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A Robust Root Mean Square Standardized Effect Size 
in One-Way Fixed-Effects ANOVA 

 
Guili Zhang James Algina 

East Carolina University University of Florida 
 

 
A robust Root Mean Square Standardized Effect Size (RMSSER) was developed to address the 
unsatisfactory performance of the Root Mean Square Standardized Effect Size. The coverage 
performances of the confidence intervals (CI) for RMSSER were investigated. The coverage probabilities 
of the non-central F distribution-based CI for RMSSER were adequate. 
 
Key words: Confidence interval, effect size, root mean square standardized effect size, non-central F 

distribution-based confidence interval, percentile bootstrap, coverage probability, robust root 
mean square standardized effect size. 

 
 

Introduction 
Using an effect size (ES) in addition to or in 
place of a hypothesis test has been 
enthusiastically advocated by many statistical 
methodologists because ESs are regarded as 
more appropriate and more informative (Cohen, 
1965, 1994; Cumming & Finch, 2005; Finch, et 
al., 2002; Hays, 1963; Meehl, 1967; Nickerson, 
2000; Steiger, 2004; Steiger & Fouladi, 1997; 
Zhang, 2009; Zhang & Algina, 2008). Reporting 
an ES has become mandatory or strongly 
recommended in some editorial policies in the 
last two decades (Murphy, 1997; Thompson, 
1994). The Publication Manual of the American 
Psychological Association (2001) stated that it is 
almost always necessary to include some index 
of ES or strength of relationship in the results 
section of a research report. 
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The APA Task Force on Statistical 

Inference (Wilkinson and the Task Force on 
Statistical Inference, 1999) not only supports the 
use of ESs but also requires researchers to 
provide confidence intervals (CI) for all 
principal outcomes. A CI for an ES is 
recommended as a superior replacement for 
significance testing because it is argued that CI 
contains all the information found in the 
significance tests and vital information not 
provided by the significance tests about the 
magnitude of effects and precision of estimates 
(Cohen, 1994; Steiger & Fouladi, 1997; 
Wilkinson, et al., 1999; Cumming & Finch, 
2001, 2005; Zhang, 2009). 

The increased interests in ES and CI 
have motivated explorations of their usefulness 
and effectiveness within recent years (Algina & 
Keselman, 2003a, 2003b; Bird, 2002; Cumming 
& Fitch, 2001; Zhang & Algina, 2008). In the 
two group case, it has been reported that - in 
both the independent and dependent samples 
cases - CIs for Cohen’s δ , arguably the most 
widely accepted ES index for a pairwise contrast 
on means, may be misleading due to poor 
coverage probability when data are nonnormal 
and can grossly misrepresent the degree to 
which two distributions differ (Algina & 
Keselman, 2003b; Algina, et al., 2006; Algina, 
et al., 2005a; Kelly, 2005; Wilcox & Keselman, 
2003). However, research has shown that the CIs 
for Rδ , a robust version of δ  based on trimmed 
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means and Winsorized variances, have better 
coverage probability than do CIs for Cohen’s δ  
under data nonnormality (Algina & Keselman, 
2003b). 

In the more than two group case, Zhang 
and Algina (2008) investigated the coverage 
performance of the noncentral F distribution-
based CI and the percentile bootstrap CI for one 
of the most commonly used generalized effect 
size indices, the Root Mean Square Standardized 
Effect Size (RMSSE), proposed by Steiger and 
Fouladi (1997), denoted by 
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in a one-way, fixed-effects, between-subjects 
ANOVA. Both CIs were implemented for all 
combinations of the following five factors: (1) 
five population distributions including the 
normal distribution and four additional cases 
from the family of the g and h distributions that 
are nonnormal (Hoaglin, 1983, Martinez & 
Iglewicz, 1984); (2) two numbers of levels for 
treatment groups: J = 3 and J = 6; (3) three cell 
sample sizes in each treatment; (4) six values of 
population RMSSEs; and (5) two mean 
configurations, the equally spaced mean 
configuration and the one extreme mean 
configuration. Each condition was replicated 
2,500 times and the number of bootstrap 
replications in the bootstrap procedure was 
1,000. Zhang and Algina found that both the 
noncentral F distribution-based CI and the 
percentile bootstrap CI for RMSSE yielded 
inadequate coverage probabilities under data 
nonnormality. 

According to arguments in Wilcox and 
Keselman (2003) about the robustness of δ  in 

the two-group case, it is not surprising that *f  
is not an entirely adequate measure of group 

separation because *f  is formulated with least-
square parameters which are affected by skewed 
data, long tails and/or outlying values. It is 
therefore imperative to develop a robust version 
of the RMSSE to ensure the appropriate and 
effective use of the ES in ANOVA. 

Methodology 
The unsatisfactory coverage performance of the 

CIs for *f  reported by Zhang and Algina 

(2008) is understandable: This is because the 
problems that trouble Cohen’s δ  and its CI are 

very likely to also haunt *f  and its CI, as *f  is 

a generalized δ  and is formulated with the 
nonrobust least-square means and variances. It is 
well known that when the distribution of the 
data is not normal, the least-square means and 
standard deviations can work poorly because 
they are affected by the skewness of the data and 

by the outliers in the data; consequently *f  may 
be misleading as a measure of population 

separation. Therefore, a robust version of *f  

that is parallel to Rδ , the robust effect size in the 

two-group case, is strongly desired. The 
purposes of the study are: 
 

a. To develop a robust RMSSE, *
Rf ,  

b. To develop a noncentral F distribution-

based CI for *
Rf , and 

c. To investigate the performance of the 
noncental F distribution-based and 

percentile bootstrap CI for *
Rf . 

 

Note that *f  and *
Rf  are two different 

parameters based on different measures of 
location and variability and, unless the data are 

normally distributed, *f  and *
Rf  will not be 

equal. The parameter *f  is used to characterize 
the amount of difference among the population 

means, while *
Rf  represents the amount of 

difference among the population trimmed 
means. 
 
