic regression model is of the 
form: 
 

( ) ( ) ( )
( )1

1

1

T
iT

i i T
i

exp x
P Y X x F x ,

exp x

i ,...,n

β
= = = β =

+ β

=

 

(1) 
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where ),...,,( 10 p
T ββββ =  is a vector of 

parameters and F  is assumed to be a 
continuous and increasing distribution function. 
For estimating the β  parameters, the maximum 
likelihood estimator (MLE) is classically used 
and is defined by an objective function 
 

( )
=

=
n

i
iiMLE xYl

1

;,maxargˆ ββ
β

            (2) 

 
where the log-likelihood contributions are 
 

( ) ( ) ( ) ( )[ ]βββ T
ii

T
iiii xFYxFYxYl −−+= 1ln1ln;,

(3) 

 
which gives an asymptotically efficient 
procedure for estimating β . Alternatively, the 
MLE may be obtained by minimizing the 
deviance, 
 

( )=
=

n

i
iMLE Dminargˆ

1
ββ

β
                (4) 

where 
 

( )[ ] ( ) ( )[ ]{ }βββ T
ii

T
iii xPYxPYD −−−−= 1ln1ln)( . 

 
Differentiating (2) with respect to β  results in 
the likelihood score equation 
 

[ ] 0)(
1

= −
=

i

n

i
xT

ixFiY β .           (5) 

 
These equations are solved iteratively by 

using either the Newton-Raphson or Fisher 
Scoring method. It is important to point out that 
the MLE in logistic regression does not exist 
when the data has no overlap. The estimator can 
only be estimated if the data has overlap where 
the two parts of data given by the values of the 

dependent variable, { }1== ii YxX  and 

{ }0== ii YxX  are not separated in the space of 

explanatory variables (Albert & Anderson, 
1984). The MLE is asymptotically normal and is 
an efficient estimator, nonetheless, it is 
extremely sensitive to outliers and hence is said 
to not be robust. For this reason, several robust 

alternatives of the MLE have been created to 
remedy this problem. 
 
Outliers in Logistic Regression 

It is important to distinguish between 
the different cases of outlying observations in 
logistic regression. In a binary logistic model, 
outliers can occur in the Y-space, the X-space or 
in both spaces. For binary data, all the y’s are 0 
or 1, hence an error in the y direction can only 
occur as a transposition 0→1 or 1→0 (Copas, 
1988). This type of outlier is also known as 
residual outlier or misclassification-type error. 
An observation which is extreme in the design 
space X is called a leverage outlier or leverage 
point: a leverage point can be considered good 
or bad.  

A good leverage point occurs when 

1=Y  with a large value of ( )ixYP 1=  or when 

0=Y  with small value of ( )ixYP 1= , and 

vice versa for a bad leverage point. Victoria-
Feser (2002) showed that the MLE can be 
influenced by extreme values in the design 
space, and the case of misclassification errors 
has been studied by Pregibon (1982) and Copas 
(1988). Croux, et al. (2002) found that the most 
dangerous outliers, termed bad leverage points, 
are misclassified observations which are at the 
same time outlying in the design space of x 
variables. 
 
Robust Estimators in Logistic Regression 

In general, two alternative approaches to 
making MLE more robust in logistic regression 
exist. The first is based on weighting the 
likelihood score function in (5), the so-called 
Mallows-class (Mallows, 1975; Hampel, et al., 
1986, §6.3). Two types of estimators fall in this 
category: the Mallows-type and Schweppe-type 
estimators. The former were introduced by 
Kunsch, et al. (1989) where the weights depend 
on the response as well as the covariates. 
Mallows-type estimators were also suggested by 
Kunsch, et al. (1989) but were analyzed more 
deeply by Carroll and Pederson (1993). This 
type of estimator downweights in terms of the 
relative position in the design space (leverage) 
and often uses Mahalanobis distance. 
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A general robust estimate for the logistic 
model (1) is given by the solution in β  of 
(Carroll and Pederson, 1993) 
 

( ) ( ){ } 0
1

= −−
=

n

i
i

T
iiii xcxFYxw ββ ,      (6) 

 
with iw  being the weights which may depend on 

ix , iy , or both and ( )β,ixc  is a correction 

function defined to ensure consistency. If 1≡iw  

and ( ) 0, =βixc , then (6) gives the usual 

logistic regression estimate. If ( )βT
iii xxww ,=  

and ( ) 0, =βixc , then the weights depend only 

on the design, and the estimator is called 
Mallows class. The estimator thus represents a 
weighted maximum likelihood estimator. 
Stefanski (1985) suggested downweighting via 
robust Mahalanobis distance for the covariate 

vector, x . If ( )i
T
iii Yxxww ,, β= , then the 

estimator is in the Schweppe class (Kunsch, et 
al., 1989) where the weights depend on the 
response as well as the covariates. This 
estimator is also known as the conditionally 
unbiased bounded influence function (CUBIF) 
estimator. 

