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Empirical Characteristic Function Approach to Goodness of Fit Tests 
for the Logistic Distribution under SRS and RSS 

 
M. T. Alodat S. A. Al-Subh Kamaruzaman Ibrahim Abdul Aziz Jemain 

Yarmouk University, 
Irbid, Jordan 

Kebangsaan University, 
Selangor, Malaysia 

 
 
The integral of the squares modulus of the difference between the empirical characteristic function and 
the characteristic function of the hypothesized distribution is used by Wong and Sim (2000) to test for 
goodness of fit. A weighted version of Wong and Sim (2000) under ranked set sampling, a sampling 
technique introduced by McIntyre (1952), is examined. Simulations that show the ranked set sampling 
counterpart of Wong and Sim (2000) is more powerful. 
 
Key words: Goodness of fit test, empirical distribution function, logistic distribution, ranked set sampling, 

simple random sampling. 
 
 

Introduction 
In any one-sample goodness of fit test problem 
where a random sample 1 2,  ,..., rX X X  from 

an unknown distribution function ( )F x  is given 
in order to test the hypothesis 

: ( ) ( )o oH F x F x=  for all x  against the 

hypothesis 1 : ( ) ( )oH F x F x≠ , where ( ) oF x  

is a known distribution function. Stephens 
(1974) provided a practical guide to goodness of 
fit tests using statistics based on the empirical 
distribution function (EDF). Green and Hegazy 
(1976) studied modified forms of the 
Kolmogorov-Smirnov ,D  Cramer-von Mises 

2W  and the Anderson-Darling 2A  goodness of 
fit tests. Stephens (1979) gave goodness of fit  
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tests for the logistic distribution. A 
comprehensive survey for goodness of fit tests 
can be found in the book of D’Agostino and 
Stephens (1986). 

Guሷ rtler and Henze (2000) used another 
approach to test for goodness of fit for the 
Cauchy distribution. They built their test based 
on the weighted distance between the empirical 
characteristic function of the sample and the 
characteristic function of the null distribution, 
that is, they considered the test statistic of the 
form: 
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where ˆˆ( ) / ,j jy x α β= −  and 

 

1

1
( ) exp( )
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r j
j

t Ity
r =

Φ =   

 
is the empirical characteristic function of the 
sample. The function ( )w t  is a weight function 

and ˆˆ ,  α β  are the Maximum Likelihood 
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Estimators (MLE) of  and ,α β  the location and 
the scale parameters of the Cauchy distribution. 
Wong and Sim (2000) studied the test statistic ܶ 
when ( ) 1,w t ≡  for different distributions. 
Matsui and Takemura (2005) also considered the 
problem of Guሷ rtler and Henze (2000) but used a 
different research design. For more information 
about the application of the empirical 
characteristic function to goodness of fit test see 
Feuerverger and Mureika (1977), Meintnis 
(2004), Epps (2005) and Towhidi & Salmanpour 
(2007). 

In various situations, visual ordering of 
sample units (with respect to the variable of 
interest) is less expensive against its 
quantification. For statistical populations with 
such a property, McIntyre (1952) was the first to 
employ the visual ranking of sampling units in 
order to select a sample that is more informative 
than a simple random sample. Later, his 
sampling technique was known as Ranked Set 
Sampling (RSS). Without any theoretical 
developments, he showed that the RSS is more 
efficient and cost effective method than the 
Simple Random Sampling (SRS) technique. An 
RSS sample can be obtained as follows: 
 
1. Select m  random samples from the 

population of interest each of size .m  

2. From the thi  sample detect, using a visual 

inspection, the thi  order statistic and choose 
it for actual quantification, say, ,iY  

1,..., .i m=   
3. RSS is the set of the order statistics 

1,..., .mY Y  

4. The technique could be repeated r times to 
obtain additional observations.  

 
Takahasi and Wakimoto (1968) developed the 
theoretical framework for RSS. 

