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Improved Estimation of the Population Mean 
Using Known Parameters of an Auxiliary Variable 

 
Rajesh Tailor Balkishan Sharma 

Vikram University 
Ujjain, M.P., India 

 
 
An improved ratio-cum-product type estimator of the finite population mean is proposed using known 
information on the coefficient of variation of an auxiliary variate and correlation coefficient between a 
study variate and an auxiliary variate. Realistic conditions are obtained under which the proposed 
estimator is more efficient than the simple mean estimator, usual ratio and product estimators and 
estimators proposed by Singh and Diwivedi (1981), Pandey and Dubey (1988), Upadhaya and Singh 
(1999), and Singh, et al., (2004). An empirical study supports theoretical findings. 
 
Key words: Study variate, auxiliary variate, population mean, correlation coefficient, coefficient of 

variation. 
 
 

Introduction 
Auxiliary information is frequently used at the 
estimation stage in order to improve the 
efficiency of the estimator(s) of the parameter(s) 
of a variate under study; ratio, product and 
regression methods of estimation are examples. 
When the correlation between study variate and 
the auxiliary variate is positive (high), the ratio 
method of estimation is used for estimating the 
population mean. Conversely, if the correlation 
is negative, the product method of estimation is 
preferred. 

Consider a finite population 
),...,,( 21 NUUUU =  of N units. Let y i  and x i  

be the values of the study variate y and auxiliary 
variate x respectively on the ith unit iU  

(i=1,2,3,---,N). For estimating the population 

mean, 
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simple random sample of size n is drawn using 
the simple random sampling without 
replacement (SRSWOR) technique from U. 

When the population mean 
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the auxiliary variate x is known, the classical 
ratio and product estimators of Y are 
respectively defined by the ratio estimator 
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and the product estimator 
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/  are the 

sample means of y and x respectively based on n 
observations. 

When the population mean X  and 
coefficient of variation ( xC ) of auxiliary variate 

x are known, Sisodia and Dwivedi (1981) 

suggested using a ratio type estimator for Y  as 
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Using the same of information, Pandey and 
Dubey (1988) suggested a product type 

estimator for Y  as 
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Further, when the population mean X  of x and 
the correlation coefficient ( ρ ) between y and x 
are known, Singh and Tailor (2003) suggested 

ratio and product type estimators for Y  
respectively as 
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and 
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Kadilar and Singi (2006) suggested a ratio-type 

and a product type estimator for Y , using 
coefficient of variation xC  and correlation 

coefficient ( ρ ) ,as 
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This study proposes a ratio-cum-product 

estimator utilizing the knowledge on X , xC  

and ρ  and its properties are examined. 
 
Proposed Ratio-Cum-Product Estimator 

Motivated by Singh and Tailor (2005), 
the proposed ratio-cum-product estimator for Y  
is 
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where α  is a suitably chosen scalar. It should be 

noted that α  = 1, BŶ  reduces to the estimator 

7Ŷ  suggested by Kadilar and Cingi (2006) and 

for the α  = 0 product version of the 7Ŷ . Thus, 

these two estimators are particular cases of the 

proposed estimator BŶ . To obtain the bias and 

MSE of BŶ , )1( 0eYy +=  and )1( 1eXx +=  

such that 0)()( 10 == eEeE  and 
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Expressing (2.1) in terms of sei
'  results in 

 
1

0 3 1 3 1
ˆ (1 ) (1 ) (1 )(1 ) ,BY Y e e eα λ α λ− = + + + − + 

(2.2) 
 
where 
 

)(3 ρλ += xx CXCX . 
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To the first degree of approximation, the 

bias and mean squared error of BŶ  respectively 
are 
 

( ) [ ])2(
1
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(2.3) 
and 
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Thus, with )2/( 3λα −= KK , the estimator BŶ  

is almost unbiased. It is also observed from (2.3) 

that the bias of BŶ  is negligible for large sample. 

The mean squared error of BŶ  in (2.4) is 
minimized for 
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Substitution of (2.5) in (2.1) yields the 
asymptotically optimum estimator (AOE) for 
Y as 
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and placing (2.5) in (2.3) and (2.4), results in the 

bias and variance of )(ˆ opt
BY  respectively as 
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(2.7) 
and 
 

( ) )1(
)1(ˆ 22)( ρ−−= y
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B S

n
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It is clear that mean squared error of 
)(ˆ opt

BY  is the same as that of the approximate 
variance of the usual linear regression estimator 

)(ˆ xXyylr −+= β , where β̂  is the sample 
regression coefficient of y on x. 
 
