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modern methods such as those described by 
Wilcox (1990, 2012) or an ordinal alternative 
(Cliff, 1993, 1996). The method described 
herein combines the frequency and quantitative 
information into a single test. 

A common simple research context is 
one in which a population can be divided into g 
subpopulations, each with known relative 
frequency or theoretical probability π i. Some 
members of the subpopulations then fall into a 
certain class, and the research question is 
whether members of the class come 
disproportionately from different sub-
populations. A simple example is the hoary 
beads-of-different-colors-in-a-bag from which a 
random sample of beads is drawn and various 
questions about the contents of the bag can be 
investigated. Empirical examples might include 
investigating whether individuals with a certain 
disease come disproportionately from different 
city precincts, ethnicities, age groups, etc., each 
of whose population sizes are known; whether 
students taking high school advanced placement 
exams tend to come differentially from different 
schools, genders, etc.; whether psychotics tend 
to come from certain neighborhoods; whether 
the number of germinating plants tend to come 
from certain seed stocks, or netted fish tend to 
come from certain stocked batches or 
subspecies; whether defaulting mortgages tend 
to come from certain banks. Alternatively, there 
could be a model that determines the π. 

Experimental contexts can also occur. 
Suppose three different inoculation regimens are 
employed, each on a large group. At a later time, 
incidences of the disease are recorded and the 
number that comes from each treatment is 
compared to its expected frequency based on the 
original group sizes. In all these cases it is 
assumed that there is an a priori probability that 
a random member of the observed class will 
come from subpopulation i. The observed 
number fi that comes from i can be compared to 
nπ i , where n is the total number observed to 
fall in the class and elementary significance tests 
are applied to the results. 

This article elaborates on such methods 
to cases where there is also an expected effect on 
an associated quantitative variable, specifically, 
for data such as: numbers written on the beads-
in-a-bag; a measure of severity of disease; scores 

of students on an exam; the measured sizes of 
plants or fish; amounts or dates of loan defaults. 
The groups could compared quantitatively using 
some form of location comparison, such as, 
analysis of variance, t-test, modern more robust 
methods (Wilcox, 1990, 2012) or ordinal 
comparisons (Cliff, 1993, 1996). 

Can the quantitative and qualitative 
information in testing a random model be 
combined? The traditional way this might be 
accomplished is to divide the quantitative 
variable into categories to form a cross-
classification and then calculate expected cell 
frequencies or fit a loglinear model, etc. The 
qualitative variable could also be coded in some 
rational way and treated in parallel with the 
quantitative one via the general linear model. 
Here, combining quantitative and qualitative 
data more directly is suggested. 
 

New Test Description 
There are two beads-in-a-bag models to which 
the method can be applied. In the first, there is a 
large sack containing red and white beads. The 
supplier indicates that some beads, an equal 
number of red and white, have numbers written 
on them, and that the means of the red-bead 
numbers and white-bead numbers are the same. 
A sample of beads is taken, discarding those that 
do not have numbers, resulting in n numbered 
beads, some red and some white. The goal is to 
test the supplier’s assurance of equal frequencies 
and equal means. A priori probabilities, π r and 
π w of 0.50, state that a numbered bead is white 
or red and the further hypothesis is that the 
means are the same for both red and white. In 
the general case, the a priori probabilities could 
be different, and/or there could be more than two 
colors of beads. 

The second bead model uses two bags of 
beads, one red and one white. By hypothesis, 
equal proportions from red and white are 
numbered and the means of the numbers from 
red and white are equal. In this model, the plan 
is to sample sw from the white bag and sr from 
the red bag, once again discarding any 
unnumbered beads, and to determine how many 
of each are numbered and what the numbers are: 
if red and white beads are equally likely to be 
numbered, the probability that a numbered bead 
is white is sw/(sw + sr). The objective is to test 
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the combined hypothesis that the probabilities 
are as assumed and that the means are equal and 
the method generalizes to more than two colors. 

The natural way to test either of the 
models is to calculate Σ jxij , the sum of the 
scores xij by the jth member of subpopulation i 
who are in the class, that is, are a numbered 
bead, and compare it to a random expectation. 
Here, the obvious candidate is nπ i m, where m 
is the overall mean of X, n is the number falling 
in the class (numbered beads in the examples), 
and π i is the a priori probability that the 
member came from subpopulation i. The 
difference, Σ jxij – nπ im, is a random variable 
that can be expected to be approximately normal 
under a wide variety of circumstances. 

