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Fisher’s Exact Test for Misclassified Data 
 

Tze-San Lee 
Western Illinois University 

Macomb, IL USA 
 

 
Fisher’s exact test is adapted to handle the misclassified data arising from comparing two binomial 
populations. The bias-adjusted odds ratio is proposed to account for misclassification errors. Its expected 
power depends in a nonlinear way on the true sensitivity and specificity of the classification method. The 
data taken from the no conviction rate of criminality for two types of twin populations was used to 
illustrate how to calculate true sensitivity and specificity and the expected power of the adjusted odds 
ratio. 
 
Key words: Fisher’s exact test, misclassification, power function, odds ratio, sensitivity, specificity. 
 
 

Introduction 
Fisher’s (1946) exact test is used when the 
sample size is less than five. However, the issue 
on how to adapt Fisher’s exact test if the data are 
misclassified has not been addressed. It is the 
aim of this article to adapt Fisher’s exact test to 
account for misclassification errors. 
 

Methodology 
Consider two independent binomial random 
variables X and Y with parameters ( Xn , Xp ) 

and ( Yn , Yp ), respectively, where both Xn  and 

Yn  are less than 5. A classical problem is to find 

an exact test for the null hypothesis H0: Xp  = 

Yp  against an alternative hypothesis H1: Xp  > 

Yp , or equivalently, H0: γ = 1 against H1: γ > 1, 
where γ is the odds ratio defined by (Fleiss, 
Levin & Paik, 2003) 
 

XY

YX

qp
qp

=γ ,                          (1) 
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Let the number of successes be x and y, 

respectively, among Xn  and Yn  subjects. 
Assume that among x and y successes there were 
possible misclassified cases. Before showing 
how to adapt Fisher’s exact test to deal with 
misclassified data, a depiction of Fisher’s exact 
test is provided. 

By conditioning that x + y = z is fixed, 
the [conditional] distribution of X = x is given 
by the extended (or non-central) hypergeometric 
distribution under the alternative hypothesis 
(Gart, 1971; Harkness, 1965; Levin, 1984) 
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where x = ),0max( Ynz − , …, ),min( Xnz , or 
the [conditional] distribution of Y = y is given 
by 
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where ),0max( Xnzy −= , …, ),min( Ynz . In 
practical applications, equation 2 is used if x < y; 
otherwise, equation 3 is used. Note that 
equations 2 and 3 were first introduced by Fisher 
(1935). Equation 2 (or 3) can be used to devise 
significance tests or confidence intervals on any 
value of γ. 

If x > y, then the p-value of Fisher’s 
exact test H0: γ = 1 against H1: γ > 1 is given by 
 


=

===−
z

yk
zkYvaluep )1;|Pr( γ ,     (4) 

 
where )1;|Pr( == γzkY  is given by equation 
3 which yields an ordinary hypergeometric 
distribution as follows: 
 

1

0 1

X Y

X Y

n n
z y y

Pr(Y y | z; ) ,
n n

z
y , ,...z,

  
  −  = γ = =

+ 
 
 

=

, 
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on which the Fisher-Irwing exact test is based. 

For small frequencies, the critical value 
of Y has been provided by choosing yc for one-
sided alternatives ( YX pp > ) such that 
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For nominal levels of significance α = 0.05, 
0.025, 0.01, 0.005, xc has been tabulated for 

25≤≤ XY nn  (Bennett & Hsu, 1960). For two-

sided alternatives ( YX pp ≠ ), the tabular exact 
probabilities are doubled accordingly. 

If x > y, the (conditional) power function 
of the exact test is then given by 
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where 

),0max(1 Xnzz −=  
and 

),max(2 Ynzz = . 
 
Note that )|( zγβ  of equation 7 is a rational 
function in γ, that is, a ratio of two polynomial 
functions in γ. 

