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General class chain ratio type estimators for estimating the population mean of a study variable are 
examined in the presence of non-response under a double sampling scheme using a factor-type estimator 
(FTE). Properties of the suggested estimators are studied and compared to those of existing estimators. 
An empirical study is carried out to demonstrate the performance of the suggested estimators; empirical 
results support the theoretical study. 
 
Key words: Double sampling, factor-type estimator, chain ratio estimator, non-response. 
 
 

Introduction 
Over the last five decades one of the major 
developments in sample surveys is the use of an 
auxiliary variable x , correlated with the study 
variable y  in order to obtain estimates of the 
population total or mean of the study variable. 
Various estimation procedures in sample surveys 
require advance knowledge of some auxiliary 
variable ix , which is then used to increase the 
precision of estimates. When the population 
mean X  is not known, it can be estimated from 
a preliminary large sample on which only the 
auxiliary characteristic x  is observed. The value 
of X  in the estimator is then replaced by its 
estimate, and a smaller second-phase sample of 
the variable of interest (study variable) y  is 
taken. This technique, known as double 
sampling or two-phase sampling, is particularly 
appropriate if the ix  values are easily accessible 
and are much less expensive to collect than the 
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iy  values (Sitter, 1997; Hidiroglou & Sarndal, 
1998). Neyman (1938) was the first to describe 
the concept of double sampling in connection 
with collecting information on strata sizes is a 
stratified sampling (Singh & Espejo, 2007). 

In some practical situations it is 
observed that, when conducting a sample 
survey, complete information for all the units 
selected in the sample is not obtained due to the 
occurrence of non-response. Hansen and 
Hurwitz (1946) considered the problem of non-
response while estimating the population mean 
by taking a sub-sample from the non-response 
group with the help of an unbiased estimator; 
they suggested combining the information 
available from response and non-response 
groups. Further, rectification in the estimation 
procedure for the population mean in the 
presence of non-response using auxiliary 
variable was proposed by Cochran(1977), Rao 
(1986, 1987), Khare and Srivastava (1993, 1995, 
1997), Okator and Lee (2000), Tabasum and 
Khan (2004, 2006), and Singh and Kumar 
(2008a, 2008b, 2008c, 2009a, 2009b) using the 
Hansen and Hurwitz (1946) technique. This 
article develops a one parameter family of chain 
ratio type estimators with two auxiliary variables 
in the presence of non-response. The proposed 
family is based on factor type estimators (FTE) 
developed by Singh and Shukla (1987) and 
Singh, et al. (1994) and empirical studies 
support the results. 
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The Proposed Strategy 
Consider a finite population 

( )NU,...,U,UU 21=  of size N . Let y  be the 

study variable, 1x  be the main auxiliary variable 
with an unknown mean that is highly correlated 
with main character y , and 2x  be an additional 
auxiliary variable with known mean that is less 
correlated with y  than is 1x . A large first phase 

sample of size n′  from the finite population U  
is selected by simple random sampling without 
replacement (SRSWOR). A smaller second 
phase sample of size n  is selected from n′  by 
SRSWOR. Non-response occurs in the second 
phase sample of size n  in which 1n  units 

respond and 2n  units do not. From the 2n  non-
respondents, by SRSWOR a sample of size 

12 >= k;knr  units is selected where k  is the 
inverse sampling rate at the second phase sample 
of size n  with all r  units responding. Thus, 
( )rn +1  are the responding units on the study 

variable y , consequently the estimator for the 

population mean Y  of the study variable y  
using a sub-sampling scheme envisaged by 
Hansen and Hurwitz (1946) is defined as 
 

r
* ywywy 2211 += ,                      (1) 

 
where 

nnw 11 = , nnw 22 = , 
=

=
1

1
11

n

i
i nyy  

and 


=

=
r

i
ir ryy

1
2 . 

 

It is known that the estimator *y  is an unbiased 

estimator of the population mean Y  of the study 
variable y  and has a variance as given by 
 

( ) 2
2

2
1 )(y

*
y

* SθSθyVar += ,             (2) 

 
where 







 −=

Nn
θ

11
1 , 

( )
n
kW

θ* 12 −
= , NNW 22 = , 

and 2
yS  and 2

2 )(yS  are the population mean 

square of the variable y  for the entire 
population and for the non-responding group of 
the population. Similarly, for estimating the 
population mean iX  of the auxiliary variable 

( )21,i;xi = , the unbiased estimator *
ix  is given 

by 

)r(i)(i
*
i xwxwx 2211 += ,              (3) 

 
where )(ix 1  and )r(ix 2  are the sample means of 

the auxiliary variable ( )21,i;xi =  based on 1n  
and r  units respectively. 