In order to assess whether the deviation 
could be consistent with a random model, it is 
essential to know the standard error of this 
difference. Its sampling variance, di

2, is           
E[( Σ j(xij) –π im)]2. To determine its form, first 
consider the expectation at a fixed cell frequency 
fi and make use of Σ jxij =  fi mi where mi is the 
mean of the xij in i. The expected value of di

2 at a 
given fi is 
 

E(di
2) = E[fi

2mi
2 – 2fi minπ i + (nπ im)2], 

 
and, because mi is the mean of fi cases, 
 

E(fi
2mi

2] = fi
2 μ 2 + fi σ x

2. 
 

Next, take the expectation across the 
possible sample values of fi; where μ 2 and σ x

2 

are constants, and fi is a binomial in π i and n. 
Thus, because the expected value of a squared 
random variable is again the sum of its squared 
mean and its variance, 
 

E[fi
2] = (nπ i)

2 + n(π i – π i
2). 

 
Putting this back into di

2 and collecting terms 
yields: 
 

E(di
2)= n μ 2(π i – π i

2)+ nπ i σ x
2. 

 
This is exactly what one would expect: that the 
expected squared deviation under the null 
hypothesis is the sum of a term reflecting the 
expected deviation of the frequency from 

expectation and one reflecting the expected 
deviation of the subgroup mean from the overall 
mean. Under the null hypothesis, the two 
deviations are independent; their terms are 
therefore additive. 

Under broad conditions, that is, when n
π i is not too close to either n or zero and X is 
not far from normal with homogeneous 
variances across groups, the deviations Σ xij – n
π i μ  are approximately normal with the given 
variance, in this case the obvious test is to 
compute the ratio of the observed difference to 
di. In the application that this method was 
developed to solve, X was the first n integers so 
that μ  and σ 2 were known parameters – in 
which case the ratio can be taken as a standard 
normal deviate. 

However, in most applications m and s2 
are estimates from the sample, the latter being a 
within-cells estimate. As was noted, d2 has two 
components, one identical to the denominator of 
the Chi-square test and one derived from the 
variance. When the latter is a sample estimate, 
the ratio is no longer a normal deviate, but tends 
to resemble a t-ratio to some degree. (Note that 
the unbiased estimate of μ 2 is m2 − s2/n.) 
Consequently, a slightly conservative approach 
is to interpret the ratio as a t with n – k df , k 
being the number of groups, although the 
expectation is that, in most contexts, the null 
sampling distribution may be very close to 
normal due to the influence of the first term in 
d2. The method can be adapted to situations 
where nπ i is close to the extremes, offering 
some special advantages over simply comparing 
frequencies under those circumstances. 
 
Example 

Table 1 contains artificial data that is 
used to illustrate the procedure. The data are 
analogous to what might be found if two groups 
of animals are given different cancer treatments. 
After a time the occurrence and size of lesions 
are determined, so xij is the size of the lesion in 
animal j from group i; originally, there were s1 = 
15 animals in treatment 1 and 10 in treatment 2, 
so the a priori probabilities that a given lesioned 
animal is in a given group are π 1 = 0.6 and π 2 
= 0.4, analogously to the second bead example. 
The expectation is that lesions will be more 
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common and larger in Group 1. Thirteen animals 
are found to have lesions in Group 1 and three in 
Group 2, so n = 16. The sizes of the lesions in 
each group are given in the upper part of the 
table along with the statistics for each group. 

The lower part of the Table shows the 
components of di

2 and the t’s for each group, 
which are found to be significant at the α = 0.05 
level, one-tailed. A SAS macro was written to 
perform the analysis (by Professor Du Feng), but 
it is easily carried out in small samples with the 
aid of a pocket calculator. An analysis based on 
the rank-order version of the data gave highly 
similar results. 
 
Power Considerations 

It would seem natural to expect that 
including quantitative information would 
increase power over the simple frequency 
analysis, but one may wonder about the 
circumstances under which this might actually 
be true. Note that di

2 has the appearance of 
combining expected frequency deviations and 
subgroup mean deviations, by adding these two 
components fimi − nπ im can be made into a 
form: 
 

fimi – nπ i = [fimi – fim] + [fim – nπ im]. 
 