If x > y, the expected power of the exact 
test is given by 
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where )Pr( zZ = representing the distribution of 
Z is given by 
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where ),0max( XnzL −= , ),min( YnzU =  
and the summation in z is over all significance 
pairs of points on the diagonals, z = x + y, in the 
(x, y) sample space at level of significance 
equals to α at most (Bennett & Hsu, 1960; 
Casagrange, Pike & Smith, 1978a). To facilitate 
a calculation of the expected power of equation 
7 a FORTRAN program was written by 
Casagrange, Pike and Smith (1978b). If 

YX nn = , Conlon & Thomas (1993) presented 
an algorithm which was feasible for very large 
sample sizes. 
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If classification errors exist on the 
number of successes for both X and Y, the 
question becomes how to test the hypotheses 
previously postulated. Let E* be the surrogate 
classification variable for E and let Zϕ  and Zψ , 
Z = X, Y, be the sensitivity and specificity for 
classifying the status of the outcome among 
samples from the case and the control 
populations, respectively, that is, for Z = X or Y, 
 

)1|1Pr( * === EEZϕ , 
and 

( 0 0)*
Z Pr E | E .ψ = = =            (10) 

 
It is known that, for the unknown Xp  and Yp , 
the following maximum likelihood estimators 
are no longer unbiased: 
 

XX nxp /ˆ =  and YY nyp /ˆ = ,       (11) 
 
assume that ),(~ˆ ZZZ pnBinomialp  for Z = 
X, Y. The crude odds ratio (COR) defined by 
 

XY

YX

qp
qp
ˆˆ

ˆˆ
ˆ =γ ,                     (12) 

 
as a point estimator for the true odds ratio γ of 
equation 1 can have substantial bias (Kleinbaum, 
et al., 1982). 

To account for the misclassification 
bias, the bias-adjusted [point] estimators for the 
prevalence of success/failure Zp  and Zq  are 
given by (Lee, 2009) 
 

ZZZZ qp Δ−= /)ˆ(ψ  
and 

ZZZZ pq Δ−= /)ˆ(ϕ ,             (13) 
 
where ZZ pq ˆ1ˆ −= , Z = X, Y, and ZΔ  is given 
by 

1−+≡Δ ZZZ ψϕ .                (14) 
 
Conditioned on that Zϕ  and Zψ  are given, it is 
easily shown that equation 13 is an unbiased 
estimator for Zp  and Zq , respectively. The 

bias-adjusted estimators Zp  and Zq  (equation 

13) are said to be plausible if Zp  and Zq  lie 

between 0 and 1. In order for Zp  and Zq  to be 
plausible, the following constraints are imposed: 
for Z = X, Y, 
 

ZZ p̂>ϕ , ZZ q̂>ψ  and 0>ΔZ .     (15) 
 
A set of Zϕ  and Zψ  is said to be feasible if 
equation 15 holds. Furthermore, a set of feasible 

Zϕ  and Zψ  is said to be admissible if for these 

feasible Zϕ  and Zψ , Zp  and Zq  are plausible. 
The bias-adjusted odds ratio (BAOR) 

for γ which accounts for misclassification bias is 
then given by 
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and its asymptotic variance is given by 
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where )ˆvar( Zp  is given by 
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(18) 
 
Using equations 16-17 to find a 100%×(1 – α) 
confidence interval (LCL, UCL) for the true γ 
(equation 1), where LCL and UCL are 
abbreviations denoting for lower and upper 
confidence limit, respectively, and 0 < α < 1 as 
follows: 
 
(LCL, UCL): =  

)))var(ln()exp(ln(
2

1
γγ α ×−z .     (19) 

 
Note that Fisher’s exact test, which accounts for 
misclassification errors, is exactly the same as 
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that shown previously, that is, the p-value for the 
significance test of H0: γ = 1 against H1: γ > 1 
does not depend upon the sensitivity and 
specificity of the classification method at all. 
But the conditional power of equation 7 or the 
expected power of equation 8 at γ = γ depends 
on the sensitivity and specificity of the 
classification method for both populations. 
 

Results 
The Lange’s data on criminality among twin 
brothers/sisters of criminals (Fisher, 1946) was 
used for analysis. Table 1 shows the numbers of 
twin brothers/sisters of criminals who have been 
convicted, separately for dizygotic (= X) (but 
like-sexed) and monozygotic twins (= Y). 
Because YX pp ˆ13/315/13ˆ =>= , the phrase 
not convicted is taken as success. Inspection of 
Table 1 shows x = 13, y = 3, 15=Xn , and 