Visual ranking is accomplished based on 
an experimenter’s experience. Hence, two 
factors affect the efficiency of an RSS: the set 
size and the ranking errors. The larger the set 
size, the larger the efficiency of the RSS; 
however, the larger the set size, visual ranking is 
more difficult and the ranking error is larger (Al-
Saleh & Al-Omari, 2002). For this, several 
authors have modified MacIntyre’s RSS scheme 

to reduce the error in ranking and to make visual 
ranking easier for an experimenter. Samawi, et 
al. (1996) investigated Extreme Ranked Set 
Sample (ERSS), i.e. they quantified the smallest 
and the largest order statistics. Muttlak (1997) 
introduced Median Ranked Set Sampling 
(MRSS) which consists of quantifying only the 
median in each set. Bhoj (1997) proposed a 
modification to the RSS and called it new 
ranked set sampling (NRSS). Al-Odat and Al-
Saleh (2001) introduced the concept of varied 
set size RSS, which is called later by moving 
extremes ranked set sampling (MERSS). For 
more details about these developments see Chen 
(2000). 

Stockes and Sager (1988) were the first 
who proposed a Kolmogorov-Smirnov goodness 
of fit test based on the empirical distribution 
function of an RSS. In addition, they derived the 
null distribution of their proposed test. Al-Subh, 
et al. (2008) studied the Chi-square test for 
goodness of fit test under the RSS technique and 
its modifications. Their simulation showed that 
the Chi-square test for the null logistic 
distribution is more powerful than its 
counterpart under SRS technique. This article 
examines the power of the test given in equation 
(1) when sample is selected using one of the 
modifications of the RSS, specifically, the 

modification that chooses only the thi  order 
statistic for quantification. 
 
Problem Formalization 

It can be noted that testing the 
hypotheses: 
 

1

: ( ) ( ),     

vs.

: ( ) ( )

o o

o

H F x F x x

H F x F x

= ∀

≠
 

 
is equivalent to testing the hypothesis 
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for some ,i  where ( ),  ( )i ioG y G y  are the 

cdf’s of the thi  order statistics of random 
samples of size 2 1m −  chosen from 

( ) and ( )oF x F x , respectively. The rationale 

behind choosing an odd set size - rather than an 
even one - is to simplify the comparison with the 
median RSS, because an even set size produces 
two middle values. Moreover, quantifying the 
two middle sample units is more expensive than 
quantifying one sampling unit. If ( )f y  and 

( )of y  are the corresponding pdf’s of 
( ) and ( )oF x F x , respectively, then according 

to Arnold, et al. (1992), ( ) and  ( )i ioG y G y  

have the following representations: 
 

2 1
(2 1)2 1
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m

j m j
i

j i
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 
  

 
and 
 

2 1
(2 1)2 1

( ) [ ( )] [1 ( )] ,
m

j m j
io o o

j i

m
G y F y F y

j

−
− −

=

− 
= − 

 
  

 
respectively. The corresponding pdf’s are 
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respectively. It can be shown that 

0( )= ( )i iG y G y  if and only if ( ) ( )oF x F x= , 

which means this statistical testing problem is 
invariant. 

If ranked set sampling is employed to 

collect the data using the thi  order statistic, then 
the resulting data is used to build a test based on 
the empirical characteristic function of these 

data as described in equation (1). The empirical 
characteristic function and the population 
characteristic function that should be used, 
respectively, are: 
 

1

1
( ) exp( ),

r

ri j
j

t ItY
r =

Φ =   

and 

( ) exp( ) ( ).i iot Ity dG y
∞

−∞
Φ =   

 
Hence, a ranked set sample counterpart of the 
test ܶ is given by 
 

2
* ( ) ( ) ( ) ,i ri iT r t t w t dt

∞

−∞
= Φ − Φ      (2) 

 
where ( )w t  is a suitable weight function. Using 
complex integration, it may be shown that: 
 

2 1( ) (1 ,  1 ).m t Beta I t I t−Φ = − −κ κ  

 

The test rejects *
oH  for large values of *.iT  

Attention is restricted to the case when 
( )/ -1( ) (1 ) ,x

oF x e θ σ− −= + that is, for the logistic 

distribution. Even for logistic distribution, the 

test *
iT  has no closed form as in the Cauchy 

case; for this, a simulation study is conducted to 

study the power of the test *
iT  and its 

counterpart .T  The two tests will be compared 
in terms of power based on samples of the same 

size. The power of the *
iT  test can be calculated 

according to the equation 
 

Power of * *( ) ( ),i H iT H P T d= > α      (3) 

 
where H  is a cdf under the alternative 

hypothesis *
1 .H  Here dα  is the 100α  

percentage point of the distribution of *
iT  under 

oH . The efficiency of the test statistic *
iT  

relative to T  is calculated as a ratio of powers: 
 

