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Sample Size Considerations for Multiple Comparison Procedures in ANOVA 
 

Gordon P. Brooks George A. Johanson 
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Adequate sample sizes for omnibus ANOVA tests do not necessarily provide sufficient statistical power 
for post hoc multiple comparisons typically performed following a significant omnibus F test. Results 
reported support a comparison-of-most-interest approach for sample size determination in ANOVA based 
on effect sizes for multiple comparisons. 
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Introduction 
The determination of an appropriate sample size 
is an often difficult, but critically important, 
element in the research design process. One of 
the chief functions of experimental design is to 
ensure that a study has adequate statistical power 
to detect meaningful differences, if indeed they 
exist (e.g., Hopkins & Hopkins, 1979). There is 
a very good reason why researchers should 
worry about statistical power a priori: If 
researchers are going to invest time and money 
in carrying out a study, then they would want to 
have a reasonable chance, perhaps 70% or 80%, 
to find a statistically significant difference 
between groups if it does exist in the population. 
Thus, a priori power, the probability of rejecting 
a null hypothesis that is indeed false, will inform 
researchers about how many subjects per group 
will be needed for adequate power (Light, 
Singer & Willett, 1990). 

Among the most important matters 
impacting  the  choice  of  sample  size  is  the 
 
 
 
Gordon P. Brooks is an Associate Professor of 
Educational Research and Evaluation. His 
research interests include statistics education, 
power and sample size analysis and Monte Carlo 
programming. Email him at: brooksg@ohio.edu. 
George A. Johanson is a Professor Emeritus of 
Educational Research and Evaluation. His 
research interests include survey research 
methods and differential item and person 
functioning. Email him at: johanson@ohio.edu. 

 
particular statistical analysis that will be used to 
analyze data. For example, when a t test is used, 
the researcher commonly estimates an expected, 
standardized group mean difference effect size 
(such as Cohen’s d) in order to determine an 
appropriate sample size. Sample sizes in analysis 
of variance (ANOVA) are often based on an 
effect size that represents an overall 
standardized difference in the means (such as 
Cohen’s f), but these recommended sample sizes 
provide statistical power only for the omnibus 
null hypothesis (overall ANOVA) that no group 
means differ. Adequate sample size for the 
omnibus test does not necessarily provide 
sufficient statistical power for the post hoc 
multiple comparisons typically performed 
following a statistically significant (exploratory) 
omnibus test and in many cases the multiple 
comparisons are of most interest to a researcher. 

The purpose of this study was to 
determine whether the knowledge that multiple 
comparison procedures will be used following a 
statistically significant omnibus ANOVA can be 
helpful in choosing a sample size for a given 
study. In particular, results using the Tukey HSD 
post hoc multiple comparison procedure (MCP) 
were examined to determine whether specific 
recommendations can be made about sample 
sizes when the Tukey MCP is used and three 
groups are compared. This evidence was used to 
reach conclusions about whether such an 
approach to sample size selection has merit. 
Note that this is a presentation of a new 
approach to sample size selection – specifically, 
a new way to think about effect sizes – for 
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exploratory ANOVA where post hoc 
comparisons are relevant. Other approaches are 
both more appropriate and more powerful when 
planned comparisons are made in a confirmatory 
analysis. 
 
Theoretical Framework 

Several factors play a role in sample size 
determination, including that after the statistical 
method and the directionality of the statistical 
alternative hypotheses have been decided, 
sample size, level of significance, effect size and 
statistical power are all functionally related. 
Other issues also impact statistical power, such 
as the reliability of measurements, unequal 
group sizes and unequal group variances. 
However, little consideration has been given to 
the role of post hoc multiple comparison tests in 
choosing adequate sample sizes. 

In order to maintain reasonable 
experiment-wise Type I error rates when group 
means are compared, researchers often use 
ANOVA followed by an appropriate MCP. The 
overall ANOVA is tested using an omnibus test 
at a predetermined level of significance (e.g., 
0.05). The post hoc tests that follow a 
statistically significant omnibus test are then 
often performed at an adjusted level of 
significance, based on the number of 
comparisons to be made. 

