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BRIEF REPORT 
Bayesian Analysis for Component Manufacturing Processes 

 
L. V. Nandakishore 

Dr. M. G. R. University, 
Chennai

 
 
In manufacturing processes various machines are used to produce the same product. Based on the age, 
make, etc., of the machines the output may not always follow the same distribution. An attempt is made 
to introduce Bayesian techniques for a two machine problem. Two cases are presented in this article. 
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Introduction 
Stochastic models can be better understood 
through the application of parametric, Bayesian 
and interval estimations. In this article, Bayesian 
Analysis of two machines producing the same 
component is attempted. If the first machine 
follows a distribution 1D  and the second 

machine follows distribution 2D , and 1λ  and 

2λ  are the proportions of production for the two 
machines, then the total production equals

121 =+ λλ . 
In the final lot, a mixture of components 

from both the machines pooled together will 
have a distribution given by a linear combination 
of the two distributions as D = 2211 DD λλ + . 
 
Case I 
Assumptions: 
1. The two machines produce components 

where the rate of production is not i.i.d. 
 

2. The total lot collected has an observable 
distribution with an unknown parameter. 

 
3. The number of components observed at 

sampled points in time is a discrete NB 
(N.p) distribution.  
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4. The log normal prior distribution of p is 
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If the number of components produced 
at sampled points of time ( nttt ,......., 21 ) is (

),......., 21 nccc  then D follows a negative 

binomial distribution given by 
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where 
x = 0, 1, 2, 3…, 

and 
p + q = 1.                         (1.1) 

 
Based on (1.1) the likelihood function of 

the number of components is given by 
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for L to be the maximum likelihood estimator 
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The sum of independent variables with a 

negative binomial distribution follows a negative 
binomial distribution (nN.p) with a probability 
mass function 
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where 

E(X) = 
p

   p)-nN(1
              (1.4a) 

and 

Var (X) = 
2p

   p)-nN(1
              (1.4b) 

 

For large values of n, E(
Λ
p ) = p variance tends 

to 0, hence, the MVUE of p is 
Λ
p . 

 
Posterior Distribution 

If the prior density of p is a log normal 
distribution given by 
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where α  is real, 0β , and 0 < x < ∞  with 

mean 
2

2βα +  denoted by ),( 2βαΛ , the 

marginal pdf of X is 
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(2.2) 
 
Therefore, the posterior distribution of p given 
by 

constant gNormalisin

Prior  *function  Likelihood
 

 
is 
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0

n
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τ α β=
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(2.3) 
 
Case II 

The numbers of components produced at 
discrete points of time in a given interval are 
observed if autoregressive processes of order n 
are considered. The initial observations 
preceding the sampled data must be determined 
first, which may not be possible in practical 
cases. If a first order AR model defined by 

iii gcXX += −1  is considered where c  is the 

parameter to be estimated, i = 1, 2, 3…, and ig  

is the Gaussian noise, i.i.d. of normal variates 

with N(0, 2σ ) and stationary for c  <1, then the 
backward shift operator defined by B 1−= ii XX  

results in 1)1( −−= cBX i ig .The product of n 

observations has a multivariate normal 
distribution with mean zero and variance matrix. 
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then 
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which is the covariance matrix of Y=PX which 
has a multivariate normal dist with zero mean. 

Because X=∏
=
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 the joint pdf of its 

components is 
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