Robust Root Mean Square Standardized Effect 
Size and Its Confidence Interval 

To overcome the weaknesses in *f , a 
robust version of the generalized effect size was 
developed, the Robust Root Mean Square 
Standardized Effect Size (RMSSER), denoted by 

*
Rf  in this study. The value of *

Rf  is defined by 

using robust parameters (20% trimmed means 
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and Winsorized variances) as opposed to the 
least-square parameters (means and variances). 
Trimmed means are used because it has been 
shown that the impact of outliers on trimmed 
means can be much less disturbing than on the 
usual means (Wilcox, 2005). The Winsorized 
variance is used because the sample Winsorized 
variance is used in hypothesis testing based on 
trimmed means. Both the trimmed mean and the 
Winsorized variance are robust parameters as 
judged by the criteria of qualitative robustness, 
quantitative robustness and infinitesimal 
robustness (Wilcox, 2005, Section 2.1 describes 
these criteria). 

In a balanced one-way between-subjects 

ANOVA design, *
Rf  is defined as 
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where Tjμ  is the trimmed mean for the jth level, 

Tμ  is the grand mean based on the trimmed 

means, and 2
Wσ  is the within-level Winsorized 

variance, which is assumed to be constant across 
levels. The quantity 0.642 is the square root of 
the population Winsorized variance for a 
standard normal distribution, therefore, 
including 0.642 in the definition of the robust 

effect ensures that *
Rf  = *f  when the data are 

drawn from normal distributions with equal 
variances. 

An estimate of *
Rf  can be attained from 

sample statistics by applying the following 
formula: 
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where TjY  is the trimmed sample mean for the jth 

level, TY  is the sample grand trimmed mean, 

and 2
WpS  is the sample pooled within-level 

Winsorized variance. 

The quantity 2
WpS  is obtained by using 
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A CI for *
Rf  can be constructed based on the 

noncentral F distribution. Consider a one-way, 
between-subjects, fixed-effects ANOVA with 

jn  observations in the jth group and J groups. 

The robust F statistic is calculated by using 
(Yuen, 1974) 
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where RBMS  and RWMS  are the robust mean 

square between and robust mean square within 
respectively, and are calculated by using: 
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where WijY  is the ith Winsorized score in group j, 

and WjY  is the Winsorized mean for group j. The 

robust F statistic has robust noncentrality 
parameter 
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where 2
Wσ  is an adjusted version of the 

population Winsorized variance: 
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The lower limit of the 95% CI for Rλ  is 

the robust noncentrality parameter for the 
noncentral F distribution in which the calculated 
robust F statistic is the 0.975 quantile. The upper 
limit of the 95% confidence interval for Rλ  is 
the robust noncentrality parameter for the 
noncentral F distribution in which the calculated 
robust F statistic is the 0.025 quantile of the 
distribution. 

In a balanced one-factor between-

subject design with equal ns, *
Rf  can be written 

as a function of Rλ : 
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To find a (1 − α )% (95% in this study) CI for 

*
Rf , the noncentral F distribution was first used 

to find a 95% CI for Rλ . After the CI on Rλ  is 
found, equation 9 is applied to transform the 
endpoints of the CI for Rλ  to obtain the 

endpoints for the CI for *
Rf . 

Although the noncentral F distribution 

can be used to obtain a CI for *
Rf , because this 

CI construction method is based on the 
assumption that the data are drawn from a 
normal distribution, when the data are 
nonnormal the coverage probability for this 
interval may be poor and the percentile bootstrap 
CI may have better coverage probability (Algina 
& Keselman, 2003b; Efron & Tibshirani, 1993). 
Therefore, the performances of the percentile 
bootstrap method for the construction of CIs for 

*
Rf  were examined and compared to the 

noncentral F distribution-based method in terms 
of the probability coverage and interval width. 
 
Coverage Performance of the Confidence 
Interval for Robust Root Mean Square 
Standardized Effect Size 

To investigate the coverage performance 

of the CIs for *
Rf , the noncentral F distribution-

based and the percentile bootstrap CIs were 
implemented for all combinations of the 
following five factors: (1) five population 
distributions including the normal distribution 
and four additional cases from the family of the 
g and h distributions that are nonnormal 
(Hoaglin, 1983, Martinez & Iglewicz, 1984); (2) 
two numbers of levels for treatment groups: J = 
3 and J = 6; (3) three cell sample sizes in each 
treatment; (4) six values of population RMSSER; 
(5) two mean configurations, the equally spaced 
mean configuration and the one extreme mean 
configuration. The nominal confidence level for 
all intervals investigated was 0.95 and each 
condition was replicated 2,500 times. The 
number of bootstrap replications in the bootstrap 
procedure was 1,000. 
 
Conditions 

Data for all five distributions were 
generated from the g and h distributions: (1) 

0g h= = , the standard normal distribution 

( 1 2 0γ γ= = ), where 1 1γ β=  and is the 

skewness, and 2 2γ β=  and is the kurtosis, (2) 

.76g =  and .098h = − , a distribution with the 
skewness and kurtosis of an exponential 
distribution ( 1 2γ = , 2 6γ = ), (3) 0g =  and 

.225h =  ( 1 0γ =  and 2 154.84γ = ), (4) 

.225g h= =  ( 1 4.90γ =  and 2 4673.80γ = ), 

and (5) 0g = and .109h =  1( 0=γ  and 

2 6)=γ , a distribution with the skewness and 

kurtosis of a double exponential distribution. 
The four nonnormal distributions cover 

a wide range of nonnormality including 
distributions that are strongly nonnormal. Such a 
selection of distributions allows the researcher to 
investigate the performances of the CIs under a 
wide range of the data conditions. The goal is to 
find which procedure or procedures are likely to 
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work well over a wide range of distributions 
because it is impossible for any one of the 
simulations to include every possible 
distribution that might be encountered in real 
data or to anticipate what types of distributions 
are realistic in all of social and behavioral 
science fields. The inclusion of the normal 
distribution provides a reference for judgments 
on the CIs’ performance under data that deviate 
from normality. 