After squaring the second bracketed term, call it 
a2, and comparing it to the frequency part of di

2, 
their ratio would give exactly the same result as 
would be obtained in computing the ith  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

component of the Chi-square for testing 
observed frequencies; thus, the frequency 
component of this test is similar to the 
traditional test. 

The mean difference component 
resembles a component of the F-test on mean 
differences, but is not identical. Dividing      
fi

2(mi – m)2 by fis2 would give a component of F, 
but the corresponding term in di

2, nπ i, is the 
expected frequency, not fi, of the observed group 
size itself, thus, these terms are similar, but are 
not the same. 

However, the general circumstances 
under which using the combined test would be 
more powerful than simply using the frequencies 
can still be investigated. If b is defined as       
fi[mi – μ ] and e2 as the variance part of E(d i

2), 
then the ratio from the combined test is (a + 
b)2/(c2 + e2). The new ratio will be greater than 
the frequency ratio when 
 

(a + b)2/(c2 + e2) > a2/c2, 
 
and, collecting some terms, this will be true 
when 

(2ab + b2)/e2 > a2/c2. 
 
This relation indicates that the new procedure is 
more likely to detect effects than simply testing 
the frequencies when both the mean and 
frequency effects are in the same direction as 
well as when the mean effect is relatively large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Artificial Animal Data to Illustrate the Combined Frequency and Quantitative Test 
 

Group Data Statistics 

1 
13.1, 2.5,9.2, 6.2, 15.0, 12.1, 10.4, 

17.4, 15.1, 6.0, 16.0, 6.1, 11.2 
=11.55 

2 3.1, 9.3, 8.6 
= 7.00 

m = 10.69 
s2 = 16.86 

Group 
Analysis 

xij n im di
2 t-ratio 

1 150.1 102.66 578.06 1.973 

2 21.0 68.44 531.75 2.057 
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Another consequence of examining the 
ratio in this way is seeing that its two aspects are 
implicitly weighted by the relative magnitudes 
of variance and squared mean. The other factors, 
π i – π i

2 and π i, are similar in magnitude, their 
ratio being between 0.5 and 1.0. When the data 
consist of the first n positive integers, the ratio 
of squared mean to variance approaches 3.0 as n 
increases, indicating that frequency effects will 
always be emphasized relative to mean effects in 
such data. 

The difference in influence can be even 
greater with some psychological variables whose 
mean and variance are set by convention. Many 
scholastic aptitude tests are scaled to have a 
mean about 500 and variance about 10,000, 
giving a ratio of about 25.0; the IQ scale is even 
more extreme, giving a ratio of squared mean to 
variance of more than 40.0. In such 
circumstances, the mean part of the proposed 
ratio has little effect because the proposed ratio 
approaches the traditional one for frequencies as 
μ 2/σ 2 increases. 

In some research contexts, X has a well-
established and empirically meaningful zero 
point. However, in others, such as the SAT and 
IQ scales, it merely represents a convenient 
reference. Where the origin of the scale is 
arbitrary, the user may feel that it is justifiable to 
give more nearly equal a priori weights to μ 2 

and σ 2. However, it seems desirable that the 
lowest possible Σ xij value should be zero, 
occurring when fi = 0. Thus, subtracting a 
constant to make the lowest observed score 
slightly positive seems to be the most that can be 
done to equate influences. However, if X is 
quasi-normal with lowest standardized value of 
around −3.5 or −3.0, the ratio is still 9.0 to 12.0. 
Thus, making the analysis ordinal by converting 
the observed variable to the first n integers may 
be the most that can be done in equating 
influences of mean and variance. 
 
Exact Version 

When nπ i is smaller than about five, 
the normality of the distribution of differences is 
likely to break down, making the assumed 
boundaries for an acceptance region unrealistic. 
In that circumstance, the researcher can 
construct cutoff values for the sum that 

correspond nearly exactly to a given rejection 
probability. These probabilities are now defined 
under a randomization hypothesis rather than on 
the basis of parameter estimates. 

A given set of n xij values, that is, from 
all groups in the sample, defines 2n possible 
values for Σ jxij; of these, a certain fraction, 
corresponding to the desired rejection level, give 
the smallest (largest) values for the sum. These 
can be enumerated; if the obtained sum falls 
within this set, the null hypothesis is rejected. 
This enumeration process may improve power in 
such cases by defining a finer-grained rejection 
region than the corresponding test that is based 
only on the frequencies or only on the means. 