*
* power of 

( ,  ) ,
power of 

i
i

Teff T T
T

=  
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thus, *
iT  is more powerful than T  if 

*( ,  ) 1.ieff T T >  

 
Algorithms for Power and Percentage Point 

The following two algorithms 
approximate the power and the percentage of the 

tests T  and *.iT  

 
Percentage Point Algorithm: 
 

1. Simulate 1,..., rY Y  from ( ).ioG y  

2. Find *
iT  according to equation (2). 

3. Repeat steps (1)-(2) to obtain 
* *
1 10,000 ,...,  .i iT T  

4. Approximate ,dα  the percentage point of 
*.iT  

 
Power Algorithm: 
 
1. Simulate 1,..., rY Y  from ,H  a distribution 

under *
1 .H  

2. Find *
iT  according to equation (2). 

3. Repeat the steps (1)-(2) to obtain 
* *
1 10,000 ,...,  .i iT T  

4. Approximate the power of *
iT  as: 

 

Power of 
10,000

* *

1

1
( ) ( ),

10,000i it
t

T H I T dα
=

= >  

 
where (.)I  stands for indicator function. 

 
Results 

To compare tests T  and *,iT  a Monte Carlo 

simulation study was conducted to approximate 
the power of each test based on 10,000 iterations 
according to the algorithms shown. Due to 
symmetry the first and the last order statistics 
produced the same power; therefore, simulation 
results for the largest order statistic are not 
presented. The powers of the two tests were 
compared for samples sizes 10,  20,  30r = , set 

sizes 1,  2,  3,  4m =  and alternative 

distributions Normal = N(0. 1), Laplace = L(0, 
1), Lognormal = LN(0, 1), Cauchy = C(0, 1), 
StudentT = S(5), Uniform = U(0, 1), Beta (0, 1), 
ChiSquare (5) and Gamma (2, 1). In addition, 
the following weight functions were used in the 
simulation study: 
 

1( ) Real Part of  Beta(1 ,1 ),w t tI tIκ κ= − −  

2 ( ) exp( ),w t tκ= −  
2

3 ( ) exp( ),w t tκ= −  
2

4 ( ) cos( ) e ,tw t t κ−=  

and 
2 1

5 ( ) ( ) .w t t −= +κ  

 
Simulation results are presented in Tables (1)-
(5). 

Simulation results for the uniform 
distribution show that the powers of all test 
statistics equal one, for this reason these powers 
are not reported in Tables (1)-(5). The 
simulation also shows that the efficiencies are 
equal to one for the non-symmetric alternatives: 
Lognormal = LN(0, 1), ChiSquare (5), Gamma 
(2, 1) and Beta (0, 1), thus, these are not 
presented in the tables. 
 

Conclusion 
Based on data in the tables, the following 

conclusions regarding *
iT  are put forth: 

 
1. The efficiencies are greater than one for all 

alternatives, weight functions and all values 
of ,    and m r κ , thus indicating that the test 

*
1T  is more powerful than the test .T  

2. It is noted that, for each alternative, the 
efficiency is increasing in .m  

3. No clear pattern is observed in the efficiency 
values and the weight function, but for 

1.5 and  4,mκ = =  the efficiency has the 
highest values.  

4. The worst value of the efficiency occurs 
when (0,  1)  and  50.H N r= =  

 
This article considered a counterpart goodness 
of fit test based on the empirical characteristic 
function under ranked set sampling. The null 
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distribution and the power of the new test have 
no closed forms; therefore they have been 
obtained using simulation. The simulation 
results show that the ranked set sampling 
counterpart is more powerful than the empirical  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

characteristic function based on a simple random 
sample. In addition, it also possible to improve 
the power of the test statistic (1) (see 
introduction) under different ranked set 
sampling schemes, however, this discussion is 
avoided due to space limitations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Values of *( ,  )ieff T T  Using 1( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m = and 0.05=α  
 

 r = 10, 1( ) Real Part of  Beta(1 ,1 )w t tI tIκ κ= − −  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.31 2.13 3.25 1 1.77 4.2 6.94 1 4.25 12.26 23.52