The second robust approach is proposed 
by Pregibon (1982) who worked directly with 
the objective function in (4). He replaced the 
deviance function in (4) with a robust estimator 
defined by 
 

( )[ ]=
=

n

i
i

T
ii y,xDminarg

1
βλβ

β
,          (7) 

 
where λ  is a strictly increasing Huber’s type 
function. This estimator was designed to give 
less weight to observations poorly accounted for 
by the model, however, this estimator did not 
downweight influential observations in the 
design space and was not consistent. Bianco and 
Yohai (1996) improved this method which was 
consistent and more robust than Pregibon’s 
estimator by defining 
 

( ) ( )( )
( )( )1 1

T T
n ii i

Ti
i

D x , y G F x
arg min

G F x
.

=β

β + β
β = ρ

+ − β

         
(8) 

 
The ρ  chosen by Bianco and Yohai 

(1996) is a bounded, differentiable and a 
nondecreasing function defined by 
 

( )2 2 if

2 otherwise

x x k x k
( x )

k

− ≤
ρ =





         (9) 

 
where k is a positive number, 

( ) −= x duuxG 0 ln)( ψ  and )(')( xx ρψ =  but 

stressed that other choices of ρ  are possible. 
Croux and Haesbroeck (2003) extended the 
Bianco and Yohai estimator (BY) by including 
weights to the BY estimator to reduce the 
influence of outlying observations in the 
covariate space. This weighted BY (WBY) 
estimator, also called the Croux and Haesbroeck 
(CH) estimator, can be defined as: 
 

( )
( ) ( )( )

( )( )1 1

T T
n ii i

i Ti
i

D x , y G F x
arg min w x

G F x=β

β =

β + β
ρ

+ − β

         
(10) 

 
where the weights ( )ixw , in order to be a 

decreasing function of robust Mahalanobis 
distances, are distances computed using the 
Minimum Covariance Determinant (MCD) 
estimator (see Rousseeuw & Leroy, 1987) taken 
as: 

( )




 ≤

=
else0

if1 2
975.0,

2
pi

i

RD
xw

χ
.       (11) 

 
This WBY estimator remains consistent because 
the weighting is only used on the x-variables. 
Unfortunately, the above weighting procedure 
also reduces the weight of the good leverage 
points, which is not necessary and may lead to a 
loss of efficiency. 
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Methodology 
Simulation Study 

A simulation study was carried out to 
compare the robustness of the estimators 
discussed. These estimators are: the MLE and 
the four robust estimators for logistic regression, 
the Mallows-type estimator (MALLOWS) with 
weights depending on a robust Mahalanobis 
distance (Carroll & Pederson, 1993) and the 
conditionally unbiased bounded influence 
(CUBIF) estimator (Kunsch, et al., 1989), both 
of which are computed by standard available 
routines in the Robust package of S-Plus, the 
Bianco & Yohai (BY) estimator (1996) with 
choice of objective function and implementation 
(Croux & Haesbroeck, 2003) and the weighted 
Bianco-Yohai (WBY) estimator, both S-plus 
programs available at www.econ.kuleuven.be/ 
public/NDBAE06/programs/. 

Following the simulation study carried 
out by Croux and Haesbroeck (2003), a logistic 
regression model is generated with two 
independent normally distributed covariates. The 
error terms iε  are drawn from a logistic 

distribution defined as: 
 

( )022110 ≥+++= εβββ xxIy . 

 
The true parameter values are ( )2,2,0=β  with 
sample size 200=n ; a large sample size is 
chosen to avoid separation problems. 