The numbers of treatment groups 
investigated were 3 and 6 (J = 3 and J = 6), and 
sample sizes in each treatment included were 

20jn =  to 50 in steps of 15. In other words, the 

treatment groups have equal sample size and the 
sample sizes investigated were 20, 35 and 50. 
The number of treatment groups equal to 3 and 6 
was selected because this covers the likely range 
encountered in most research in the social and 
behavioral sciences. Sample sizes ranging from 
20 to 50 are fairly typical of sample sizes used in 
social science research, although clearly do not 
cover sample sizes found in very small or very 
large studies. 

The treatment group means followed 
two mean configurations: the equally spaced 
mean configuration and the one extreme mean 
configuration. A mean configuration is a 
specification of the arrangement of the treatment 
groups means. Denoting the smallest and the 
largest means by μmin and μmax, if the means 
other than μmin and μmax are equally spaced 
between these two extremes, the configuration is 
referred to as an equally spaced configuration 
(Cohen, 1969). If one of the means is equal to 
μmin and the rest of the means are all equal to 
μmax, or, if one of the means is equal to μmax and 
the rest of the means are equal to μmin, then the 
configuration is called a one extreme mean 
configuration. Mean configurations are an 
artifice adopted because the actual configuration 
of means in social science research is quite 
variable. Nevertheless, the selected 
configurations cover a range of possibilities and 
will allow determination of whether results tend 
to generalize over configurations. 

Six values of *
Rf  were investigated: 0, 

0.1, 0.25, 0.40, 0.55 and 0.70. Defining 
 

max min
max

μ μδ
σ
−=                (10) 

 
as Cohen’s effect size for the largest and 
smallest means, under the equally spaced mean 

configurations, these population *
Rf  values 

approximately correspond to maxδ of 0, 0.2, 0.5, 

0.8, 1.10 and 1.40, respectively. Under the one 
extreme mean configuration, these population 

*
Rf  values roughly correspond to maxδ  of 0, 

0.173, 0.433, 0.693, 0.952, and 1.212. Therefore, 

a *
Rf  of 0 indicates no effect, .1 a small effect, 

0.25 a medium effect, 0.40 a large effect, and 
0.55 and 0.70 very large effects. 

The nominal confidence level for all 
intervals investigated was .95 and each condition 
was replicated 2,500 times, assuring sufficient 
precision for an adequate initial investigation 
into the sampling behaviors of the CIs. The 
number of bootstrap replications in the bootstrap 
procedure was 1,000. 
 
Analyses Conducted 

The study was designed to investigate 
the robustness of the noncentral F distribution-
based CIs and the percentile bootstrap CIs for 

*
Rf  to sampling from nonnormal distributions. 

Coverage probabilities for the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

were estimated. Additionally, the average width 
of the noncentral F distribution-based and 

bootstrap CIs for *
Rf  were compared. 

Variables conforming to a g and h 
distributions are transformations of a standard 
normal distribution. When g and h are both 
nonzero, 
 

( ) 2exp 1
exp

2

gZ hZY
g

−  
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 
         (11) 

 
where Z is a standard normal variable, and Y is 
the g and h distributed variable. When g is zero, 
 

2

exp
2

hZY Z
 

=  
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Standard normal variables (Zij) were 
generated by using RANNOR function in SAS 
(SAS, 1999). Then the Zij were converted to the 
desired g and h distributed random variable by 
using Equations 11 and 12. To create scores 

corresponding to the selected values of *
Rf , it is 

necessary to linearly transform the g and h 
distributed variables. Data were generated for 
three samples and six samples in each 
replication of each condition by the following 
steps: First, for the first sample 1n  scores were 

generated from the appropriate distribution. 
Secondly, 2n  scores from the same distribution 

were generated and a constant was added to each 
score. Thirdly, 3n  scores from the same 

distribution were generated and a constant was 
added to each score and so forth until Jn  scores 

from the same distribution were generated and a 
constant was added to each score. The constants 
were chosen such that the population RMSSER, 

*
Rf  would equal the following values: 0, 0.1, 

0.25, 0.40, 0.55, and 0.70. 
For the equally spaced mean 

configuration, the Y variables were obtained by 
using 
 

( ) ( )
*12

1
1 .642

W
ij ij RY X j f

J J
σ= + −

+
, 

j = 1, . . . , J.                                  (13) 
 
For the configuration with one extreme mean, 

ij ijY X=  for groups 1j = , . . . , 1J − . For 

group J the transformation was 
 

*

.642
W

ij ij RY X J f σ= + .             (14) 

 
To find a (1 α− )% (95% in the current study) 

confidence interval for *
Rf , the noncentral F 

distribution is first used to obtain a 95% 
confidence interval on Rλ , the robust 
noncentrality parameter of the F distribution. 
Once the CI for Rλ  is found, the endpoints of 

the CI for Rλ  are transformed to endpoints for 

*
Rf  by applying Equation 9. Notice the CI for 
*

Rf  constructed by the noncentral F distribution-

based method will result in coverage probability 

of 0.975 when * 0Rf =  because the probability 

noncoverage from the lower side of the 
distribution will be 0 instead of 0.025. 

To apply the percentile bootstrap 
method, the following steps are completed 1,000 
times within each replication of a condition. 
 
1. A sample of size jn  is randomly selected 

with replacement from the scores for the 
group j, 1j = , . . . , J. These J samples are 
combined to form a bootstrap sample. 

2. The parameter *2
Rf  is estimated by using 
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j
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j
j

n J
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−
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3. The 1,000 *2
Rf  estimates are ranked from 

low to high. The lower limit of the CI for 
*2

Rf  is determined by finding the 26th 

estimate in the rank order [i.e., the (0.025 x 
1,000+1) th estimate]; and the 975th estimate 

is the upper limit of the CI for *2
Rf  (i.e. the 

(0.975 x 1,000)th estimate]. 