(0,  1)L  1 1.16 1.38 1.67 1 1.60 2.82 3.76 1 3.33 6.89 10 

(0,  1)C  1 1.52 2.89 4.14 1 1.85 3.4 5.12 1 1.51 2.71 3.729

(5)S  1 1.23 1.7 2.20 1 1.48 2.73 4.02 1 2.63 6.21 10.04

 r = 20 
(0,  1)N  1 1.43 2.05 2.45 1 1.45 2.26 2.62 1 2.42 4.6 5.53 

(0,  1)L  1 1.15 1.35 1.56 1 1.47 2.25 2.79 1 2.27 4.35 5.94 

(0,  1)C  1 1.79 3.66 5.36 1 2.06 3.83 5.47 1 1.69 3.25 4.12 

(5)S  1 1.22 1.69 2.22 1 1.45 2.31 3.13 1 1.92 4.45 6.14 

 r = 30 
(0,  1)N  1 1.25 1.51 1.57 1 1.26 1.49 1.53 1 1.52 1.91 1.97 

(0,  1)L  1 1.12 1.29 1.42 1 2.32 3.01 3.75 1 2.3 3.93 5.25 

(0,  1)C  1 2.07 3.77 5.48 1 1.35 2.56 3.42 1 1.77 2.98 3.67 

(5)S  1 1.18 1.63 1.89 1 1.32 1.82 2.33 1 1.69 2.98 3.8 

 r = 50 
(0,  1)N  1 1.06 1.09 1.09 1 1.05 1.06 1.06 1 1.08 1.09 1.09 

(0,  1)L  1 1.05 1.12 1.21 1 1.16 1.35 1.52 1 1.44 2.06 2.37 

(0,  1)C  1 1.57 2.81 3.53 1 2.08 3.36 3.83 1 1.73 2.53 2.74 

(5)S  1 1.18 1.38 1.5 1 1.13 1.39 1.51 1 1.26 1.73 1.9 
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Table 2: Values of *( ,  )ieff T T  Using 2 ( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, 2 ( ) exp( )w t tκ= −  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.31 1.91 2.82 1 1.35 2.4 3.88 1 1.57 3 4.82 

(0,  1)L  1 1.13 1.22 1.38 1 1.15 1.61 1.87 1 1.49 2.11 2.69 

(0,  1)C  1 1.67 2.44 3.56 1 1.76 3.34 4.85 1 1.53 3.13 4.43 

(5)S  1 1.25 1.55 2.06 1 1.29 1.91 2.6 1 1.47 2.11 3.35 

 r = 20 
(0,  1)N  1 1.38 2.07 2.57 1 1.44 2.11 2.48 1 1.5 2.28 2.68 

(0,  1)L  1 1.12 1.28 1.45 1 1.16 1.5 1.7 1 1.26 1.68 2.06 

(0,  1)C  1 1.63 2.7 4.04 1 2.08 3.7 5.51 1 1.92 3.63 5.24 

(5)S  1 1.3 1.68 2.2 1 1.3 1.79 2.37 1 1.39 2 2.64 

 r = 30 
(0,  1)N  1 1.28 1.64 1.78 1 1.26 1.49 1.55 1 1.28 1.51 1.55 

(0,  1)L  1 1.11 1.15 1.28 1 1.21 1.38 1.55 1 1.19 1.55 1.8 

(0,  1)C  1 1.54 2.73 3.99 1 1.86 3.58 4.77 1 1.78 3.37 4.41 

(5)S  1 1.17 1.57 1.9 1 1.22 1.64 1.94 1 1.29 1.77 2.15 

 r = 50 
(0,  1)N  1 1.11 1.16 1.16 1 1.07 1.09 1.09 1 1.05 1.07 1.07 

(0,  1)L  1 1.06 1.1 1.17 1 1.08 1.15 1.25 1 1.13 1.26 1.37 

(0,  1)C  1 1.5 2.65 3.53 1 1.77 2.97 3.55 1 1.85 2.92 3.36 

(5)S  1 1.21 1.43 1.6 1 1.13 1.34 1.47 1 1.18 1.37 1.5 
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Table 3: Values of *( ,  )ieff T T  Using 3( )w t  for 10,  20,  30,  50r =  , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, 
2