13=Yn . The COR of equation 12 was obtained 

as 7.21ˆ =γ  with p = 0.001 by using the SAS 
software with a specification to Fisher’s exact 
test (Stokes, Davis & Koch, 2000). As a result, 
the null hypothesis is rejected. This means that 
the deviation from proportionality in Table 1 is 
significant to provide evidence that criminality 
is more frequent among monozygotic twins of 
criminals than among dizygotic twins of 
criminals (Finney, 1948). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suppose that classification error exists 
in the observed data shown in Table 1. Because 

validation data was not available and because it 
was not possible to know what true classification 
is, all possible re-arrangements of Table 1 were 
considered and then each re-arranged table was 
treated as if it were a true table. Thus, it was 
possible to calculate true sensitivity and 
specificity for both of the two populations. For 
the population of dizygotic twins, there are a 
total of 13 possible truly classified tables. 
Hence, in theory, there are a total of 13 possible 
pairs of true sensitivities and specificities for this 
targeted population. However, after checking the 
feasibility constraints (equations 14-15), only 
four pairs of sensitivity and specificity were 
feasible (Table 2). Similarly, five out of a total 
of eleven possible pairs of sensitivity and 
specificity were feasible for the population of 
monozygotic twins (Table 2). 

Because it was not possible to know 
which pair was the true sensitivity and 
specificity for either one of the two populations 
of twins, it was necessary to calculate the 
BAOR, γ  (equation 16), for all 20 (= 4×5) 
possible combinations of feasible pairs of 
sensitivity and specificity for the two targeted 
populations of twins. The calculation was 
organized as follows. One pair of feasible 
sensitivity and specificity was fixed from the 
population of dizygotic twins and then combined 
with all five pairs of feasible sensitivity and 
specificity for the population of monozygotic 
twins in order to calculate γ  (equation 16). This 
procedure was then repeated by changing only 
the pair from the population of dizygotic twins 
until all four feasible pairs were used (Table 3). 
As shown in Table 3, only three BAORs from 
the 2nd to the 4th entries were found to be 
significant for cases i-ii, whereas none of the 
BAORs were significant for cases iii-iv. If the 
COR is credible, then this implies that to under-
misclassify two or three pairs of dizygotic twins 
in the convicted category is implausible. If only 
one pair of dizygotic twins is over-misclassified 
(comparing case i with the correctly classified 
pair of dizygotic twins in Table 2), the COR (

7.21ˆ =γ ) over-estimated the true γ because the 
BAORs were 17.2 and 19.5 when one pair of 
monozygotic twins was under- and over-
misclassified in the convicted category, while 
under-estimated the true γ because the BAOR  

Table 1: Lange’s Data on Criminality among Twin 
Brothers/Sisters of Criminals 

 
Dizygotic 

(= X) 
Monozygotic 

(= Y) 
Row 
Total 

Not 
convicted 
(Success) 

13 3 16 

Convicted 
(Failure) 

2 10 12 

Column 
Total 

15 13 28 
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was 24.0 when two pairs of monozygotic twins 
was over-misclassified in the convicted 
category. Similarly, If only one pair of dizygotic 
twins is under-misclassified (case ii), the COR 
under-estimates the true γ because the BAORs 
were given by 22.2, 25.1, and 31.0 
corresponding to when one pair was either 
under- or over-misclassified or two pairs of 
monozygotic twins were over-misclassified, 
respectively. 

To calculate the expected power for 
either γ̂  (equation 12) or γ  (equation 16), the 
crude/bias-adjusted point estimator is substituted 
for ip  and iq , namely, the COR or BAOR for γ 

in equation 8; thus the expected power of 
equation 8 (Table 4) were obtained. Note that 
the results shown in the first row of Table 4 
correspond to the COR because the COR can be 
viewed as a special case of the BAOR with 
perfect classification, that is, both sensitivity and 
specificity equal to one. If 15=Xn , 13=Yn , 

and x = 13, then 6=cy  from the table of 

critical values for y (Finney, 1948; p. 154); this 
is used in determining all possible z-values in 
equation 8.  

The results of the expected power for 
the COR and six admissible BAORs are given in 
Table 4. It is not surprising to see that the COR 
has the highest expected power (= 0.45) because 
both the sensitivity and specificity equals one, 
whereas the expected power of the six BAORs 
varies. It seems that the expected power of the 
BAOR depends on the values of the sensitivity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and specificity: the higher the specificity across 
the board, the larger the expected power. Indeed, 
the expected power is higher for 

)8.0,96.0(),( =XX ψϕ  than for 

)6667.0,963.0(),( =XX ψϕ , that is, 0.40, 0.36, 
and 0.29 compared to 0.33, 0.29, and 0.23, 
respectively (see Table 4). Also, the larger 
expected power 0.40 (or 0.33) corresponds to the 
highest specificity ( 9524.0=Yψ ) for the 
monozygotic population. In terms of the type of 
misclassification the highest power corresponds 
to that exactly one pair of twins is under-
misclassified in the category of convicted for 
both populations. 
 

