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The Normal and Laplace’s methods of approximation for posterior density based on the location-scale
family of distributions in terms of the numerical and graphical simulation are examined using S-PLUS

and R Software.
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Introduction
A parametric location-scale model for a random
variable y on (-eo ,e0) is distributed with pdf of
the form

1 _
p(y;u,c)=—f(—y ”j, —oo< Yy <oo
(o) (o)
(1.1)

where (i (—oo < [t < o) is a location parameter

and 0 >0 is a scale parameter (not necessarily
mean and standard deviation). This family can
also be written as

y=u+oz (1.2)

H is the standardized variate

where z = Y
(0}

with density f(z), David (1981). A few important
models, namely, normal, logistic and extreme
value are some important members of the
location-scale family.
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Bogdanoff and Pierce (1973) analyzed
an extreme value model treating non informative
priors for location and scale parameters.
Stavrakakis and Drakopoulos (1995) and
Galanis, et al. (2002) deal with an extreme value
model with Bayesian statistics. Sinha (1986) and
Khan (1997) also cite several references for non-
normal f(z).

Bayesian Analysis when Both Parameters & and
o Are Unknown

Suppose that n observations
' =(»,,Y5,---»»,) can be regarded as a

random sample from a location-scale family of
models in (1.2), but both wando are

unknown; in terms of general notation
0" =(u,0), the likelihood function is given by

p( | 1.0) =] 2, | 1.0)

i=1
The log-likelihood is defined as
l(u,0)=log[ | p(y; | ,0)
i=1
= logHO'_lf(—y _ﬂ]
i=1 o

= Zlogf(zi)—nloga
i=1
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or equivalently ol ol 9%l 0%l
- L= a3 6 N7 c ’ on ’
l(u,0)=>1, 2.1) oou oo " duds " doou
i=1 2 2
lwza—lz, and Zm:a—lz.
_ J c
where [, =log f(z,)—logo and z, =u.
o ’
Following the standard approach of Box Similarly, define [ﬂ = [ﬂ + M’
and Tiao (1973), assume that a priori # and o p()
are approximately independent, so that . ! . .
pp y indep 16:16+%’1W:1ﬂ0,1w:1@,
o
p(u,0) = p()p(0) (22) P -,
ooy 4| P
where p(u) and p(o) are priors for 4 and o, e (1) ’
respectively. Using Bayes theorem, the posterior - -
density of p(u,0 | y) is given by and ,
L, =1, + 29
pu.cly) a T]pw;|mo) p(u) po) L p(0)
i=1
or where f'(x) = Df (x) and
p(u,oly) o {HG_lf(zi )}p(,u) p(o) [7’(x)] =D*f(x), D stands for differential
=l operator. Consequently, the score vector of log-
(2.3) posterior
The joint posterior density of 4 and o is U(u, O')Z(l;, l:;)T

assumed to contain all information required in
the statistical analysis (e.g., Box & Tiao, 1973),
therefore, the main job remains to study the
different features of p(u,0 | y).The posterior

and Hessian matrix of log-posterior, that is,

mode can be obtained by maximizing (2.3) with % _ ;ﬂ ;a'
respect to & and o . To formalize this, define (u,0)= /* I
ou oo

I'(11,0) = log p(1, | ) -
thus, thus, the posterior mode (4,0 can be obtained
from iteration scheme

I'(w,6)=I(1,6)+log p(n)+log p(c).
(24 ~ /
H {”O}H—l(ﬂo,ao){”] 2.5)
o I

The maximization of p(u,0 | y) is equivalent 8‘ .

o
to maximizing [*(4,0) with respect to (i,0) .
To apply the Newton-Raphson technique, partial Consequently, the modal variance 2 can be
derivatives of /" (u,0) are needed and some obtained as

notations must be defined for simplification N A S
purposes. For example 1" (u,0)=—-H (u,0).
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For drawing an inference about # and o
simultaneously, the joint posterior p(L,G |y )1is

used. It is preferable to use approximations to
this posterior as given below:

Normal Approximations
A bivariate normal approximation of

p(u,oly),is

p(.o|y) = N{(L,&)T,ll (i, &)j
(2.6)

Similarly, the Bayesian analog of likelihood
ratio criterion is

S (o) =T (o= 12 (27

where the symbol =
distributed as. Defining

means approximately

W(u,o)=

=2[l"(u,0)—1"(,0)] using W(u,o) as a
test criterion in hypothesis testing and
construction of the credible region (confidence
interval in non-Bayesian terminology).

Laplace’s Approximation
Laplace’s approximation of p(1,0 | y)
can also be written as

p(Loly)=

(2m)" | I(1,6) [ exp[I'(1,6)-1'(1,5)]
(2.8)

The Marginal Inference

The marginal Bayesian inference about
M and o is based on marginal posterior densities
of these parameters. The marginal posterior for
M can be obtained after integrating out
p(u,0 | y) with respect to o, that is,

puly)=[ pu,oly)do

Similarly, marginal posterior of o can be

obtained as

570

p(o|y)=[_p(woly)du

For normal likelihood p(u,0|y) and
1

non-informative prior p(4,0) & —, it can be
o

shown that p(o|y) is the inverted p-

distribution (Box & Tiao, 1973; Zellener, 1971).
But if either assumption of normality is extended
to other members of location scale family or the
prior is changed then closed form expressions
cannot be obtained and approximations must be
relied upon (Khan, 1997). In practice, the Gauss-
Hermite quadrature (Naylor & Smith, 1982) can
be used to find accurate approximations of
p(u|y) and p(o|y), however, following

simple approximations is recommended.