For example, when comparing four 
groups, six pairwise group mean comparisons 
possible. If the researcher wishes to perform all 
six pairwise comparisons, the per comparison 
(i.e., per test) level of significance would be 
adjusted so that the entire set of follow-up tests 
does not exceed the experiment-wise alpha (e.g., 
if experiment-wise alpha is 0.05, the adjusted 
per comparison alpha might be 0.05/6 = 0.0083, 
using a Bonferroni approach). Each MCP 
performs this adjustment differently, resulting in 
different performance for each in terms of Type 
I error and statistical power (e.g., Carmer & 
Swanson, 1973; Einot & Gabriel, 1975; 
Toothaker, 1991). 

Several methods exist for determining 
sample size for ANOVA. Most common are 
statistical power approaches based on Cohen’s 
(1988) f effect size, which represents the 
standardized variability of the group means 
about the grand mean (Stevens, 2007). This 

method (and other similar methods) concentrates 
on the statistical power of the omnibus test in 
ANOVA. Others, Hinkle, Wiersma and Jurs 
(2003) and Levin (1975), for example, have 
recommended approaches based on how large 
the sample must be to detect a predetermined 
mean difference effect size between any two 
groups, or two extreme groups. Although 
Levin’s approach is designed for use with the 
Scheffé multiple comparison procedure, Hinkle, 
et al. base their method on Cohen’s d effect size 
for comparison between the two groups with the 
largest (most extreme) mean differences, and 
therefore do not consider the adjustments to 
alpha for multiple comparison procedures. Pan 
and Dayton (2005) provided sample size 
requirements for patterns of ordered means, but 
focused on an information criteria approach to 
pair-wise comparison procedures. 
 
Comparison-of-Most-Interest 

When determining sample sizes for a 
factorial ANOVA, researchers may choose the 
sample size that provides sufficient statistical 
power for all sources of variation (e.g., main 
effects and interactions). Alternatively, 
researchers may determine which effect is most 
important to them and select a sample size based 
on the expected effect size for that particular 
source of variation. For example, researchers 
may have most interest in the interaction effect 
or a particular main effect. Depending on the 
structure of the cell means, these effect sizes can 
vary and therefore result in different required 
sample sizes for the various main effects and 
interaction effects. 

The approach presented in this study is 
based loosely on this effect-of-most-interest 
approach from factorial ANOVA as applied to 
one-way ANOVA: That is, beyond determining 
the sample size required for an omnibus test in 
one-way ANOVA, the new approach also 
determines the sample sizes required for the 
follow-up tests from a given set of population 
means.  

For example, in a 3-group study the 
researcher may be able to estimate that a large 
effect exists between a control group and two 
types of treatment, but may expect a much 
smaller difference between two types of 
treatment. The comparison-of-most-interest may 
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be the difference between the treatments and the 
control; however, the much smaller difference 
between the two treatments may be the most 
interesting. The researcher would use this 
information to determine an appropriate sample 
size for the study by selecting a sample size 
large enough for the smaller effect size between 
the types of treatment. This differs from an a 
priori set of planned comparisons in that the 
researcher may have a special interest in 
particular comparisons, but not have specific 
alternative research hypotheses to predict the 
direction of the mean differences. The procedure 
studied here is an adaptation of the Hinkle, et al. 
(2003) approach that looks at meaningful effect 
sizes between any groups rather than the Hinkle, 
et al. difference between only the two most 
extreme groups. 

Even in an exploratory ANOVA, it is 
rarely satisfactory knowing only that a 
difference exists in the means (as given by the 
omnibus test); researchers typically also want to 
know between which groups the differences 
exist. Without consideration of the multiple 
comparison procedures during the sample size 
analysis, it is possible to find a statistically 
significant omnibus test with no pairwise group 
differences determined to be statistically 
significant in post hoc tests. Although other 
potential reasons for such a result exist, it may 
sometimes be an issue of statistical power. 
 
An Example of the Problem 

Suppose a researcher is analyzing the 
mean differences for three groups, where the 
means for groups 1 and 2 are both 0.0, but the 
third group mean is 0.8. This represents a 
relatively large pairwise difference between 
group 3 and both groups 1 and 2. Using the 
Cohen (1988) effect size, f, for ANOVA, this 
might be characterized as a relatively large 
effect: Cohen’s large effect size is f = 0.40 and 
in this example f = 0.38. Cohen’s sample size 
analysis, as implemented by the SPSS 
SamplePower program, indicates that 24 cases 
per group are required to achieve statistical 
power of 0.80 for the omnibus test in such a 
situation. 