3
tw e κ−=  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.35 2.33 3.66 1 1.46 3.43 5.6 1 1.59 5.21 9.18 

(0,  1)L  1 1.48 2 2.46 1 1.88 2.98 3.85 1 2.45 4.48 6.17 

(0,  1)C  1 1.78 3.37 5.53 1 1.97 3.91 5.88 1 1.82 3.29 4.79 

(5)S  1 1.15 1.8 2.45 1 1.37 2.55 3.97 1 1.6 3.67 6.5 

 r = 20 
(0,  1)N  1 1.45 2 2.33 1 1.41 2.27 2.63 1 1.41 2.46 2.86 

(0,  1)L  1 1.12 1.44 1.72 1 1.36 1.99 2.39 1 1.47 2.54 3.14 

(0,  1)C  1 1.91 3.85 6.03 1 2.17 4.71 6.72 1 2.35 3.79 5.87 

(5)S  1 1.29 1.73 2.3 1 1.34 2.13 2.9 1 1.51 2.68 3.7 

 r = 30 
(0,  1)N  1 1.19 1.4 1.45 1 1.24 1.45 1.48 1 1.34 1.6 1.64 

(0,  1)L  1 1.12 1.33 1.52 1 1.19 1.73 2 1 1.56 2.27 2.81 

(0,  1)C  1 1.99 3.95 5.35 1 2.26 4.26 5.78 1 2.84 4.48 5.76 

(5)S  1 1.22 1.59 1.95 1 1.27 1.8 2.19 1 1.25 2 2.51 

 r = 50 
(0,  1)N  1 1.06 1.07 1.07 1 1.04 1.05 1.05 1 1.05 1.06 1.06 

(0,  1)L  1 1.08 1.15 1.24 1 1.12 1.34 1.52 1 1.13 1.51 1.76 

(0,  1)C  1 2.04 3.29 4.12 1 2.32 3.86 4.52 1 2.22 3.47 3.94 

(5)S  1 1.15 1.35 1.45 1 1.12 1.37 1.48 1 1.17 1.49 1.62 
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Table 4: Values of *( ,  )ieff T T  Using 4 ( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, ( ) 2

4 cos tw t | ( t )| e−κ=  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 2.15 4.99 8.55 1 2.92 8.08 15.10 1 5.61 15.6 31.60

(0,  1)L  1 1.95 3.54 4.56 1 3.35 6.40 9.25 1 3.41 7 11 

(0,  1)C  1 1.95 3.51 5.02 1 1.84 3.26 4.82 1 1.61 3.01 4.09 

(5)S  1 1.63 3.21 4.96 1 2.14 5.52 8.86 1 2.17 5.38 8.76 

 r = 20 
(0,  1)N  1 1.45 2.36 2.78 1 1.75 3.06 3.6 1 1.97 3.95 4.83 

(0,  1)L  1 1.39 2.08 2.61 1 1.64 2.71 3.73 1 2.04 3.87 5.37 

(0,  1)C  1 2.37 4.51 6.53 1 2.28 4.22 5.93 1 1.95 3.51 4.76 

(5)S  1 1.54 2.37 3.18 1 1.57 3.02 4.35 1 2.13 3.90 5.60 

 r = 30 
(0,  1)N  1 1.27 1.49 1.53 1 1.24 1.55 1.59 1 1.36 1.77 1.81 

(0,  1)L  1 1.33 1.76 2.17 1 1.39 2.23 2.71 1 1.87 3.23 3.98 

(0,  1)C  1 2.59 4.83 6.2 1 2.1 4.17 5.43 1 1.89 3.41 4.33 

(5)S  1 1.33 1.9 2.28 1 1.45 2.36 3.03 1 1.71 2.69 3.48 

 r = 50 
(0,  1)N  1 1.04 1.05 1.05 1 1.06 1.07 1.07 1 1.05 1.06 1.06 

(0,  1)L  1 1.19 1.41 1.6 1 1.27 1.7 1.94 1 1.38 2.04 2.38 

(0,  1)C  1 2.33 3.98 4.54 1 2.03 3.3 3.7 1 2.03 3.14 3.44 

(5)S  1 1.2 1.46 1.59 1 1.24 1.57 1.71 1 1.24 1.62 1.83 
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