Normal Approximation
The normal approximation of marginal

posterior p( | ) is:

ply) =N (u.17) 3.1)
In addition, the Bayesian analog of likelihood
ratio criterion can also be defined as a test
criterion based on (3.1) as

="' L u-m=xz (32
Laplace’s Approximation
The  marginal posterior  density

p(1| y) can alternatively be approximated by

p(uly)=

II(u,f)l exp[l*(u,(;(u))_l*(ﬁ’é)]

2r | I(W,0(W))|

(3.3)

Similarly, p(o|y) can be approximated and

results corresponding to normal and Laplace’s
approximation can be written as

p(o|y)=N,(6.15)) (3.4)
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or equivalently,
(O-_G)lez(g_o-)zllz (3.5)
p(oly)=

[{(n0)]

- exp[l*(ljl(G),G)—l*(li)é)]
2n|I(u(c).0)|

(3.6)

Bayesian Analysis of Logistic Distribution
The pdf of the logistic distribution is
given by

(y—1)
e o
p(y;n,0)= =,
(y—w)
G£l+e ° j
—oo < Y < oo,
6>0

The likelihood function is given by

p | 1.0) =[] PO, | 1.0)

i=1

And the log-likelihood is defined as

I,6)=log [ ] p(y, 1.6

i=1

=Z(zl. —2log(1+¢e" ))—nlogc

_ (4.1)
Vi—H

where z, = ——.
o

Taking partial derivatives with respect to & and
o

571

L2 & (eFitzet -] n
-2 o |t
oo (e +1) o

Following the standard approach of Box and
Tiao (1973), Gelman, et al. (1995), it is assumed
that the prior 4 and o are approximately
independent so that

p(u,0) = p(u)p(o) (4.2)
where p(u)p(o) and p(o) are priors for i
and 0. Using Bayes theorem, the posterior
density p(u,o0|y) is

plu,oly) o ]l[p(y,» | i,0) p(u) p(o)

i=1

4.3)
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and the log-posterior is given by

log p(W,6ly)=

log [ ] p(y, |1.0)+1og p(1)+log p(c)

i=1
(4.4a)
or

I"(u,0) =1l(u,0) +log p(u) +log p(0)
(4.4b)

For a prior p(u,0) = p(u)p(o) =1, l; =1,,
I =1 Lig =lig loy =gl =

o ‘to> o Ho > “ou ou > uu and

L
I’ =1, . The posterior mode is obtained by

maximizing (4.4) with respect to # and o. The
score vector of the log posterior is given by

Uu,0)=(,.1,)"

and the Hessian matrix of the log posterior is

l* l*
Hu,o)=| " %
i

ou oo

A A
Posterior mode (,0) can be obtained from
iteration scheme

u| [u _ l,
. ={ O}_H 1(#090-0) /l
o 0y [,

consequently, the modal variance X can be
obtained as

A

I_l (luao-) = _H_l (lLl,O-) .

For drawing inferences about g and o©

simultaneously, the joint posterior (7.3) is used.
Using normal approximation, a bivariate

normal approximation of (7.3) can be written as

572

p(.o|y) = Nz[(fz, o) I (Zz,?nj

Similarly, a Bayesian analog of likelihood ratio
criterion is

_ z[z*(um - r‘(lz,é)} ~ 7

Using Laplace’s approximation, p(u,o|y)

can be written as
p(noly)=
AN A l AN A
(2n)" | I(wo) 2 exp[I'(n,0)=1"(n,0)]
The marginal Bayesian inferences about
M and o are based on the marginal posterior
densities of these parameters, and the marginal

posterior for # can be obtained after integrating
out p(u,o | y) with respect to o, that is

puly)=[ .ol y)do

Similarly, the marginal posterior of o can be
obtained as

p@| =] puolydu,

thus, normal approximation of the marginal
posterior p(u | y) is

p(u|y)=N 1)),

The Bayesian analog of likelihood ratio criterion
can also be defined as a test criterion as

(=)' I (=)= g

and Laplace’s approximation of marginal
posterior density p(4 | y) can be given by



p(uly)=

11(1,6)]
om | I(,6(1)))|

exp[ 1" (,6(1) 1 (1,6)]
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p(cly)=

o)l i (w(s),0) -1 (1,6)]

2n| I(u(5),0)|

Similarly, p(o|y) can be approximated with
results corresponding to normal and Laplace’s Numerical and Graphical Illustrations

approximation can be written as

Numerical and graphical illustrations are
implemented using both S-PLUS and R software
for Logistic distribution. These illustrations are

p(o|y)=N,(o,l 2_21) intended for the purpose of showing the strength

or equivalently,

(0—-0)" I,(c—0)~

of Bayesian methods in practical situations. The

posterior mode and standard errors of

parameters 4 and O of logistic distribution are

) presented in Table 4. A graphical display for

=X comparing the posterior of £ using the Normal
and Laplace approximations are shown in
Figures 1 to 3 and a comparison for the posterior
of o is displayed in Figures 4 to 6. The graph
shows that the two approximations are in close
agreement.