4. The lower limit of the CI for *
Rf  is equal to 

the square root of the lower limit of the CI 

for *2
Rf  if the latter lower limit is larger than 

zero and is zero otherwise. The upper limit 

of the CI for *
Rf  is equal to the square root 

of the upper limit of the CI for *2
Rf . 

 
Results 

The estimated coverage probabilities of the 

noncentral F distribution-based CIs for *
Rf are 

reported in Tables 1-4. The average widths of 
the noncentral F distribution-based CIs 

for *
Rf are shown in Tables 5-8. 
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Estimated Coverage Probabilities of Confidence 

Intervals for *
Rf  

In Tables 1 to 4, the estimated coverage 
probabilities of the noncentral F distribution-

based and bootstrap CIs for *
Rf  are presented 

with estimates outside the [.94, .96] interval 
bolded, and estimates outside of the interval 
[.925, .975] bolded and underlined. 

The pattern of results for the noncentral 
F distribution-based CI for *

Rf  looks strikingly 

similar across Tables 1 to 4. First, when 
sampling from a normal distribution, the 
coverage probability of the noncentral F 
distribution-based CIs should be 0.975 when 

*
Rf = 0, and the results in Tables 1 to 4 are 

consistent with the theory. When *
Rf  > 0, the 

coverage probability of the noncentral F 
distribution-based CI is expected to be 0.95 
under normality and the results presented in 
Tables 1-4 are consistent with this expectation. 

Second, considering the results in all 
four tables, coverage probability for the 

noncentral F distribution-based CI for *
Rf  tends 

to be appreciably better than for the bootstrap CI 
both when sampling from normal and 
nonnormal distributions. When sampling from 
the normal distribution, when J = 3 the coverage 
probability for the noncentral F distribution-
based CI is outside the [.925, .975] interval in 
only 1 case out of a total of 36, while the 
bootstrap CI has a total of 20 cases outside this 
interval. Under normality, when J = 6, the 
noncentral F distribution-based CI coverage 
probabilities are outside [.925, .975] in 2 out of 
36 cases, while the bootstrap CI coverage 
probabilities are outside this interval in 6 out of 
36 cases.  

For the nonnormal distributions, the 

noncentral F distribution-based CI for *
Rf  has 

noticeably fewer coverage probabilities that are 
outside the criterion intervals than does the 
bootstrap CI under each of the four distribution 
conditions. The number of cases that are outside 
the [.925, .975] criterion interval, out of a total 
of 72 cases under each nonnormal distribution 
for the noncentral F distribution-based and 

bootstrap CIs for *
Rf , are: 7 versus 31 for the g 

= 0 and h = 0.109 distribution; 7 versus 40 for 
the g = 0 and h = 0.225 distribution; 20 versus 
38 for the g = 0.760 and h = −0.098 distribution; 
and 6 versus 41 for the g = 0.225 and h = 0.225 
distribution. 

Third, the performance of the noncentral 
F distribution-based CI under the four 
nonnormal distributions reveals some common 
characteristics across Table 1 to Table 4. When 

*
Rf = 0, roughly 50% of the coverage 

probabilities tend to be outside [.925, .975]. Of 
the coverage probabilities that are inside the 
interval, most are for J = 3 when the data are 
sampled from either the g = 0 and h = 0.225 
distribution or the g = 0.225 and h = 0.225 
distribution. 

The coverage probabilities of the 

noncentral F distribution-based CI for *
Rf  are all 

inside either [.925, .975] or both intervals when 
*

Rf  is 0.10, 0.25 or 0.40. The coverage 

probabilities of noncentral F distribution-based 

CI for *
Rf  are also all inside either the [.925, 

.975] interval or both intervals when *
Rf  is 0.55 

except when n = 35 and the data are sampled 
from the g = 0.760 and h = −0.098 distribution 
with the means following the equally spaced 

mean configuration. Even when *
Rf = 0.70, the 

coverage probabilities still tend to be inside the 
[.925, .975] interval. The exceptions occur 
mostly for the g = 0.760 and h = −0.098 
distribution in combination with the equally 
spaced mean configuration. Other exceptions 
involve the g = 0 and h = 0.225 distribution 
when n = 35, J = 6, and the g = 0.225 and h = 
0.225 distribution when n = 35 with the group 
means following the equally spaced mean 
configuration. 

Overall, under all data distributions, the 
coverage probabilities of the noncentral F 

distribution-based CI for *
Rf  are adequate by the 

[.925, .975] criterion except for some cases of 
*

Rf = 0 and a few cases when *
Rf = 0.70. 

When *
Rf = 0 the probability coverage of the 

noncentral F distribution-based CI for *
Rf  tends 

to exceed 0.975, and when *
Rf = 0.70 the 
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probability coverage of the noncentral F 

distribution-based CI for *
Rf  tends to go below 

0.925. It is observed that, excluding * 0Rf = , the 

coverage performance of the noncentral F 

distribution-based CIs for *
Rf  becomes less 

satisfactory when *
Rf  gets larger. 

The results of the bootstrap CIs for *
Rf  

are also presented in Tables 1 to 4. When 

sampling from normal distributions, when *
Rf = 

0 and J = 3, the coverage probabilities of the 

bootstrap CI for *
Rf  are all above 0.975, but 

when *
Rf = 0 and J = 6 they are outside the [.94, 

.96] interval only when n = 20. Under 

normality, when *
Rf = 0.10 or 0.25, the coverage 

probabilities of the bootstrap CI for *
Rf  are all 

outside the [.925, .975] criterion interval when J 
= 3, but all inside the [.94, .96] interval when J = 

6 except when *
Rf = 0.10 and n = 20. When 

*
Rf ≥  0.40, coverage probabilities tend to be 

inside [.925, .975] for both levels of J, except 

when *
Rf  = 0.40 and n = 20 for J = 3, when *

Rf  

= 0.70, n = 20 for J = 6 and the equally spaced 

mean configuration, and when *
Rf  = 0.55, n = 

20 for J = 6 and the one extreme configuration. 
Under the four nonnormal distributions, 

when *
Rf = 0, the coverage probability of the 

bootstrap CI for *
Rf  tends to be outside the 

[.925, .975] criterion interval when J = 3. 
Roughly 50% are inside [.925, .975] when J = 6, 
mostly associated with larger sample sizes. 