When performing a Monte Carlo 
analysis for this condition using the MC4G 
program (Brooks, 2008), approximately 80.8% 

of 100,000 samples resulted in statistically 
significant omnibus F statistics for the ANOVA 
among the three groups. However, the number 
of correct statistically significant Tukey HSD 
comparisons between groups 1 and 3 and 
between groups 2 and 3 (with a sample size of 
24 in each group), was approximately 64.7%. At 
the adjusted alpha used by the Tukey HSD 
procedure, approximately 1.9% of the 
comparisons between groups 1 and 2 were 
statistically significant (and therefore Type I 
errors because both group 1 and 2 had the same 
mean). 

These illustrative power analysis results 
imply that a number of samples from among the 
100,000 had statistically significant omnibus F 
statistics while, at most, one of the non-null 
Tukey post hoc comparisons was statistically 
significant. The MC4G program reported that 
approximately 78.9% of samples had at least one 
significant Tukey comparison following a 
significant omnibus test. However, because only 
64.7% of each non-null comparison were 
statistically significant, and because the group 1 
versus group 2 comparison was significant as a 
Type I error in about 1.9% of the samples, this 
implies that - in many of those samples - only 
one of the two large, non-null comparisons was 
statistically significant.  

From another perspective, in order to 
reach statistical power of 0.80 for the two non-
null Tukey comparisons (i.e., group 1 vs. group 
3 and group 2 vs. group 3), 32 cases are needed 
per group, for a total sample size of 96 
(compared to 24 per group based solely on the 
omnibus test). With a total sample size of 96 the 
omnibus F test, however, had a power rate of 
approximately 0.91. 
 

Methodology 
An existing Monte Carlo program was modified 
so that it can ascertain appropriate sample sizes 
for pairwise comparisons calculated using the 
Tukey multiple comparison procedure. The 
MC4G: Monte Carlo Analyses for up to 4 
Groups program was originally developed by 
one of the authors to perform Monte Carlo 
analyses for t tests and ANOVA in a Windows 
environment (Brooks, 2008). The current 
version of the program (MC4G version v2008) 
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was upgraded to include the sample size 
analyses required for this study. 

The MC4G program was compiled in 
Delphi 2007. The program uses the L’Ecuyer 
(1988) uniform pseudorandom number 
generator. Specifically, the FORTRAN code of 
Press, et al. (1992), was translated into Delphi 
Pascal. The L’Ecuyer generator was chosen due 
to its large period and because combined 
generators are recommended for use with the 
Box-Muller method for generating random 
normal deviates (Park & Miller, 1988), as is the 
case in MC4G.  The computer algorithm for the 
Box-Muller method used in MC4G was adapted 
for Delphi Pascal from the standard Pascal code 
provided by Press, et al. (1989). Simulated 
samples were chosen randomly to test program 
function by comparison with results provided by 
SPSS. 
 
Monte Carlo Design 

In all simulations, normally distributed 
standardized data were generated to fit the given 
conditions for each simulation; that is, all 
variances were set to 1.0, while group means 
varied between 0.0 and 0.8, depending on the 
given effect size. A minimum of 10,000 
replications were performed for the final sample 
size analysis in each condition. Specifically, a 
default value of 20,000 was used with the 
MC4G sample size analysis, which guaranteed 
that the final results would be based on at least 
10,000 iterations (i.e., simulated samples). 
Samples sizes for all three groups were restricted 
to be equal. Some of the Monte Carlo 
simulations were run multiple times with 
different seeds to verify that the results were not 
an artifact of a poor seed choice. 

Conditions included varying 
standardized mean differences among groups for 
a three-group ANOVA. In particular, groups 
varied such that all possible non-redundant 
patterns of pairwise mean differences were 
varied across groups from 0.0 to 0.8. The 
minimum non-null standardized mean difference 
between groups of 0.2 was chosen because of 
the very large sample sizes required for smaller 
effects; the maximum of 0.8 was chosen because 
of the very small sample sizes required when the 
mean differences are larger. 