The variance of *
ix  is given by 

 

( ) 2
2

2
1 )(x

*
x

*
i ii

SθSθxVar += ,             (4) 

 

where 2
ixS  and 2

2 )(xi
S  are the population mean 

square of ( )21,i;xi =  for the entire population 
and the non-responding group of the population. 
 
The Proposed Class of Strategy 

Using an unknown constant 0>t  and 
two auxiliary variables 1x  and 2x , a general 

class of chain ratio type of strategy [ ])t(y,D *
F  is 

defined for estimating the population mean Y  of 
the study variable y  in the presence of non-
response as follows: 
 

( ) ( ){ }
( ){ }






=

tλφ

tλφ,gy)t(y **
F

2

1
3 01 ,            (5) 

where 
 

( ){ } ( ) ( ){ } ( ) 21101 2 ,i;,gtλtλtλφ iii =−+= , 
 

( )
CBθA

Bθtλ
++

=1 , ( )
CBθA

Ctλ
++

=2 , 

 
( )( )21 −−= ttA , ( )( )41 −−= ttB , 

 
( )( )( )432 −−−= tttC , Nnθ = , 







 −

′
=

Nn
θ

11
2 , 








′
−=

nn
θ

11
3 ,  
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In order to identify some of the 
members of the proposed strategy and compare 
their efficiencies, certain classical strategies are 
put forth: 
 

(i) [ ] ( )013 ,gyy;y,D **
R

*
R =                             (6) 

 
by Khare and Srivastava (1993), Okafor and 
Lee (2000)  and Tabasum and Khan (2004) 
 

(ii) [ ] ( )013 ,gyy;y,D **
P

*
P −=                          (7) 

 
by Khare and Srivastava (1993) 
 

(iii) [ ] ( ) ( )1001 23 ,g,gyy;y,D **
C

*
C = .               (8) 

 
Some Strategies of the Class 

For 1=t  and 4 respectively, 
 

(i) ( )[ ] [ ]*
C

*
F y,Dy,D =1 ,              (9) 

 

(ii) ( )[ ] [ ]*
R

*
F y,Dy,D =4 .            (10) 

 
Further, for 2=t  and 3, 
 

( )[ ] ( ) ( ) ( )100122 23 −= ,g,gyy;y,D **
F

*
F ,     (11) 

( ) ( ) ( ) ( )
( )3

2

1
3 3 1 0

0 1
* * *
F F

h
D, y ; y y g , ,

hg ,

+    =    − −  
(12) 

where ( ) ,nNnh 1−−=  and ( )2*
Fy  is a chain type 

estimator in D  in which 1X  is estimated 

through the product estimator utilizing 2X  

where non-response on auxiliary variable 1x  and 

( )3*
Fy  is a chain type estimator in D  in which 

1X  is estimated utilizing a dual to ratio 
estimator with non-response on auxiliary 
variable 1x . 
 
Properties of the Proposed Strategy 

To obtain the bias and mean square error 
(MSE) of the proposed general class of strategy 

[ ])t(y,D *
F , under the large sample 

approximation, 
 

( )01*y Y ,= + ε  ( )1 1 11*x X ,= + ε  

( )2 2 21*x X ,= + ε ( )1 1 11' 'x X ,= + ε   

and ( )2 2 21' 'x X ,= + ε  

such that 
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where 
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1N  and ( )12 NNN −=  are the sizes of the 
responding and non-responding units from the 
finite population N . 

Expressing the proposed estimator 

( )ty*
F  in terms of s'ε , 

 

( )

( ) ( )
( )

( ) ( ){ }( )
( ) ( ){ }( )

1

1 1 1 2

0 1
1 2 2 2

1 1 1
1

1 1 1

*
F

' '

'

y t

t t
Y .

t t

−

−

=

 + ε λ + − λ − ε
 + ε
 + ε λ + − λ − ε 

(13) 
 

It is assumed that ( ) 122 <'εtλ , because 

( )
CBθA

Ctλ
++

=2 , for any choice of t , 

( ) 12 <tλ . Thus, if 12 <'ε , ( ) 122 <'εtλ  is a 

valid assumption, expanding the right hand side 
of (13) and neglecting the terms involving 
powers of s'ε  greater than two results in 
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( )( )2

2
0 1 1 1 1 1 0 1 0 1

2 1 2 1 2 0 2 2 2
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, 

(14) 
 
where ( ) ( ) ( )tλtλtλ 21 −= . 