When *
Rf = 0.10 or 0.25, the coverage 

probability of bootstrap CI for *
Rf  tends to be 

outside the [.925, .975] criterion interval when J 
= 3, and inside the [.925, .975] criterion interval 
when J = 6 except when sample size is small for 
some data distributions. For example, for the g = 
0 and h = 0.109 distribution, when J = 6 and 

*
Rf = 0.10 or 0.25, the coverage probabilities of 

the bootstrap CI are all within [.925, .975] 
except when n = 35 and the mean configuration 
is the one extreme mean configuration. For the 
other three nonnormal distributions, the 

coverage probabilities are outside the [.925, 
.975] interval mostly when n = 20 and J = 3. 

The coverage probability tends to be 
inside either the [.925, .975] interval or both 

intervals in most conditions when *
Rf  ≥  0.40, 

except when n = 20 and a few cases when n = 
35. The inadequate coverage probabilities under 
n = 35 mostly occur in the conditions with J = 6. 
Overall, the performance of the coverage 

probability of the bootstrap CI for *
Rf  is much 

less adequate than is the performance of the 

noncentral F distribution-based CIs for *
Rf . 

Typically the coverage probability of the 
bootstrap CI is too high. 
 

Average Widths of Confidence Intervals for *
Rf  

The average widths of the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

under J = 3 and the equally spaced mean 
configuration are presented in Table 5. It is 
observed that, generally, the average widths of 

the noncentral F distribution-based CIs for *
Rf  

are shorter than those of the bootstrap CIs for 
*

Rf . The difference between the widths of the 

two kinds of CIs has a tendency to become 
smaller when sample size gets larger. For both 
the noncentral F distribution-based and the 

bootstrap CIs for *
Rf , the average width of the 

CIs gets narrower as the sample size increases 

and as the population effect size *
Rf  decreases.  

Across distributions, there is only a very 
trivial difference in the width of the noncentral F 

distribution-based CIs for *
Rf . Similar to the 

pattern in the widths of the bootstrap CIs for *f  

observed and reported by Zhang and Algina 

(2008), the widths of the bootstrap CIs for *
Rf  

fluctuate very little across data distribution 
conditions. 

Presented in Table 6, the average widths 
of the noncentral F distribution-based and 

bootstrap CIs for *
Rf  under J = 3 and the one 

extreme mean configuration shows little 
difference from those from the widths for the 
equally spaced mean configuration in Table 5. 
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This suggests that the type of mean 
configuration does not affect the precision of 

estimation for *
Rf . 

Table 7 shows the average widths of the 
noncentral F distribution-based and bootstrap 

CIs for *
Rf  under J = 6 and the equally spaced 

mean configuration. It is fairly apparent that, 
when J increases from 3 to 6, the intervals 
become narrower. This is observed for all 
combinations of conditions. It is also observed 
that, generally, the average widths of the 

noncentral F distribution-based CIs for *
Rf  are 

shorter than those of the bootstrap CIs for *
Rf . 

This difference is consistent across all 
combinations of conditions. Furthermore, for 
both the noncentral F distribution-based and the 

bootstrap CIs for *
Rf , the average width of the 

CIs gets narrower as the sample size increases 

and the population effect size *
Rf  decreases. 

Across distributions, there is very little 
difference in the widths of the noncentral F 
distribution-based CIs, and the widths of the 

bootstrap CIs for *
Rf  also remain quite constant 

across data distribution conditions. 
The average widths of the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

under J = 6 and the one extreme mean 
configuration are presented in Table 8. Again 
there is little difference between these widths 
and the widths in the equally spaced mean 
configuration in Table 7, in terms of values as 
well as patterns observed. This suggests that the 
type of mean configuration does not strongly 

affect the estimation accuracy for *
Rf . 

 
Conclusion 

Confidence intervals for effect size have been 
strongly advocated by statistical methodologists 
to be used as a useful supplement to and maybe 
even a superior replacement for the traditional 
hypothesis testing. Despite the increasing need 
for using CIs, much remains to be known about 
the robustness of the CIs in order to ensure their 
proper usage. Investigation and evaluation of the 
performance of the CIs and their robustness 
under various conditions are urgently needed. 

In the two-group case, it has been reported that 
in both the independent samples and dependent 
samples case CIs for Cohen’s δ  may be 
misleading because of poor coverage probability 
when data are nonnormal (Algina & Keselman, 
2003b; Algina, et al., 2005a, Algina, et al., 2006; 
Kelly, 2005). A second problem with using 
Cohen’s δ  is that, although it is intended as a 
measure of group separation, it is not always an 
adequate measure of group separation due to the 
fact δ  can be dramatically affected by outliers 
and long-tailed distributions (Keselman & 
Wilcox, 2003). Algina, et al. (2005b) 
recommended a robust version of Cohen’s δ  
defined by 
 

2 1.642 t t
R

W

μ μδ
σ

 −=  
 

. 

 
Algina and Keselman (2003b) and Algina, et al. 
(2005b) reported that CIs for Rδ  have better 

coverage probability than do CIs for Cohen’s δ , 
and that the actual coverage probability is closer 
to the nominal coverage probability for CIs 
constructed by using the percentile bootstrap 
than for the CIs constructed by using the 
noncentral t distribution-based method. 