For example, whether the three group 
means were set at 0.2, 0.4 and 0.6 or at 0.3, 0.5 
and 0.7, the pattern for both resulting 
standardized mean difference effect sizes (all 
standard deviations were 1.0) would be 0.2, 0.2 
and 0.4, respectively. The mean differences - as 
effect sizes - are the key to the sample size 
analyses, not the absolute sizes of the means. 
Therefore, each pattern of mean differences was 
only included once. The result was 16 non-
redundant comparison patterns that fit the mean 
difference conditions described (see Table 1). 
 

Results 
Three primary findings of interest were observed 
from this study. First, when the pattern of means 
resulted in a pattern where two of the three 
means are equal – and different from the third – 
there was a consistent pattern of sample sizes 
required for the comparison relative to the 
sample size required for the omnibus test. 
Second, when the pattern of means resulted in 
two of the three mean differences being equal – 
and different from the third – there was a 
consistent pattern of sample sizes required for 
the comparison relative to the sample size 
required for the omnibus test. Third, no matter 
what the pattern of means, a given absolute 
standardized mean difference effect size 
consistently required the same sample size to 
achieve the power desired. 
 
Two Equal Means 

In situations where two groups had the 
same mean and a third group mean differed, the 
non-null multiple comparisons required larger 
sample sizes than the omnibus ANOVA. For 
example, the condition where the pattern of 
standardized means was 0.0, 0.0 and 0.5 
(therefore a pattern of mean differences of 0.0, 
0.5 and 0.5) resulted in per group sample sizes 
of roughly 81 cases to achieve power of 0.80 for 
the two multiple comparisons with a 
standardized mean difference of 0.5 (see Table 
2). This was compared to the 60 cases per group 
needed to achieve statistical power of 0.80 for 
the omnibus test. 

All patterns with two similar means, 
regardless of the magnitude of the mean 
differences, resulted in a relative efficiency of 
sample sizes (omnibus per group sample size  
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divided by multiple comparison per group 
sample size) of approximately 0.70. Stated 
another way, in all cases where two groups had 
the same mean while a third group differed, the 
multiple comparisons required approximately 
1.4 times more cases than the omnibus test did 
in order to achieve power of 0.80. For example, 
in the condition where the pattern of means was 
0.0, 0.0 and 0.5, the multiple comparisons 
required 1.35 times more cases than did the 
overall test. For 0.0, 0.0 and 0.8, the multiple 
comparisons resulted in 1.38 times more cases. 
Complete relative efficiency results from the 
studied conditions can be reviewed in Table 2. 
 
Two Equal Mean Differences 

In conditions where two of the three 
mean differences were the same and the third 
mean difference was twice as large, the two 
smaller mean comparisons required a much 
larger sample size than the overall test, while the 
third comparison required roughly the same 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sample size as the omnibus test. For example, in 
the case where the pattern of means was 0.0, 0.3 
and 0.6 (therefore a pattern of mean differences 
of 0.3, 0.3 and 0.6, respectively), the smaller 
mean comparisons required approximately 228 
cases per group, while the third mean 
comparison required 57 cases per group. These 
values were compared to the omnibus test 
sample size of 55 cases per group for a power 
rate of 0.80. 

Like the two similar means pattern 
described above, the relative efficiencies of the 
two similar mean differences pattern were 
consistent across results. In all cases where two 
mean differences were the same, the multiple 
comparison tests required approximately 4.2 
times more cases than the omnibus test. For the 
third, different comparison, approximately 1.1 
times more cases were needed. For example, in 
the 0.0, 0.4, 0.8 condition, the two equal 
multiple comparison tests (i.e., group 1 vs. group 
2 and group 2 vs. group 3) required  