Efficiency Comparisons 

Under simple random sampling without 
replacement (SRSWOR), the variance of sample 
mean y  is 
 

22)1(
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n
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and the mean squared error of iŶ  (i=1 to 8) to 

the first degree of approximation are 
respectively given by: 
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From (2.4) and (3.1), it is observed that 

BŶ  is more efficient than the usual unbiased 

estimator y  if: 
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A comparison of (2.4) and (3.2) shows 

that BŶ  is more efficient than the usual ratio 

estimator 1Ŷ  if: 
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From (2.4) and (3.3) it is clear that BŶ  

would be more efficient than 2Ŷ  if: 
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Comparing (2.4) and (3.4), it is observed 

that BŶ  is more efficient than the Sisodia and 

Dwivedi (1981) estimator 3Ŷ  if 
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Comparing (2.4) and (3.5), it is observed 

that BŶ  is more efficient than the Pandey and 

Dubey (1988) estimator 4Ŷ  if 
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Comparing (2.4) and (3.6), conditions 

under which suggested estimator BŶ  is more 
efficient than the Singh and Tailor (2003) ratio 

type estimator 5Ŷ  when 
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Similarly conditions under which 

suggested estimator BŶ  is more efficient than 
the Singh and Tailor (2005) product type 

estimator 6Ŷ  when 
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Comparing (2.4) and (3.8), it is observed 

that BŶ  is more efficient than the Kadilar and 

Cingi (2006) ratio type estimator 7Ŷ , if 
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Empirical Study 

To analyze the performance of the 
proposed estimator compared to other 
estimators, three natural population data sets 
were considered. The description of the 
populations is given by Annexure. 
 
Population I (Sukhatme & Sukhatme, 1970, p. 
256): 
 

y: Number of villages in the circles 
x: A circle consisting more than five villages 

Y  =3.360 

X  = 0.1236 
ρ  = 0.766 
Cy = 0.60400 
Cx= 2.19012 

 
Population II (Cochran, 1977): 
 

y: The number of persons per block 
x: The number of rooms per block 

Y =101.1 

X =58.80 
ρ =0.6500 

yC =0.14450 

xC =0.1281 

 
Population III (Kadilar & Singi, 2003): 
 

y: Level of apple production 
x: number of apple trees 

Y = 625.37 

X =13.93 
ρ =.865 

yC =1.866 

xC =1.653, 

 
Results 

Table 4.1 shows a significant gain in efficiency 

by using proposed estimator )ˆ(ˆ )(opt
BB YY  over 

the unbiased estimator Ŷ , the usual ratio 

estimator 1Ŷ , the product estimator 2Ŷ , the 

Sisodiya and Dwivedi (1981) estimator 3Ŷ , the 

Pandey and Dubey (1988) estimator 4Ŷ , the 

Singh and Tailor. (2003) estimators 5Ŷ  and 6Ŷ , 

and the Kadilar and Singi (2006 ) estimator 7Ŷ .  

Table 4.2 illustrates the wide range of 

α  in which a suggested estimator BŶ  or )(ˆ opt
BY  

is more efficient then all estimators considered 
in this study; it shows that even if the scalar α  
deviates from its optimum value ( optα ), the 

suggested estimator )(ˆ opt
bY  will yield better 

estimates than Ŷ , 1Ŷ , 2Ŷ , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ  and 

7Ŷ . Therefore, the suggested estimator )(ˆ opt
BY  is 

recommended for use in practice. 
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Table4.1: Percent Relative Efficiencies of Ŷ , 1Ŷ  , 2Ŷ  , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ , 7Ŷ  and BŶ  or )(ˆ opt
BY  

With Respect To Ŷ
 

Estimators Ŷ  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  7Ŷ  )(ˆ opt

BY  

Population I 100.00 11.64 5.08 134.99 74.95 207.47 49.37 224.25 241.99 

Population II 100.00 157.87 34.03 158.09 34.10 158.99 34.38 165.29 173.16 

Population III 100.00 396.49 30.15 388.92 33.37 395.67 31.86 396.97 397.18 

 

Table 4.2: Range of α in Which BŶ  is Better than Ŷ , 1Ŷ , 2Ŷ , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ , 7Ŷ  
  Population 

  I II III 

Range of α in 
which 

 

BŶ  or )(ˆ opt
BY  

 
is Better Than 

Ŷ  (0.5, 1.31) (0.5, 1.30) (0.5,1.51) 

1Ŷ  (-0.413,0.165) (0.638, 0.883) (0.924 , 0.946) 

2Ŷ  (-0.096, 0.22) (-0.037,1.56) (-0.017, 1.89) 

3Ŷ  (0.041, 0.082) (0.639, 0.883) (0.895, 0.975) 

4Ŷ  (0.027, 0.096) (-0.036,1.56) (0.034,1.84) 

5Ŷ  (0.052, 0.057) (0.512, 0.879) (0.918, 0.964) 

6Ŷ  (0.016, 0.087) (-0.032,1.24) (0.010, 1.88) 

7Ŷ  (0.5, 0.809) (0.5, 0.796) (0.5, 0.013) 

Optimum Value of α ( 0α ) (0.0617) (0.7612) (0.9350) 
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