Taking expectations of both sides of 

(14), results in the bias of ( )ty*
F  to the first 

degree of approximation, as 
 

( )( ) ( ) ( )
( ) ( )( )

1 1 1 1

2 2

2 2
3 2 2

2
2 2

1 1*
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where 
 

1
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1

1

1 2
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2

2

2

2 2
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1
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1
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2
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2
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yx
yx SS
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Squaring both sides of (14) and neglecting terms 
of s'ε  involving power greater than two, 
 

( ) ( ){ }2
2110

22

εtλεεεYYty
*
F ′+′+−=





 −  

 

( )( )
( )

( )
( ) ( )

2 2 2 2 2
0 1 1 2

2 2

0 1 0 1 0 2

1 1 1 2 1 2

2 2 2

2 2 2

*

F

t

y t Y Y t .

t t

′ ′ ε + ε + ε + λ ε
 

′ ′− = − ε ε + ε ε + λ ε ε 
 ′ ′ ′ ′− ε ε − λ ε ε + λ ε ε 

(16) 
 
Taking expectations of both sides of (16), gives 

the mean square error of ( )ty*
F  to the first 

degree of approximation as 
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Corollary 

Letting ( ) ( ) 11 2 =−= tλ,tλ  for 1=t  in 

(15) and (17), the bias and MSE of *
Cy , 

respectively given by 
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( )

1 1

1 1

2 2

2
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2
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2
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(18) 
and 
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To obtain the bias and MSE of *
Ry , assume that 

( ) ( ) 02 == tλtλ  for 4=t , in (15) and (17), 
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and 
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The ( )( )tyMSE *
F  is minimized, when 

 
( )

2yxKtλ −= .                     (22) 

 
Thus, substituting (22) in (17), results in the 

optimum mean square error of ( )ty*
F , as 

 

( )( )
( )

( ){ }
2 2 1 1

1 1

2 2 2 2
1 2 3

2 2
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(23) 
 
Efficiency Comparisons 

From (2), (19), (21) and (23), 
 

( ) ( )( )
( )

( )
1 1 2 2

1 1

2 2 2
3 2

2
2 2

1 2

1 2

* *
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yx x yx x

*
yx ( ) x ( )
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−

 θ − − θ
 =
 +θ − 

,   (24) 

 

( ) ( )( ) ( ) 01 222
2 22

>−=− xyxopt
*
F

*
C SKθtyMSEyMSE

when 1
2

<yxK ,                     (25) 

 
( ) ( )( ) 22

2
**

22 xyxoptFk SKtyMSEyMSE θ=−  

(26) 
 
It is explicit from the equations (24)-(26) that 

the proposed class of estimator ( )ty*
F  is more 

efficient than: 

(i) The usual unbiased estimator *y ;  

(ii) The estimator *
Cy  when 1

2
<yxK ; and  

(iii) The estimator *
Ry , the ratio type estimator 

proposed by Khare and Srivastava (1993), 
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Tabasum and Khan (2004) and Okafor and 
Lee (2000). 

 
Thus, it may be concluded that the general chain 

ratio type class of proposed strategy ( )[ ]ty,D *
F  is 

more efficient than the usual unbiased estimator 
*y , the estimator *

Cy  and the ratio type 

estimator *
Ry . 

 
Empirical Study 

To examine the effectiveness of the 
suggested class of chain ratio types, data sets 
studied by Khare and Sinha (2007) are 
considered. The data, from the Department of 
Paediatrics, Banaras Hindu University during 
1983-1984, is the physical growth of an upper 
socio economic group of 95 school age children 
of Varanasi under ICMR study. The first 25% 
(i.e., 24 children) have been considered as non-
responding units. The descriptions of the 
variates are given below: 
 
Population I: 

y :  Height (in cm.) of the children, 

1x :  Skull circumference (cm) of the 
children, 

2x :  Chest circumference (cm) of the 
children. 

 
For this population: 
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Population II: 

y :  Weight (kg) of the children, 

1x : Chest circumference (cm) of the 
children, 

2x : Mid-arm circumference (cm) of the 
children. 

 
For this population, 
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The percent relative efficiencies (PREs) of the 

estimators *
Ry  and *

Cy  have been computed 

along with the proposed estimator ( )ty*
F  at its 

optimum with respect to the usual unbiased 

estimator *y  for two data sets for different 

values of k ; results are displayed in Table 1. 
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