Table 1: Patterns of Means Studied 

Analysis 
Group 1 

Mean 
Group 2 

Mean 
Group 3 

Mean 
Comparison 

Patterna 
Cohen f 

Effect Size 
Cohen 
Total N 

Cohen 
N Per Group

1 0.0 0.0 0.2 0.0, 0.2, 0.2 0.0943 1089 363 

2 0.0 0.0 0.3 0.0, 0.3, 0.3 0.1414 486 162 

3 0.0 0.0 0.4 0.0, 0.4, 0.4 0.1886 276 92 

4 0.0 0.0 0.5 0.0, 0.5, 0.5 0.2357 177 59 

5 0.0 0.0 0.6 0.0, 0.6, 0.6 0.2828 126 42 

6 0.0 0.0 0.7 0.0, 0.7, 0.7 0.3300 93 31 

7 0.0 0.0 0.8 0.0, 0.8, 0.8 0.3771 72 24 

8 0.0 0.2 0.4 0.2, 0.2, 0.4 0.1633 366 122 

9 0.0 0.2 0.5 0.2, 0.3, 0.5 0.2055 234 78 

10 0.0 0.2 0.6 0.2, 0.4, 0.6 0.2494 159 53 

11 0.0 0.2 0.7 0.2, 0.5, 0.7 0.2944 117 39 

12 0.0 0.2 0.8 0.2, 0.6, 0.8 0.3399 87 29 

13 0.0 0.3 0.6 0.3, 0.3, 0.6 0.2449 165 55 

14 0.0 0.3 0.7 0.3, 0.4, 0.7 0.2867 123 41 

15 0.0 0.3 0.8 0.3, 0.5, 0.8 0.3300 93 31 

16 0.0 0.4 0.8 0.4, 0.4, 0.8 0.3266 96 32 
aComparison pattern indicates the standardized mean difference between Group 1 vs. Group 2, Group 2 vs. 
Group 3, and Group 1 vs. Group 3, respectively 
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Table 2: Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0 0.2 

Omnibus 1080 360  

G1 v G2 * *  

G2 v G3 1521 507 1.41 

G3 v G1 1524 508 1.41 

0 0 0.3 

Omnibus 483 161  

G1 v G2 * *  

G2 v G3 678 226 1.40 

G3 v G1 681 227 1.41 

0 0 0.4 

Omnibus 276 92  

G1 v G2 * *  

G2 v G3 375 125 1.36 

G3 v G1 381 127 1.38 

0 0 0.5 

Omnibus 180 60  

G1 v G2 * *  

G2 v G3 243 81 1.35 

G3 v G1 246 82 1.37 

0 0 0.6 

Omnibus 123 41  

G1 v G2 * *  

G2 v G3 171 57 1.39 

G3 v G1 174 58 1.41 

0 0 0.7 

Omnibus 93 31  

G1 v G2 * *  

G2 v G3 126 42 1.35 

G3 v G1 126 42 1.35 

0 0 0.8 

Omnibus 72 24  

G1 v G2 * *  

G2 v G3 99 33 1.38 

G3 v G1 99 33 1.38 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 
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Table 2 (continued): Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0.2 0.4 

Omnibus 366 122  

G1 v G2 1524 508 4.16 

G2 v G3 1527 509 4.17 

G3 v G1 378 126 1.03 

0 0.2 0.5 

Omnibus 231 77  

G1 v G2 1524 508 6.60 

G2 v G3 690 230 2.99 

G3 v G1 246 82 1.06 

0 0.2 0.6 

Omnibus 156 52  

G1 v G2 1527 509 9.79 

G2 v G3 384 128 2.46 

G3 v G1 171 57 1.10 

0 0.2 0.7 

Omnibus 114 38  

G1 v G2 1515 505 13.29 

G2 v G3 246 82 2.16 

G3 v G1 126 42 1.11 

0 0.2 0.8 

Omnibus 87 29  

G1 v G2 1527 509 17.55 

G2 v G3 171 57 1.97 

G3 v G1 99 33 1.14 

0 0.3 0.6 

Omnibus 165 55  

G1 v G2 684 228 4.15 

G2 v G3 684 228 4.15 

G3 v G1 171 57 1.04 

0 0.3 0.7 

Omnibus 120 40  

G1 v G2 675 225 5.63 

G2 v G3 384 128 3.20 

G3 v G1 126 42 1.05 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 
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approximately 4.10 times more cases than the 
omnibus test (i.e., 127 vs. 31), while the third 
different mean comparison (i.e., group 1 vs. 
group 3) required just 33 cases, for a relative 
efficiency of 1.06. Very much the same results 
occurred for the (0.0, 0.2, and 0.4) and (0.0, 0.3, 
and 0.6) conditions of two similar mean 
differences (see Table 2). 
 