In the more than two group cases, Zhang 
and Algina (2008) examined the coverage 
performance of the CIs for the Root Mean 

Square Standardized Effect (RMSSE, *f ) 
proposed by Steiger and Fouladi (1997), which 
is one of the generalized ES measures in 
ANOVA. The findings of their study indicated 

that the coverage probabilities of the CIs for *f  

were not adequate under data nonnormality. This 

is not surprising because *f  is formulated with 
least-square parameters which are affected by 
skewed data, long tails and/or outlying values. 

This study proposed a robust version of 
*f , *

Rf , by substituting robust estimators, i.e., 

trimmed means and Winsorized variances, for 
the least-square values. The coverage 
performances of the noncentral F distribution-

based and the percentile bootstrap CIs for *
Rf  

were examined in this investigation.  
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Table 1: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 3, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .973 .994 .968 .993 .977 .994 .975 .992 .975 .994 

35 .968 .990 .977 .993 .972 .990 .979 .993 .974 .996 

50 .972 .993 .976 .994 .974 .992 .977 .992 .974 .990 

.10 

20 .943 .991 .951 .994 .948 .993 .953 .990 .955 .993 

35 .957 .987 .951 .989 .954 .988 .949 .988 .954 .990 

50 .943 .983 .956 .988 .954 .988 .958 .988 .952 .989 

.25 

20 .942 .981 .952 .993 .947 .989 .961 .988 .943 .988 

35 .945 .981 .950 .982 .946 .981 .954 .984 .952 .986 

50 .953 .978 .940 .981 .951 .987 .950 .978 .945 .982 

.40 

20 .942 .976 .951 .988 .945 .990 .940 .980 .939 .991 

35 .954 .970 .934 .964 .944 .969 .949 .974 .954 .978 

50 .950 .961 .943 .962 .935 .960 .939 .961 .949 .968 

.55 

20 .943 .973 .939 .978 .937 .979 .932 .972 .938 .977 

35 .944 .968 .946 .963 .940 .969 .924 .960 .940 .966 

50 .947 .960 .934 .952 .940 .959 .929 .963 .929 .958 

.70 

20 .945 .968 .940 .972 .938 .977 .916 .973 .936 .980 

35 .935 .958 .944 .964 .935 .965 .923 .969 .924 .964 

50 .942 .962 .944 .967 .928 .967 .923 .968 .935 .963 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 2: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 3, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .973 .994 .972 .992 .974 .996 .983 .996 .972 .992 

35 .981 .993 .979 .993 .975 .991 .980 .991 .969 .991 

50 .974 .991 .976 .994 .973 .991 .980 .995 .970 .993 

.10 

20 .952 .990 .944 .991 .946 .991 .951 .990 .953 .994 

35 .949 .986 .948 .990 .944 .990 .938 .986 .944 .987 

50 .945 .987 .949 .986 .948 .990 .958 .986 .956 .987 

.25 

20 .946 .982 .945 .985 .952 .987 .954 .991 .954 .990 

35 .952 .984 .942 .982 .950 .986 .948 .981 .947 .986 

50 .938 .976 .953 .981 .951 .982 .950 .984 .949 .983 

.40 

20 .949 .980 .943 .984 .942 .988 .938 .984 .942 .992 

35 .943 .966 .949 .972 .946 .976 .948 .972 .948 .973 

50 .952 .962 .950 .964 .952 .970 .946 .965 .945 .966 

.55 

20 .952 .975 .943 .975 .941 .980 .940 .981 .943 .984 

35 .943 .958 .947 .966 .938 .963 .936 .968 .943 .970 

50 .942 .961 .931 .953 .943 .962 .935 .964 .934 .958 

.70 

20 .944 .970 .937 .976 .931 .972 .930 .982 .936 .982 

35 .941 .960 .938 .964 .932 .965 .924 .966 .934 .966 

50 .939 .957 .940 .962 .938 .966 .932 .965 .935 .967 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 3: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 6, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .976 .978 .977 .982 .976 .986 .980 .983 .978 .986 

35 .972 .969 .969 .972 .969 .974 .979 .977 .977 .974 

50 .974 .966 .972 .965 .975 .974 .979 .970 .975 .972 

.10 

20 .950 .977 .950 .974 .948 .979 .947 .980 .944 .982 

35 .948 .963 .952 .969 .950 .970 .951 .974 .951 .972 

50 .948 .962 .952 .965 .954 .971 .944 .967 .947 .966 

.25 

20 .945 .966 .947 .975 .938 .983 .952 .982 .943 .983 

35 .943 .960 .947 .970 .948 .981 .942 .969 .950 .978 

50 .950 .962 .940 .961 .944 .970 .944 .970 .944 .969 

.40 

20 .947 .972 .943 .980 .948 .990 .938 .981 .935 .989 

35 .946 .968 .946 .971 .945 .978 .938 .972 .942 .976 

50 .954 .968 .944 .966 .942 .971 .936 .969 .944 .970 

.55 

20 .949 .974 .939 .980 .936 .986 .926 .985 .936 .989 

35 .955 .971 .947 .973 .942 .973 .915 .969 .934 .982 

50 .946 .962 .943 .967 .948 .973 .927 .969 .928 .967 

.70 

20 .949 .980 .938 .984 .930 .983 .902 .984 .939 .988 

35 .943 .967 .934 .970 .921 .968 .907 .972 .921 .971 

50 .941 .962 .944 .972 .933 .968 .914 .970 .928 .966 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 4: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 6, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .972 .976 .979 .981 .977 .983 .974 .984 .977 .989 