Table 1: A Summary of Derivatives of Log Likelihoods

Distributions
Derivatives Normal Extreme-Value Logistic
1 <& 1 & 1 &G(e” —1
[ — ) z -—> (1-¢e%) —
“ O'I-Z:l: O'I-Z:l: oS\ e +1
1 & n 1 & n 1 & e —1) n
[, — ziz—— ——Zzi(l—ezf)—— — ) z -——
oS oS o oS e+l) o
2 3 1 ¢ 1 &(e¥ +2ze" —1
he | 2 =DICORTE -
(o (o o T (e +])
2 3 R 1 (e +2ze" —1
lrf/z __2221‘ ——zZ(Zfe‘ +e —1) ) Z, 2
(O o = o o (e” +1)
n 1 & 2 & e’
/ - —— > " - R ——
Hu 0_2 0.2 ,Z:I: O_Z ;((62, +1)2j
3 n 1 & n 2 < e +ze —1 n
l __ZZZI-Z +_2 ——ZZ(Zizezi +22ie2i _2Zl)+_2 __2 Zl- 2—12 +_2
oo o ‘S o o ‘D (o2 o ‘o (e +1) o
where z, = Vi mH , i=12,..,n.
o
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Table 2: A Summary of Prior Densities for Location Parameter y

’

Name of P'(u) ’
o b E
PH ()
Non- ) Constant Zero Zero
Informative
D 2
Normal CO-(;I exp(— TJ _ Do-_l _ 0.—2

Logistic cexp(D)[1+exp(D)]> | o,'[1-2F(D)] %F (D)[1-F(D)]

0

Extreme- - —~
Value cexp[D —exp(D)] o,'[1- F(D)] -0, exp(D)

D

where D = M, F(D)= e—D, and c is the normalizing constant.
o, l+e

Table 3: A Summary of Prior Densities foro

Name of p(0) 2 p'(0)
Prior p(O‘) (o)
Non- 1 s 1
Informative o o P
1 1 o, +1 o, +1 2
Inverted co @) ox p[_ J _ 0 0 - .
Gamma A ,BOO' o o :Bo pu
L | o D? D 1 1 1 D
C expl —— _ - _
OgIlOI’Ina 0 p 2 O_OO_ o 0_2 (O.O O_)Z 0.00.4
1 o, — 1 o, — 1
Gamma o) —~off" — 40 )
CG( e 130 o e
—1 -1
weibill | cgtteen” | BZlgp@o | - Tlog g8, - o
logo — 4,

where c is the normalizing constant and D =
0,
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Table 4: Posterior Mode and Posterior Standard Error of Parameters of Logistic Distribution
with Different Priors

Posterior Posterior Posterior Posterior
Prior Mode Standard Error Mode Standard Error
u u o o
1 168.63355 2.679672 58.65997 1.320980
1/sigma 168.62814 2.678635 58.63024 1.319912
1/(mu*sigma) 168.58558 2.678692 58.62837 1.319845
1/(mu*sigma)”2 168.53766 2.677714 58.59681 1.318714

Figures 1-3: Comparing Normal and Laplace's Approximation for i of Logistic
Distribution for Various Priors in S-PLUS and R

Figure 1: Comparison between Normal and Laplace Approximations

Posterior Density for mu with Prior=1

Yo
-~ |
=} Normal Approximation
Laplace's Approximation
o
-
o
Yo
C)_ 1
o
=
=)
S
a o |
o
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Figure 2: Comparison between Normal and Laplace Approximations

Posterior Density for mu with Prior=1/sigma

19
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Laplace's Approximation
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0
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>
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=
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Figure 3: Comparison between Normal and Laplace Approximations
Posterior Density for mu with
Prior=1/(mu*sigma)
Normal Approximation
Laplace's Approximation
To]
=
=)
=
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o
=
35
£
o o
2
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Figures 4-6: Comparing Normal and Laplace’s Approximation for ¢ of Logistic Distribution for
Various Priors in S-PLUS and R

Figure 4: Comparison between Normal and Laplace Approximations

Posterior Density for sigma with Prior=1

o
g 7 Normal Approximation
Laplace's Approximation
Yo}
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S
o
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©
=
e
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E o
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sigma
Figure 5: Comparison between Normal and Laplace Approximation
Posterior Density for sigma with Prior=1/sigma
o
Cf)_ —
S} Normal Approximation
Laplace's Approximation
Yol
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o
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2
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Figure 6: Comparison between Normal and Laplace Approximation

Posterior Density for sigma with Prior=1/(mu*sigma)

o
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