Absolute Mean Difference Effect Sizes 

There were also consistent required 
sample sizes for absolute standardized group 
mean difference effect sizes regardless of the 
pattern of means, that is, regardless of the 
pattern of means across the three groups, the 
same sample size was required for any given 
absolute mean difference (see Table 3). For 
example, when examining the specific results for 
a comparison-of-most-interest absolute 
standardized mean difference of 0.3, no matter 
whether the pattern of means was (0.0, 0.0, 0.3) 
or (0.0, 0.3, 0.6) or (0.0, 0.3, 0.8), results 
indicated that a total sample size of 
approximately 681 cases (227 per group) was 
required to achieve a statistical power rate of 
0.80 for the comparison with a standardized 
mean difference effect size of 0.3. Thus, when 
researchers have a comparison-of-most-interest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
expected to be approximately 0.3, regardless of 
the expected effect sizes for the other possible 
comparisons, they would choose a total sample 
size of approximately 681 cases. Alternatively, 
if there are multiple comparisons-of-interest, 
then researchers in this example would choose 
0.3 as the smallest among the set of most 
interesting comparisons and therefore choose 
sample sizes based on that smallest comparison-
of-interest. 
 

Conclusion 
Perhaps even more important than the sample 
size tables produced for this study is the notion 
that when a researcher is considering sample 
size, it may not be sufficient to set sample size 
for the omnibus test being performed. Clearly, 
researchers should consider post hoc multiple 
comparisons in the same way they consider 
different sources of effects in factorial ANOVA: 
that is, the most important effects under study 
must be considered a priori so that adequate 
sample sizes may be obtained for the tests of 
those effects. With group comparison 
procedures such as ANOVA, these comparisons-
of-most-interest are very frequently performed 
using post hoc comparison procedures. 
 

Table 2 (continued): Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0.3 0.8 

Omnibus 93 31  

G1 v G2 678 226 7.29 

G2 v G3 246 82 2.65 

G3 v G1 99 33 1.06 

0 0.4 0.8 

Omnibus 93 31  

G1 v G2 381 127 4.10 

G2 v G3 378 126 4.06 

G3 v G1 99 33 1.06 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 
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These results clearly show that adequate 
statistical power for the omnibus ANOVA F test 
does not guarantee adequate statistical power for 
given pairwise MCPs performed post hoc. This 
condition may result in overall statistical 
significance for the omnibus F test, but no 
pairwise comparisons showing statistical 
significance. Although this will occur at times 
because the omnibus test is reflecting that a non-
pairwise comparison is significant (e.g., one 
group compared to an average of two other 
groups in an experimental study where one 
control group is compared to an average of two 
experimental treatment groups), it will happen 
sometimes because there is not enough power 
for the adjusted-alpha MCP being performed by 
the researcher. In the end, researchers must 
determine whether they wish to have sufficient 
power for the overall test or for the often-more-
informative post hoc pairwise comparisons. The 
comparison-of-most-interest approach to sample 
size selection may be useful for the latter 
situation. 

Results of this study suggest that it may 
be inappropriate to select a sample size for 
ANOVA based only on the omnibus test. 
Clearly the expected pattern among the means 
has an impact on the usually important post hoc 
pairwise multiple comparisons. This may be 
analogous to situations involving other statistical 
methods, such as principal components analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and MANOVA, where the pattern of 
correlations has an important impact on the 
power of the analyses, and therefore also sample 
size determination. Additionally, it is clear that 
the absolute size of the given comparison is also 
important. Both of these findings could be useful 
to researchers as they plan studies that will use 
ANOVA. 
 
Sample Size Recommendations 

Based on the results generated, certain 
specific recommendations can be made 
concerning sample sizes that researchers should 
use with ANOVA with three groups. It should 
be remembered that these results were limited to 
Tukey HSD comparisons performed using 
statistical power of 0.80. In particular, these 
recommendations follow from the three cases 
identified in the results. 
 
Case 1: Two Equal Means 

A researcher may be using two control 
groups and a single treatment group; 
alternatively, the researcher might expect two 
treatment groups each to be equally different 
from the single control group. In such cases, the 
researcher should determine the sample size 
required for the omnibus ANOVA test and then 
multiply that sample size by 1.4 to obtain the 
sample size required for the Tukey comparisons 
between the differing groups. For example, in a 

Table 3: Sample Sizes Required for Statistical Power of .80 for the Tukey HSD Multiple 
Comparison Procedure Given Specific Absolute Standardized Mean Differences 

(regardless of the pattern of group means) 

Standardized Mean 
Difference Effect Size 

Total Sample Size Per Group Sample Size 

0.2 1521 507 

0.3 681 227 

0.4 381 127 

0.5 246 82 

0.6 171 57 

0.7 126 42 

0.8 99 33 
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case where a single treatment group is expected 
to differ from two control groups by 0.6 (i.e., 
means of 0.6, 0.0 and 0.0 for the three groups, 
respectively), the researcher would determine 
that approximately 123 total cases are needed for 
the omnibus test to have statistical power of 
0.80. If the researcher wants statistical power of 
0.80 for the post hoc multiple comparisons, 
however, approximately (123 * 1.4) or 173 cases 
are needed. 
 