35 .974 .969 .971 .968 .976 .976 .975 .972 .978 .976 

50 .978 .973 .976 .970 .977 .974 .982 .976 .971 .965 

.10 

20 .962 .976 .945 .975 .953 .982 .943 .978 .954 .981 

35 .954 .971 .955 .970 .955 .969 .945 .962 .948 .975 

50 .948 .960 .948 .965 .951 .964 .954 .971 .956 .972 

.25 

20 .951 .974 .937 .974 .954 .987 .949 .978 .951 .988 

35 .952 .967 .950 .976 .945 .974 .955 .973 .951 .974 

50 .953 .965 .946 .961 .943 .970 .948 .970 .951 .973 

.40 

20 .945 .972 .950 .984 .945 .983 .952 .983 .938 .988 

35 .939 .958 .944 .969 .942 .977 .952 .979 .938 .972 

50 .941 .956 .945 .968 .936 .971 .951 .975 .945 .975 

.55 

20 .944 .976 .943 .982 .936 .987 .942 .989 .938 .988 

35 .949 .970 .940 .973 .934 .970 .937 .981 .935 .970 

50 .950 .963 .939 .961 .932 .967 .927 .968 .931 .966 

.70 

20 .935 .972 .938 .982 .929 .985 .925 .992 .928 .987 

35 .946 .970 .936 .972 .917 .964 .920 .973 .926 .969 

50 .946 .966 .932 .961 .930 .972 .908 .961 .930 .968 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 5: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J=3, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .491 .618 .494 .611 .488 .596 .490 .601 .487 .595 

35 .366 .437 .361 .430 .365 .428 .364 .425 .368 .428 

50 .301 .354 .304 .354 .306 .353 .305 .351 .304 .352 

.10 

20 .512 .637 .509 .625 .515 .618 .514 .625 .515 .617 

35 .397 .461 .390 .453 .395 .450 .396 .453 .386 .444 

50 .332 .375 .334 .378 .332 .374 .335 .376 .332 .374 

.25 

20 .609 .725 .607 .714 .601 .701 .615 .725 .604 .703 

35 .487 .550 .485 .540 .480 .533 .485 .540 .481 .533 

50 .423 .466 .421 .464 .421 .462 .421 .463 .421 .461 

.40 

20 .702 .828 .702 .823 .692 .813 .698 .840 .699 .818 

35 .545 .613 .543 .611 .543 .613 .544 .623 .542 .613 

50 .454 .499 .454 .501 .454 .506 .454 .511 .453 .505 

.55 

20 .760 .899 .758 .905 .755 .906 .755 .937 .756 .914 

35 .562 .625 .562 .634 .561 .641 .562 .662 .561 .647 

50 .463 .501 .463 .508 .463 .513 .463 .532 .463 .518 

.70 

20 .794 .947 .791 .961 .789 .980 .793 1.026 .789 .987 

35 .579 .644 .578 .655 .577 .668 .579 .698 .578 .679 

50 .479 .517 .478 .526 .477 .536 .478 .565 .478 .545 

Note: Results are based on 2,500 replications. 
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Table 6: Average Widths Of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J=3, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .487 .616 .497 .613 .489 .598 .484 .596 .494 .598 

35 .366 .436 .364 .432 .367 .430 .363 .425 .370 .430 

50 .304 .357 .309 .357 .305 .352 .305 .350 .303 .351 

.10 

20 .518 .638 .517 .631 .515 .620 .510 .619 .510 .613 

35 .391 .457 .390 .452 .390 .450 .391 .450 .392 .450 

50 .334 .381 .333 .378 .334 .376 .333 .373 .337 .378 

.25 

20 .611 .726 .607 .715 .608 .709 .606 .715 .598 .696 

35 .485 .546 .486 .543 .484 .539 .485 .542 .485 .538 

50 .420 .464 .422 .464 .421 .461 .422 .462 .423 .461 

.40 

20 .705 .834 .696 .815 .697 .813 .700 .833 .695 .813 

35 .544 .612 .544 .611 .543 .614 .544 .614 .542 .610 

50 .454 .501 .454 .501 .454 .503 .454 .503 .454 .503 

.55 

20 .760 .899 .756 .901 .756 .912 .759 .926 .755 .910 

35 .562 .627 .561 .635 .561 .642 .563 .652 .561 .642 

50 .463 .501 .463 .508 .463 .513 .463 .520 .462 .514 

.70 

20 .793 .942 .791 .956 .790 .979 .792 1.006 .789 .982 

35 .580 .646 .578 .652 .579 .671 .580 .692 .578 .670 

50 .478 .518 .478 .526 .478 .539 .478 .557 .478 .540 

Note: Results are based on 2,500 replications. 
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Table 7: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J = 6, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .352 .487 .356 .484 .345 .474 .345 .480 .348 .475 

35 .259 .351 .261 .350 .262 .348 .256 .346 .260 .346 

50 .218 .289 .219 .289 .216 .286 .215 .286 .219 .287 

.10 

20 .372 .499 .379 .501 .375 .493 .374 .499 .373 .491 

35 .294 .370 .290 .367 .294 .368 .290 .367 .290 .364 

50 .253 .310 .252 .308 .251 .307 .251 .306 .249 .305 

.25 

20 .464 .559 .460 .554 .459 .551 .463 .561 .457 .550 

35 .363 .406 .362 .404 .361 .405 .360 .406 .360 .405 

50 .302 .326 .301 .326 .301 .326 .301 .328 .301 .326 

.40 

20 .506 .577 .505 .582 .503 .590 .503 .598 .502 .591 

35 .361 .389 .362 .392 .361 .396 .361 .405 .361 .398 

50 .293 .309 .293 .311 .293 .314 .293 .321 .293 .315 

.55 

20 .506 .572 .506 .583 .506 .600 .506 .619 .507 .610 

35 .363 .392 .363 .399 .363 .405 .364 .422 .363 .411 

50 .299 .318 .299 .323 .299 .328 .299 .340 .298 .331 

.70 

20 .517 .590 .516 .605 .516 .629 .517 .666 .516 .641 

35 .377 .412 .376 .421 .376 .433 .377 .461 .376 .442 

50 .311 .336 .311 .342 .310 .350 .311 .372 .310 .356 

Note: Results are based on 2,500 replications. 
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Table 8: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J = 6, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .353 .488 .348 .482 .350 .477 .349 .484 .346 .476 

