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Factors Influencing the Mixture Index of Model Fit in Contingency Tables 
Showing Independence 

 
Xuemei Pan C. Mitchell Dayton 

IBM Global Business Services, 
Springfield, VA USA 

University of Maryland, 
College Park, MD USA 

 
 
Several competing computational techniques for dealing with sampling zeros were evaluated when 

estimating the two-point mixture model index, *π , in contingency tables under an independence 
assumption. Also, the performance of the estimate and associated standard errors were studied under 
various combinations of conditions. 
 
Key words: Mixture index, contingency tables, sampling zeros, standard error, Monte Carlo simulation. 
 
 

Introduction 
Traditional methods for evaluating models for 
contingency table data based on Chi-square 
statistics or quantities derived from such 
statistics are not attractive in many applied 
research settings. According to Rudas (1998), 
“First, when the model is not true, a comparison 
of the data to what could only be expected if it 
were is of very little meaning; second, the actual 
distribution of the statistic may be very different 
from the reference distribution if some of the 
underlying assumptions are violated” (page 15). 
In addition, conventional methods are sensitive 
to sample size; often a model is rejected when 
fitted to a large data set even though the model 
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may represent a reasonable summary of the data 
for practical purposes. 

In contrast to Chi-squared tests of fit 
methods, which rely heavily on size of the table, 
sample size and actual true probabilities (Rudas, 
1998), the RCL mixture index of fit proposed by 
Rudas, Clogg and Lindsay (1994), provides a 
novel way of representing goodness-of-fit for 
contingency tables. In contrast to classical 
significance tests, this index has an intuitive 
rationale and it does not assume a simple model 
that describes the entire population; the RCL 
index is also not sensitive to sample size like 
Chi-square-related quantities. Specifically, two 
components (subgroups) are assumed in the 
population. One of size 1−π , where some 
specified model H holds true, describes the 
fraction of the population that is consistent with 
model H (e.g., independence); the other 
component of size π , is completely unrestricted 
and represents the part of the population that is 
outside of model H. RCL also introduced an 
expectation-maximization (EM) algorithm to 

obtain maximum likelihood estimates of *π  and 
derived a way to construct a lower-bound 

confidence-interval estimate of π̂ ∗ . As 

summarized by Dayton (2003), π̂ ∗  possesses 
the following properties: 
 

1. π̂ ∗  is always located on the 0, 1 interval;  
 

2. π̂ ∗  is unique;  
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3. π̂ ∗  is invariant when frequencies in a 
contingency table are increased or decreased 
by a multiplicative constant. 

 
Properties and applications of the 

mixture index of fit are further explored in 
Clogg, Rudas and Xi (1995), Xi (1996), and 
Clogg, Rudas and Matthews (1997). The two-

point mixture index, *π , can be applied when 
models are fitted to virtually any contingency 
table. For example, it has been applied in 
differential item functioning (Rudas & Zwick, 
1997), latent class analysis (Dayton, 1999), 
regression models with normal and uniform 
error structures (Rudas, 1999) and logistic 
regression analysis (Verdes & Rudas, 2002). 

Issues concerning *π  require further 
examination exist because they have not been 
studied in RCL or in other related research. In 
particular: 
 

1. π̂ ∗  is positively biased in finite samples; 

that is, even if H holds so that, in theory, π ∗  

= 0, π̂ ∗  will have expectation greater than 
zero for finite samples.  

2. Sampling 0’s can greatly affect estimation 
so it is useful to study the effect of using 
flattening constants or redefining the model 
by regarding sampling zeros as structural 
zeros.  

3. Although the estimated lower confidence 

bound of π̂ ∗  introduced by RCL gives 
inferential information that is independent of 

bias, it tends to be problematic when π ∗  is 
close to zero or sample size is small; thus a 
parametric simulation seems to be necessary 

to examine this measure of precision for π̂ ∗ . 
(As an aside, SAS code written for this 
study makes these analyses more accessible 
to researchers in various disciplines.) 