The simulation study is reported under a 
variety of situations. Initially, data without 
contamination, having two explanatory variables 
independently and normally distributed with 
zero mean and unit variance is considered. Next, 
to examine the robust properties of all, the data 
is contaminated in three different ways, similar 
to the idea proposed by Victoria-Feser (2002). 
First, proportions (a certain percentage) are 
taken of the responses y  chosen randomly and 
changed from either 0 to 1 or 1 to 0; this 
constitutes the misclassification-type error. For 
each contaminated case, 1%, 3%, 5%, 7% and 
10% of the original data set are contaminated. 
Second, the same proportions are taken to 
contaminate both covariates and replace them by 
the value of 2 for moderate leverage points. The 
same process is then repeated and replaces the 

value by 6 for extreme leverage points. Finally, 
the same proportions are considered and the 
generated data are contaminated with both types 
of outliers simultaneously which constitutes bad 
leverage points. 

To further investigate leverage points, 
following the idea suggested by Bondell (2005), 
the proportions of the explanatory variables 1x  

and 2x  were taken simultaneously and their 
values were replaced with 7...,,1=x  gradually 
from moderate to extreme covariates in the 
design space with 1=Y . The proportions of the 
observations with bad leverage points were then 
contaminated by replacing the explanatory 
variables with values 7...,,1=x  gradually with 
response variable 0=Y . 

The five methods were then applied to 
these data under different situations already 
mentioned. In each simulation run included 
1,000 replications. The performances of the five 
methods are evaluated based on the bias and the 
mean squared error (MSE). The bias for each 
parameter and the mean squared error are 
respectively defined as: 
 

ββ −=
=

1000

1

ˆ
1000

1

i
iBias  

and 
 









 −=
=

21000

1

ˆ
1000

1

i
iMSE ββ  

 

where ⋅  indicates the Euclidean norm (Croux 

& Haesbroeck, 2003). 
 

Results 
The bias and the MSE of the five estimates are 
shown in Tables 1-5. A good estimator is one 
that has bias and MSE which are relatively small 
or close to zero. It can be observed that, in clean 
data with zero percentage of outliers, the biases 
and MSEs of all five estimators are fairly close 
to each other. 

Table 1 shows data with misclassified 
errors. The bias and MSE of the MLE estimates 
were immediately affected by 1% misclassified-
type error. The results suggest that the MLE 
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becomes biased with 1% contamination, CUBIF 
with 3% contamination and BY with 7% 
contamination. The MALLOWS and WBY 
exhibit good robust estimators with the latter 
being the best method. 

It can be observed from Table 2 that 
there is not much difference between the 
classical and the robust methods when 
contaminating data with extreme leverage points 
(replacing x by 6 and Y = 1). Similar results 
were obtained for moderate leverage points 
(replacing x by 2 and Y = 1); these results are not  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shown due to space limitations. 
It is interesting to observe the results of 

Table 3 in the situation where 5% of the data 
was contaminated with leverage points by 
gradually increasing the distance of x . Similar 
conclusions to those from Table 2 can be made 
where the biases and MSEs for all methods are 
relatively small. Hence, it can be concluded that 
leverage points do not have much effect on the 
data because this type of contamination is 
considered as good leverage points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Bias and MSE of All Methods for Data with Various Percentages of Misclassified Errors 
 

 
 
 
 

Table 2: Bias and MSE of All Methods for Data with Various Percentages of Extreme Leverage Points 
 

 
 
 
 

Table 3: Bias and MSE of All Methods for Data with 5% Leverage Points for Various Distances 
 

 

% of
misc error bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 1.4570 2.1918 0.1400 0.3073 0.5148 0.4482 0.1344 0.3765 0.1745 0.3842
3 2.4648 6.1013 0.3484 0.2098 1.1933 1.4598 0.2542 0.1716 0.0565 0.1120
5 2.7288 7.4773 0.4309 0.6467 1.6603 2.8031 0.7688 1.3257 0.0703 0.3217
7 2.8247 8.0053 0.4354 0.5614 2.0318 4.1658 2.8258 8.0112 0.3752 0.5560
10 2.8838 8.5320 0.7716 0.8849 2.4287 5.9337 2.8771 8.3148 0.0515 0.3961

WBYMLE MALLOWS CUBIF BY

% of
lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0840 0.2616 0.0817 0.2588 0.0833 0.2605 0.0845 0.2812 0.0875 0.2908
1 0.8072 0.8122 0.8115 0.8188 0.8122 0.8219 0.8138 0.8356 0.8198 0.8513
3 0.8035 0.8096 0.8083 0.8183 0.8060 0.8143 0.8121 0.8416 0.8118 0.8506
5 0.7910 0.7903 0.7954 0.7979 0.7911 0.7922 0.8019 0.7867 0.7867 0.8101
7 0.8089 0.8392 0.8124 0.8452 0.8111 0.8442 0.8150 0.8601 0.8109 0.8632