Case 2: Two Equal Mean Differences 

A researcher may expect one treatment 
to have twice the effect of the second treatment 
when each is compared to the third group (e.g., a 
control group). In such cases, the researcher 
should calculate the sample size required for the 
omnibus test and then multiply that sample size 
by 4.1 to obtain the sample size required for the 
Tukey comparisons between the differing 
groups. For example, in a case where the 
expected pattern of means across groups is 0.0, 
0.3 and 0.6, the researcher would determine that 
approximately 165 total cases are needed for the 
omnibus test to have statistical power of 0.80. If 
the researcher wants statistical power close to 
0.80 for the post hoc multiple comparisons, 
however, approximately (165 * 4.1) or 677 cases 
are needed. 
 
Case 3: Absolute Mean Difference Effect Sizes 

A researcher may expect that a certain 
pair of groups will differ by a given amount – no 
matter how they each differ from the third 
group. For example, a researcher may consider 
the comparison between group 1 and group 2 to 
be the most important and expect them to differ 
by a standardized mean difference of 0.5. In 
such a case, how much group 1 or group 2 
differs from group 3 is irrelevant. Table 3 shows 
that 246 total cases are needed for the specific 
Tukey comparison between group 1 and group 
2, given the expected mean difference of 0.5. In 
such a case, the sample size required for the 
omnibus test is also irrelevant, because in all 
cases the recommended sample sizes for the 
Tukey comparisons are larger than those 
required for the omnibus ANOVA test. 

If however, the researcher expects a 
pattern of means that does not fit into Case 1 or 
Case 2 above, the absolute size of the expected 

mean differences can be used with Table 3. For 
example, if the means for group 1, group 2, and 
group 3 are expected to be 0.0, 0.3 and 0.8, 
respectively, then (a) 681 total cases are needed 
for the Tukey comparison between groups 1 and 
2, where the standardized mean difference is 
expected to be 0.3, (b) a total sample size of 99 
is needed for the expected standardized 
difference of 0.8 between group 1 and group 3, 
and (c) 246 total cases are needed for the Tukey 
comparison between group 2 and group 3. If all 
three comparisons are considered equally 
important, the researcher would choose 681 total 
cases in order to have statistical power of at least 
0.80 for all comparisons. However, if the 
comparison-of-most-interest is the group 2 
versus group 3 comparison, then the 246 total 
cases may be the sample size selected. 
 
Pilot Studies and Monte Carlo Analyses 

The results show that the sample size 
required for the omnibus F statistic to reach a 
given level of statistical power is frequently not 
sufficient for the non-null multiple comparisons 
to achieve the same power. In fact, it could be 
argued that using sample sizes chosen based on 
Cohen’s f are inappropriate even when the study 
is completely exploratory and the researcher has 
absolutely no research hypothesis concerning the 
mean differences. When the work is completely 
exploratory, it may be even more critical to have 
enough statistical power to find non-null 
multiple comparisons, rather than simply finding 
that there is a difference among means 
somewhere. 

An expected pattern of means might be 
available in relevant literature. However, when 
the relevant literature provides few clues about 
such effect sizes, another way to determine 
sample sizes for a multiple group comparison 
study might be to conduct a pilot study using a 
sampling strategy very similar to what will be 
used in the final study. That is, one cannot 
necessarily expect pilot study samples chosen 
conveniently to produce results similar to those 
obtained from representative random samples 
from a given population. A well-done pilot study 
sample, however, might provide clues to the 
pattern of means, the pattern of mean 
differences, or the absolute sizes of the mean 
differences the researcher might expect in the 
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population, thereby helping to determine what 
sample sizes might be necessary to have 
sufficient power for the post hoc comparisons. 
These standardized mean difference effect sizes 
could then be used in a Monte Carlo analysis, 
much as was performed for this study, to 
determine the necessary sample sizes for the 
post hoc MCPs. Because the results presented 
here are limited to only a few specific conditions 
with statistical power of 0.80, the use of Monte 
Carlo analyses for other circumstances may be 
critical because sample size tables do not exist 
for most multiple comparison procedures. 