The method is suggested by the beads-
in-a-bag models. Consider an obtained sum for 
Group i and ask: What is the probability of 
obtaining a sum this small (large) or smaller 
(larger) when drawing n times with probability 
π i? To illustrate with the example, the sum for 
Group 2 is 21.0, n is 16 and π 2 is 0.40. 

There are 216 = 65,336 possible 
outcomes of randomly drawing a sum. Which 
are less than 21.0 and what are their respective 
probabilities? Of these outcomes, one has a sum 
of 0.0, that with f2 = 0. This will happen with 
binomial probability 2.82×10-4. There are 16 
draws with f2 = 1, each with probability 1.88×
10-4, and all have sums less than 21.0. There are 
120 with f2 = 2, all with probability 1.25×10-4, 
but only 55 of them have sums less than 21.0. 
When f2 = 3, there are only 23 that are less than 
21.0, each having probability 8.35×10-5. No 
combination of four has a sum below that limit. 

Summing the probabilities of the 
instances that have sums less than 21.0 it is 
found that, under randomization, 0.000282 + 16
×  0.000188 + 55×  0.000125 + 23×  0.0000835 
= 0.012192 is the probability of obtaining a sum 
of 21.0 or less for Group 2, which is just short of 
the 0.01 significance level. By contrast, if only 
the frequencies are considered, the 
corresponding binomial probability of f2 = 3 or 
fewer is 0.0652. Also, the t-test in Table 1 
yielded a significance level of about 0.04, less 
extreme than the probability obtained by 
enumeration. 
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Applications 
Applied contexts having the 

characteristics that are appropriate to the method 
seem likely to be fairly common. Consider a 
state infectious disease-monitoring agency that 
observes an outbreak of a disease such as 
meningitis, and tabulates the locations, by 
district, of the disease. It might hope to identify 
the origin of the outbreak by tabulating 
frequency by district and comparing them to 
expectations based on district sizes. Here, n is 
the total number of meningitis cases and the π i 
are defined by the relative sizes of the 
populations of the different districts. If the 
agency records the days since diagnosis of each 
case and uses it as the quantitative variable in 
the present method, an easier identification of 
the outbreak’s focus may be possible. 

Consider also a bank-regulating agency 
such as the Federal Deposit Insurance 
Corporation that is observing a group of banks 
to assess the riskiness of their policies. It knows 
the number of mortgages issued by the banks 
and records the defaults that occur for each, n 
being the total number of mortgages that are in 
default and the pi are defined by the number of 
mortgages issued by each bank. Using either the 
days since default or the amount of the default as 
well as the frequency of default might well give 
a more sensitive measure of the banks’ statuses 
than frequency alone. 

In psychology, suppose individuals are 
given training in problem-solving. After 
training, they and a control group are given a 
problem to solve under a time-limit. Some 
individuals are successful and some not, n being 
successful, and the time taken to success is 
recorded. If there are st individuals in the trained 
group and sc in the control, π t = st/(st + sc), and 
similarly for π c, represent the a priori 
probabilities that a success comes from the 
respective groups. Here, in order for the time 
variable to operate in the appropriate direction, it 
is best recorded as time remaining before the 
cut-off signal in order that small means and 
small frequencies are expected to go together. 

In a study of differences in criminal 
recidivism, released convicts who have been 
under different prison regimens or treatments or 
who belong to different natural groups can be 
followed for a period. The frequency of re-

incarceration can be combined with the length of 
sentence and analyzed in the proposed way. The 
method could also be applied to studies of the 
effects of educational treatments. 

Many other potential applications exist; 
the key to the relevance of the method is the 
expectation that frequency and some quantitative 
variable will act in the same direction. It has 
been noted that treating the quantitative variable 
as a rank order may have some advantages. 

It has been assumed that the qualitative 
variable consists of a single dimension of 
classification, but it seems in principle that this 
limitation is not necessary. The classification 
could have two or more ways as in a factorial or 
nested design and the relevant quantities could 
be computed for various effects. Another 
possible complication is dealing with more than 
one quantitative variable. Could the variables be 
combined by forming an optimally weighted 
composite of the observed variables? That 
optimization might be complicated by the 
necessity of keeping the composite positive. 
Investigation of such a possibility is beyond the 
scope of the present article. 
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