 
Mixture Index of Fit 

Suppose H represents a hypothesized 
probabilistic model for a frequency table and P 
is the true distribution for the cell proportions in 
the table. The two-point mixture model is 
defined as: 
 

P = (1- πψπ +Φ)                    (1) 
 
where Φ  is the probability distribution implied 
by H, and ψ  is an arbitrary, unspecified 
probability distribution. The mixture parameter, 
π , defined on the 0, 1 interval, represents the 
proportion of the population that cannot be 
described by H. Note that π  is not unique and 
that the representation of P in equation (1) is 
correct for any model for any frequency table. 

The index of fit, *π , however, is defined as the 
smallest value of π  for which equation (1) 
holds; that is: 
 

{ }HP ∈+−== φπψφπππ ,)1(|inf*  
 
(Rudas and Zwick, 1997). Consequently, as 

shown by RCL, *π  is unique and represents the 
minimum proportion of cases that must be 
excluded from the frequency table in order for P 
to be fitted exactly by the model. 
 
EM Algorithm and Interval Estimation 

The procedure to estimate π̂ ∗  is as 
follows: 
 
1. Set the initial estimate, π̂ ∗  to zero;  
2. Obtain maximum likelihood estimates of the 

parameters in the components of the two-
point mixture using an expectation-
maximization (EM) algorithm as above, and,  

3. Successively increase π̂ ∗  by some small 
increment with re-estimation of the 
parameters at each step (e.g., .01 is been 
used the example below). 

 
The value of the likelihood ratio Chi-square fit 
statistic, G2, converges to zero (e.g., less than a 
convergence criterion set to <10-5) and the step 
at which this first occurs provides the final 

estimate of the fit index, π̂ ∗ . (Dayton, 2003; 
RCL). In addition, RCL implemented this 
approach in their FORTRAN program, Mixit, as 
described in detail by Xi (1994). As shown by 
RCL, an appropriate lower confidence 95% 

bound, ˆLπ , is given by the value of π̂  that is 

associated with a G2 fit statistic equal to 2.71 
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(i.e., the 90th percentage point of the one-degree-
of-freedom Chi-square distribution). 
 
Sampling Zeros 

According to RCL, the effect of 

sampling zeros on π̂ ∗  will depend on the 
structure of the data as well as the suitability of 

model H for the data. In general, π̂ ∗  will tend to 
be overestimated by a fraction that is directly 
related to the smaller of the observed row 
marginal proportion and the observed column 
marginal proportion pertinent to the cell with a 
sampling zero. Rudas and Zwick (1997) 
replaced zero frequencies with small positive 
flattening values in data from a study by Zwick, 
Thayer and Wingersky (1994) to investigate the 

sampling zero effect on the performance of π ∗ . 
Although they concluded that increasing the 
flattening value resulted in reducing 

overestimation for estimates of π ∗ , the effects 
were very small. 

Structural zeros, also called logical 
zeros (Knoke and Burke, 1980), arise when it is 
logically impossible to observe positive cell 
counts for particular combinations of row and 
column variables. To demonstrate structural 
zeros, a typical example of the logical 
impossibility of observing male obstetrical 
patients was presented by Fienberg (1980). In 
practice, researchers could evaluate the variation 

in π ∗  by setting cells with no frequency to 
structural zeros. 

 
Methodology 

Research Design 
The following aspects of the simulation 

were implemented: 
 
1. Sizes of two-way contingency tables were 

selected: 2× 2, 2× 3, 2× 4, 2× 6, 3× 3, 4× 4 
and 6× 6. These table sizes were chosen 
because they provided a reasonable range of 
contingency table sizes in real data settings 
and are typical of what is found in practice. 

2. Marginal distribution: evenly distributed, 
slightly dispersed and extremely dispersed 
distribution for each different table size. 
(Row and column total proportions for the 
various sized tables are shown in Figure 1.) 
These marginal distributions were chosen 

because they represented a reasonable range 
of different values, and the extreme 
marginal values were used to ensure zero 
cell frequencies in the observed tables. 

3. Sample size for simulated contingency table: 
5, 10, 20 and 30 per cell were chosen 
because they entailed a practical variety of 
sample sizes and were large enough to 
demonstrate a sample size effect on the 
mixture index of fit. 