Finally, it is important to note that with 
enough evidence or knowledge about the groups, 
exploratory ANOVA may not be a good choice, 
that is, there may be times there exists enough 
information to estimate a group mean difference 
without being able to predict a directional 
difference between those means. In such cases, 
the comparison-of-most-interest approach may 
be useful. However, when enough information is 
available to make such a prediction, statistical 
power would be gained by using directional tests 
and planned contrasts in the analyses described 
herein. 
 
Future Research 

A variety of questions, both 
philosophical and practical, exist that might be 
posed for future research based on the results 
presented. A few suggestions are: 
 
Other Procedures Designed to Control Alpha-
Inflation when Multiple Tests are Performed 

Although several ad hoc analyses 
suggested that these results might hold also for 
Tukey comparisons at other statistical power 
levels, this would need to be confirmed by 
further study. Similarly, some analyses 
performed for Bonferroni revealed the same 
three cases of results reported here, but would 
need to be examined with further study. Future 
research might also investigate whether similar 
results occur for other multiple comparison 
procedures (e.g., Fisher LSD, Scheffé, Dunnett). 
Similarly, additional research should investigate 
the impact of unequal sample sizes and unequal 
variances across groups on the total sample sizes 
required to achieve target levels of statistical 
power for specialized MCPs (e.g., Games-

Howell). Further, how this comparison-of-most-
interest approach works within factorial 
ANOVA, as follow-up to statistically significant 
main effects, may also be worth investigating. 

In light of other approaches that control 
the increase in Type I errors that occur when 
multiple null hypothesis tests are performed, it 
may be argued that perhaps MCPs should be 
abandoned altogether. For example, researchers 
could explore the effect on sample size when the 
Holm (1979) procedure is used (Green & 
Salkind, 2005; Lubrook, 1998) or when the 
Benjamini and Hochberg (1995) False 
Discovery Rate approach is used (Thissen, 
Steinberg & Kuang, 2002; Williams, Jones & 
Tukey, 1999), or perhaps no adjustment to alpha 
should be made for multiple comparison 
procedures, as is often the case when the 
statistical significance of regression coefficients 
is examined following a statistically significant 
regression model – this too, would impact 
sample size requirements. 
 
Cross Validation 

There are very different ways to think 
about how to determine required sample sizes 
for research; perhaps statistical power analyses 
are not the best way to determine sample size at 
all. Future research could investigate whether 
some adaptation of the cross-validity approaches 
recommended for multiple regression (e.g., 
Algina & Keselman, 2000; Brooks & 
Barcikowski, 1996; Park & Dudycha, 1974; 
Stevens, 2007) would be more useful for 
researchers in group comparison studies. The 
basic idea behind the cross-validation 
approaches is that researchers would be more 
likely to find results, especially effect sizes, that 
will replicate if sample sizes are large enough 
for cross-validation. 
 
A Priori Contrasts and t Tests 

Future researchers could compare these 
results to multiple individual t tests or other 
planned comparisons performed as a priori 
contrasts when using either an adjusted or 
unadjusted alpha. It may be that MCP sample 
sizes are functionally related to t test sample 
sizes using a relative efficiency approach similar 
to that done in this study. Future researchers 
might investigate whether the results change if 
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only a subset of more important pairwise 
comparisons are performed (e.g., simple or 
repeated contrasts), instead of all possible 
pairwise comparisons. Similar analyses might 
also be performed for common non-pairwise 
comparisons, such as Helmert or polynomial 
contrasts. 
 
Relative Efficiency 

Although no function emerged for some 
mean difference patterns in the three-group 
analyses, there may be a less obvious function at 
work. One could study how well relative 
efficiency works with larger numbers of groups, 
with effect sizes larger or smaller than those 
investigated here, and with different statistical 
power targets than 0.80. A similar study with 
four or more groups would involve many more 
possible mean difference patterns, but could help 
to provide answers to some of these questions. 
Such a study would also verify whether such 
results occur with more than three groups. 
Finally, the present study can be modified to 
include non-normal data and different sample 
sizes in each group. 
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