10 0.8162 0.8421 0.8216 0.8519 0.8186 0.8458 0.8454 0.9045 0.8463 0.9096

MLE MALLOWS CUBIF BY WBY

distance bias MSE bias MSE bias MSE bias MSE bias MSE
clean 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
x=1 0.4882 0.4206 0.4909 0.423 0.4894 0.4233 0.5019 0.4601 0.4990 0.4758
x=2 0.5037 0.4219 0.5060 0.4255 0.5050 0.4243 0.5027 0.4366 0.4963 0.4434
x=3 0.5479 0.4861 0.5527 0.4923 0.5528 0.4929 0.5319 0.4824 0.5342 0.4887
x=4 0.5175 0.4495 0.5220 0.4549 0.5195 0.4518 0.5154 0.4639 0.5211 0.4732
x=5 0.4987 0.4156 0.5022 0.4183 0.5010 0.4178 0.4853 0.4191 0.4848 0.4275
x=6 0.4873 0.4059 0.4894 0.4087 0.4885 0.4093 0.4776 0.4119 0.4768 0.4160
x=7 0.4612 0.3972 0.4635 0.4004 0.4633 0.4009 0.4279 0.3925 0.4249 0.4103

WBYMLE MALLOWS CUBIF BY



AHMAD, MIDI & RAMLI 
 

507 
 

The presence of moderate and extreme 
bad leverage points changes the picture 
dramatically. It can be observed from Tables 4 
and 5 that for both cases, the CUBIF estimator 
can only withstand up to 3% contamination. The 
BY estimator can tolerate up to 3% 
contamination when 2=x , and 5% 
contamination when 6=x . The WBY estimator 
is better than the MALLOWS for the moderate 
bad leverage points. In this situation, the WBY 
and the MALLOWS can only withstand up to 
3% and 1% contamination, respectively. 
Nevertheless, with data having extreme bad 
leverage points, the performances of the WBY 
and MALLOWS are equally good: both 
estimators are able to withstand up to 10% 
contamination. 

Finally the results shown in Table 6 are 
discussed in the context of the situation where 
the data has 5% bad leverage points and is at 
various distances of the explanatory variables. 
By gradually increasing the distance of x  and 
when 0=Y , the MLE is biased for all x; the bias 
worsens as x increases for MLE, but bias is 
consistent with the CUBIF estimators. By 
contrast, the bias of the MALLOWS estimator is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

small for 6=x  and 7=x . The BY estimator 
performs best when the bad leverage points are 
located at 5=x  and 6=x . Conversely, the 
biases and MSEs of the WBY estimates are 
consistently the smallest among other estimators 
for 7,,2 =x . The results shown in Table 6 
reveal that the WBY performs much better 
compared to the other estimators. 
 
Numerical Examples 

Two real data sets are considered to 
illustrate the behavior of the various robust 
estimates discussed. Results of the estimated 
coefficients, as well as their standard errors, are 
presented for the original and the modified data. 
The modified data refer to the original data with 
deleted outlier observation(s). A good estimator 
is one that has parameter estimates reasonably 
close to the MLE estimates of the modified data 
(clean data). Kordzakhia, et al. (2001) suggested 
another criterion for evaluating various 
estimators. They proposed comparing the 
various estimates using a goodness-of-fit 
discrepancy, the Chi-square statistic based on 

the arcsin transformation 2
arcχ  defined as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Bias and MSE of All Methods for Data with Moderate Bad Leverage Points (Replacing x by 2 and Y=0) 
 

 
 
 

Table 5: Bias and MSE of All Methods for Data with Extreme Bad Leverage Points (Replacing x by 6 and Y=0) 
 

 

% of
bad lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 0.6339 0.5457 0.4976 0.3976 0.4249 0.3403 0.1222 0.2839 0.0072 0.3100
3 1.4107 2.0720 1.2084 1.5427 1.0922 1.2793 0.5695 0.5144 0.1954 0.3150
5 1.8501 2.0720 1.6461 2.7746 1.5235 2.3883 1.0211 1.1926 0.3895 0.4337
7 2.1888 4.8457 2.0127 4.1041 1.9247 3.7592 1.6166 2.7169 0.6992 0.7607