35 .259 .350 .260 .349 .260 .347 .258 .348 .259 .346 

50 .219 .290 .215 .287 .218 .288 .215 .286 .217 .287 

.10 

20 .381 .504 .377 .499 .375 .492 .377 .502 .379 .494 

35 .295 .372 .294 .369 .292 .365 .292 .367 .293 .366 

50 .251 .308 .252 .308 .251 .306 .252 .307 .251 .306 

.25 

20 .463 .558 .459 .553 .460 .552 .462 .558 .461 .553 

35 .362 .406 .361 .404 .361 .405 .363 .401 .361 .403 

50 .302 .325 .301 .325 .301 .326 .303 .321 .302 .325 

.40 

20 .505 .576 .505 .582 .505 .589 .506 .583 .504 .589 

35 .361 .388 .362 .393 .362 .398 .361 .389 .361 .395 

50 .293 .308 .293 .311 .293 .315 .293 .312 .293 .312 

.55 

20 .506 .570 .505 .584 .506 .599 .506 .600 .506 .603 

35 .363 .393 .363 .399 .363 .405 .363 .411 .363 .407 

50 .299 .317 .299 .321 .299 .327 .299 .335 .298 .328 

.70 

20 .518 .591 .517 .607 .516 .634 .517 .643 .516 .640 

35 .376 .410 .376 .423 .376 .433 .376 .452 .376 .440 

50 .311 .334 .310 .341 .310 .349 .311 .368 .310 .353 

Note: Results are based on 2,500 replications. 
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Comparisons were made to the CIs for *
Rf  

constructed by using the noncentral F 
distribution-based and the bootstrap methods in 
terms of the probability coverage and interval 
width. 

The robustness of the CIs for *
Rf  was 

investigated in a one-way, fixed-effects, 
between-subjects ANOVA. The study conditions 
incorporated five population distributions 
including the normal distribution and four 
additional cases from the family of the g and h 
distributions that are nonnormal; two number of 
levels for the number of treatment groups: J = 3 
and J = 6; three cell sample sizes in each 
treatment (n = 20, 35 and 50); six values of 
population RMSSER (0.00, 0.10, 0.25, 0.40, 0.55 
and 0.70); and two mean configurations: the 
equally spaced mean configuration and the one 
extreme mean configuration. The nominal 
confidence level for all intervals investigated 
was 0.95 and each condition was replicated 
2,500 times. The number of bootstrap 
replications in the bootstrap procedure was 
1,000. 

The results indicated that the coverage 
probabilities of the noncentral F distribution-

based CIs for *
Rf  introduced in this study, which 

was formulated with robust trimmed means and 
Winsorized variances, were generally adequate, 
that is, generally either within our lenient 
criterion of robustness [.925, .975], or both the 
lenient criterion of robustness and the strict 
criterion interval [.94, .96]. There were only a 
few cases in which the noncentral F distribution-

based CIs for *
Rf  broke down. These include 

some cases of *
Rf  = 0, and when *

Rf  = .70 for 

small sample sizes under nonnormal data 
distributions, especially under the .760g = , 

.098h = −  distribution. 

For the bootstrap CIs for *
Rf , the 

probability coverage were not adequate when J 

= 3 and * .25Rf ≤ or when J = 6 and sample size 

was small, especially when sample size was 20. 
In particular, when J = 3, over half of the 
estimated coverage probabilities were outside of 
the [.925, .975] interval. These probability 

coverages mostly occurred when *
Rf  ≤  .25. 

When J = 6, the bootstrap CIs were mostly 
inside the [.925, .975] criterion interval under 
normality. However, under all other data 
distribution conditions, they were outside of the 
interval when sample size was small: most cases 
for n = 20 as well as some cases for n = 35. 

For both the noncentral F distribution-

based and the bootstrap CIs for *
Rf , the mean 

configuration did not appear to alter the pattern 
of the probability coverage performance. 
However, sample sizes seem to be slightly 
positively related to probability coverage. The 
widths of the noncentral F distribution-based 

CIs for *
Rf  were shorter than those of the 

bootstrap CIs under the same condition. 
Therefore, not only does the noncentral F 

distribution-based CI for *
Rf  have better 

coverage probability than the bootstrap CIs for 
*

Rf , they are also narrower than those of the 

bootstrap CI. Both the widths of the noncentral 

F distribution-based and bootstrap CIs for *
Rf  

remained relatively unchanged across data 
distributions. In other words, the widths of the 

bootstrap CIs for *
Rf  fluctuated very little across 

data distribution conditions. 
For both the noncentral F distribution-

based and the bootstrap CIs for *
Rf , as the 

number of levels of J increases, the width of the 
estimated CIs becomes narrower. For both the 
noncentral F distribution-based and the 

bootstrap CIs for *
Rf , under the same condition, 

the average width of the CIs becomes narrower 
as the sample size increases and the population 

effect size *
Rf  decreases. 

In summary, both the noncentral F 

distribution-based and the bootstrap CIs for *f , 

which are based on the usual least-square 
estimators, yielded inadequate coverage 
probabilities. Thus, an important task to help 

researchers who want to set a CI around *f  is 
developing a better interval than the noncentral 
F distribution-based or percentile bootstrap CI. 

The noncentral F distribution-based CIs for *
Rf , 

which was proposed in the current study and 
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was formulated with the robust parameters 
including the trimmed means and Winsorized 
variances, yielded fairly adequate coverage 
probabilities and better coverage probability 
than the percentile bootstrap CI. Accordingly, 

researchers who want to set a CI for *
Rf can use 

the CI constructed by using the noncentral F 
distribution and will enjoy the additional benefit 
of using a robust measure of effect size, that is, a 
measure that is not likely to be strongly affected 
by outlying data points. 
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