Conclusion 
Fisher’s exact test was adapted to handle a 
scenario where data are misclassified. The bias-
adjusted odds ratio was proposed to account for 
the misclassification errors. Because a validation 
sample is not available, all possible pairs of true 
sensitivity and specificity were calculated from 
the observed data by assuming that a true table is 
known. Although the p-value is not affected by 
the true sensitivity and specificity of the 
classification method, the expected power of 
Fisher’s exact test depends on these in a 
nonlinear way. The data regarding whether the 
no-conviction rate are the same between the 
dizygotic and monozygotic twins of 
brothers/sisters was used to illustrate how to 
calculate true sensitivity and specificity, the 
bias-adjusted odds ratio and their expected 
power accordingly. 

Table 2: Pairs of Feasible Sensitivity and Specificity for Two Types of Twins under the Assumption 
that True Classifications Are Known 

Dizygotic 
[ 867.0ˆ =Xp , 133.0ˆ =Xq ] 

Monozygotic 
[ 23.0ˆ =Yp , 77.0ˆ =Yq ] 

Convicted 
Xϕ  Xψ  

Convicted 
Yϕ  Yψ  

No Yes No Yes 

14 1 0.963 0.667 1 12 0.5 0.909 

12 3 0.960 0.800 2 11 0.8 0.952 

11 4 0.917 0.667 4 9 0.857 0.947 

10 5 0.870 0.571 5 8 0.75 0.889 

    6 7 0.667 0.824 
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Table 3: The Point Estimate, Standard Error of Logarithm of Adjusted Odds Ratio and 95% CI for 
20 Possible Combinations of True Sensitivity and Specificity of Two Twin Populations 

),( YY ψϕ  γ  )).(ln(. γes  LCL UCL 

(i) )667.0,963.0(),( =XX ψϕ  

(0.5, 0.909) 10.7 1.66 0.41 278.4 
(0.8, 0.952) 17.2 1.37 1.18 251.1 

(0.857, 0.947) 19.5 1.37 1.34 283.8 
(0.75, 0.889) 24.0 1.61 1.02 567.7 

(0.667, 0.824) 44.5 2.65 0.25 7993.5 

(ii) )8.0,96.0(),( =XX ψϕ  

(0.5, 0.909) 13.8 1.66 0.53 357.0 
(0.8, 0.952) 22.2 1.36 1.53 321.7 

(0.857, 0.947) 25.1 1.36 1.74 363.6 
(0.75, 0.889) 31.0 1.61 1.32 727.9 

(0.667, 0.824) 57.3 2.65 0.32 10271.6 

(iii) )667.0,917.0(),( =XX ψϕ  

(0.5, 0.909) 20.5 2.30 0.23 1869.6 
(0.8, 0.952) 33.2 2.10 0.54 2020.8 

(0.857, 0.947) 37.5 2.10 0.62 2284.9 
(0.75, 0.889) 46.3 2.27 0.55 3921.5 

(0.667, 0.824) 85.6 3.09 0.20 36497.9 

(iv) )571.0,87.0(),( =XX ψϕ  

(0.5, 0.909) 291.0 30.5 3.0×10-24 2.7×1028 
(0.8, 0.952) 469.8 30.5 5.1×10-24 4.3×1028 

(0.8571, 0.947) 531.6 30.5 5.8×10-24 4.9×1028 
(0.75, 0.889) 656.0 30.5 7.0×10-24 6.1×1028 

(0.667, 0.824) 1213.6 30.6 1.1×10-23 1.3×1029 
 
 

Table 4: The Expected Power of the Crude/Adjusted Odds Ratio 

),( XX ψϕ  ),( YY ψϕ  Xp  Yp  γ )|( zγβ  

(1.0, 1.0) (1.0, 1.0) 0.87 0.23 21.7 0.45 
(0.963, 0.667) (0.8, 0.952) 0.85 0.24 17.2 0.33 
(0.963, 0.667) (0.857, 0.947) 0.85 0.22 19.5 0.29 
(0.963, 0.667) (0.75, 0.889) 0.85 0.19 24.0 0.23 

(0.96, 0.8) (0.8, 0.952) 0.88 0.24 22.2 0.40 
(0.96, 0.8) (0.857, 0.947) 0.88 0.22 25.1 0.36 
(0.96, 0.8) (0.75, 0.889) 0.88 0.19 31.0 0.29 
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