10 2.3917 5.7686 2.2550 5.1330 2.2226 4.9893 2.1789 4.8230 1.0665 1.3894

WBYMLE MALLOWS CUBIF BY

% of
bad lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 1.4570 2.1918 0.1400 0.3073 0.5148 0.4482 0.1344 0.3765 0.1745 0.3842
3 2.4648 6.1013 0.3484 0.2098 1.1933 1.4598 0.2542 0.1716 0.0565 0.1120
5 2.7288 7.4773 0.4309 0.6467 1.6603 2.8031 0.7688 1.3257 0.0703 0.3217
7 2.8247 8.0053 0.4354 0.5614 2.0318 4.1658 2.8258 8.0112 0.3752 0.5560

10 2.8838 8.5320 0.7716 0.8849 2.4287 5.9337 2.8771 8.3148 0.0515 0.3961

WBYMLE MALLOWS CUBIF BY
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[ ]2
1

2 4 −=
=

n

i
iiarc arcsinyarcsin πχ , 

 

where iπ  represents the fitted probabilities for 

ni ...,,2,1= . The lower 2
arcχ , the better the 

goodness-of-fit. 
 
Example: Leukemia Data 

The Leukemia Data (Cook & Weisberg, 
1982) was analyzed by Carroll and Pederson 
(1993), among others. The data set consists of 
measurements on 33 leukemia patients. The 
response variable is 1 if the patient survived 
more than 52 weeks and 0 otherwise. Two 
covariates are present in the model: white blood 
cell count (WBC) and AG status, which is the 
presence or absence of certain morphologic 
characteristic in the white cells. Cook and 
Weisberg (1982) considered these data to 
illustrate the identification of influential 
observation and they detected one observation 
(#15), corresponding to a patient with WBC = 
100,000 who survived for a long period of time 
to be influential when the MLE was used. The 
plot in Figure 1 suggests that the observation 
looks like a bad leverage point. 

Table 7 exemplifies the estimated 
parameters and estimated standard errors for the 
various procedures including MLE32. The 
MLE32 refers to the MLE estimates for the 
clean data after deleting observation (#15). A 
good estimator is one that has parameter 
estimates fairly close to the MLE32. It can be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
observed from Table 7 that the MALLOWS and 
WBY estimates are reasonably close to the 
MLE32 estimates. However, the Mallows Chi-
square statistic is larger than the WBY, hence, 
the WBY is the best estimator for Leukemia 

Data because it gives the smallest 2
arcχ  value 

and their estimates are closer to the MLE32. 
WBY is followed by the MALLOWS, BY and 
CUBIF estimators. 
 
Example: Vaso-Constriction Data 

The Vaso-constriction data is a well-
known dataset referred to as skin data. It was 
introduced by Finney (1947) and was studied by 
Pregibon (1982) to illustrate the impact of 
potential influential observations in logistic 
regression. The binary outcomes (presence or 
absence of vaso-constriction of the skin of the 
digits after air inspiration) are explained by two 
explanatory variables: 1x  the volume of air 

inspired, and 2x the inspiration rate (both in 
logarithms). The literature, which extensively 
uses this dataset, often reports observations (#4) 
and (#18) as outliers. As shown in Figure 2, a 
plot of the data based on the maximum 
likelihood fit shows that the two observations 
(#4 and #18) look more like misclassified errors 
rather than outlying observations. 

Table 8 presents the estimated 
parameters, estimated standard errors and 
goodness-of-fit measures for the various 
procedures including MLE37 after removing the 
two influential observations. Several interesting 
points appear from Table 8. It is notable that the  

Table 6: Bias and MSE of All Methods for Data with Bad Leverage Points 
at 5% Contamination for Various Distances 

 

 

distance bias MSE bias MSE bias MSE bias MSE bias MSE
clean 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
x=1 1.2243 1.5730 1.2404 1.6134 1.2344 1.5975 1.0517 1.2093 1.0817 1.2803
x=2 1.8718 3.5497 1.7615 3.1523 1.6518 2.7846 1.1034 1.3547 0.4069 0.7711
x=3 2.2447 5.0795 1.8442 3.4507 1.6346 2.7267 0.9045 1.0110 0.1705 0.3836
x=4 2.4888 6.2345 1.6528 2.8113 1.6403 2.746 0.7273 0.7795 0.1515 0.3691
x=5 2.6367 6.9921 1.1466 1.4881 1.6387 2.7385 0.5689 0.6169 0.1243 0.3584
x=6 2.7193 7.4377 0.4851 0.5108 1.6465 2.7669 0.5183 0.8591 0.1290 0.3492
x=7 2.7635 7.6605 0.2009 0.1815 1.6542 2.7695 1.2914 3.2433 0.1693 0.2076

WBYMLE MALLOWS CUBIF BY
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CUBIF and MALLOWS yield results reasonably 
close to the MLE. The results also show that the 
BY and WBY estimates have been strongly 
affected when the two influential observations 
are removed from the dataset. It may be 
observed that the parameter estimates and the 
standard errors of both estimates become large 
because, without the two observations, the 
remaining data set is in a situation of quasi-
complete separation (Albert & Anderson, 1984), 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with little overlap between observations 0=iy  

and 1=iy . Thus, the model is nearly 
undetermined. For this reason, the BY and WBY 
downweight these observations and have large 
increases of coefficients and standard errors. The 
parameter estimates and the standard errors of 
both estimators are considerably close to the 
MLE37 estimates. However, the BY has the 

smallest 2
arcχ  value, therefore, the BY estimator 

gives the best result for this data set. 

Figure 1: Scatter Plot of Leukemia Data 

 
 
 

Table 7: Leukemia Data: Estimated Parameters, Standard Errors and Goodness-of-Fit Measures 

 

wbc

ag
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y=0
y=1

Estimation Intercept WBC AG
Method Est. s.e. Est. s.e. Est. s.e.
MLE -1.3073 0.2931 -0.3177 1.454 2.2611 2.2003 52.16
MLE32 0.2119 7.0996 -2.3545 6.9497 2.5581 4.9143 32.52
MALLOWS 0.1710 6.7568 -2.2535 6.7818 2.524 4.6589 42.46
CUBIF -0.6763 1.7135 -0.9110 3.4500 2.2495 1.1712 46.73
BY 0.1595 5.0511 -1.7740 5.7623 1.9276 3.3011 44.05
WBY 0.1891 6.8884 -2.1927 6.7853 2.4003 4.6923 39.47

2
arcχ
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Conclusion 
The goal of this study was to compare the 
performance of the MLE and four robust 
estimators for the logistic model under both 
clean and contaminated data sets. The findings 
signify that the MLE can be biased in the 
presence of misclassified error and bad leverage 
points, whereas some robust estimators are 
better than others depending on the type of 
contamination. When the contamination data are 
leverage points, the simulation results indicate 
that all parameter estimates are not dramatically 
affected, because they have consistently small 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bias. Overall, the WBY estimator is preferred 
because it is more robust than other estimators 
tested in this study for any type of contamination 
in the data. This estimator is followed by the 
BY, MALLOWS and CUBIF. However, further 
investigation is needed to compare these robust 
estimators through an extensive simulation study 
involving different parameter values, sample 
sizes and parameter size. Further studies are also 
needed to investigate more suitable robust 
methods to cater outlying observations in 
logistic regression. Most robust methods 
unfortunately rely on simple downweighting of 

Figure 2: Scatter Plot of Vaso Data 

 
 
 

Table 8: Vaso Data: Estimated Parameters, Standard Errors and Goodness-of-Fit Measures 
 

 

Volume

R
at

e

1 2 3

1
2

3

y=0
y=1

Estimation Intercept Log(Volume) Log(Rate)
Method Est. s.e. Est. s.e. Est. s.e.
MLE -2.9239 1.2877 5.2205 1.8579 4.6312 1.7889 48.39
MLE37 -24.5812 14.0211 39.5498 23.2463 31.9352 17.7595 12.34
MALLOWS -2.9207 1.2908 5.1673 1.8470 4.5967 1.7886 48.41
CUBIF -2.8776 1.2707 5.1661 1.8364 4.5646 1.7644 48.47
BY -6.8667 10.0507 10.7523 15.3086 9.381 12.7798 40.87
WBY -6.8465 10.0672 10.7504 15.3346 9.3785 12.8014 40.91

2
arcχ
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distant observations in the design space 
regardless of whether or not they are 
misspecified, whether they are good or bad 
leverage points and what influence they have on 
the model. 
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