4. Techniques for zeros cells: (A) treating as 
sampling zeros, (B) replacing with small 
flattening constants (0.1, 0.5 and 1 were 
used to represent extremely small, 
moderately small and small flattening 
constants range), and (C) redefining model 
H by regarding the sampling zeros as 
structural zeros.  

5. In each of the above scenarios, a 95% lower 
confidence limit based on empirically 

simulated π̂ ∗ s was calculated and compared 
with the lower limit estimate presented by 
RCL. 

 
For each table size, sample size and 

marginal distribution, 1,000 frequency tables 
were randomly generated based on the specified 
cumulative distribution. For example, for a 2× 2 
table with sample size of 10 per cell and 
marginal distribution {P1+=. 9, P2+=. 1, P+1=. 9, 
P+2=. 1}, the theoretical cumulative distribution 
is {0.81, 0.90, 0.99, 1}.  

To generate each of the 1,000 simulated 
data tables, SAS code (SAS Institute, 2005) was 
used to generate 40 uniform random numbers on 
the 0, 1 and to locate them into appropriate 
cumulative categories (e. g., numbers less than 
or equal to 0.81 were placed in cell 1, 0.81; 
numbers between 0.81 and 0.90 in cell 2; 
numbers between 0.90 and 0.99 in cell 3 and the 

remainder in cell 4.) The value of π̂ ∗  and 

associated 95% lower bound ˆLπ  following RCL 

was obtained for each generated data table; thus 

for each scenario, 1,000 π̂ ∗  values and 1,000, 

95% lower bound ˆLπ  values were generated 

using RCL methods. This was repeated for each 
of the 96 scenarios. Also for each scenario, four 
techniques for sampling zeros cells were 
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compared: treating zero cells as sampling zeros, 
replacing with different small flattening constant 
(i.e., 0.1, 0.5 and 1), and redefining model H by 
regarding a sampling zero as a structural zero. 

The mean of the 1,000 π̂ ∗  values for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
each scenario was calculated and served as the 
final parameter estimate; the mean of the 1,000 
ˆLπ  values was also computed to be the estimate 

95% ˆLπ  using the RCL method. Because the 

empirical distribution of π̂ ∗  is notably skewed 

Figure 1: Row and Column Total Proportions for the Various Sized Tables 
 

2× 2 Table 
 

{P1+=. 5, P2+=. 5, P+1=. 5, P+2=. 5}, 
{P1+=. 9, P2+=. 1, P+1=. 9, P+2=. 1}, 
{P1+=. 5, P2+=. 5, P+1=. 9, P+2=. 1}. 

 
2× 3 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 8, P+2=. 1, P+3=. 1}, 
{P1+=. 5, P2+=. 5, P+1=. 33, P+2=. 33, P+3=. 33}, 

{P1+=. 9, P2+=. 1, P+1=. 8, P+2=. 1, P+3=. 1}, 
{P1+=. 9, P2+=. 1, P+1=. 33, P+2=. 33, P+3=. 33}. 

 
2× 4 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 5, P2+=. 5, P+1=. 4 P+2=. 4, P+3=. 1, P+4=. 1}, 

{P1+=. 9, P2+=. 1, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 9, P2+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 

 
2× 6 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167}, 
{P1+=. 5, P2+=. 5, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}, 

{P1+=. 9, P2+=. 1, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167}, 
{P1+=. 9, P2+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 

 
3× 3 Table 

 

{P1+=. 4, P2+=. 4, P3+=. 2, P+1=. 4, P+2=. 4, P+3=. 2}, 
{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 33, P+2=. 33, P+3=. 33}, 

{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 4, P+2=. 4, P+3=. 2}. 
 

4× 4 Table 
 

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 4, P2+=. 4, P3+=. 1, P4+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}, 

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 
 

6× 6 Table 
 

{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, 
P+6=. 167}, 

{P1+=. 3, P2+=. 3, P3+=. 1, P4+=. 1, P5+=. 1, P6+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}, 
{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 
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for the generated sets of 1,000 π̂ ∗  values, the 
regular normal assumption cannot be used to 
compute the standard error and confidence 

interval for π̂ ∗ . Instead, 50th π̂ ∗  value among 
the 1,000 values (i.e., 5th percentage point) was 
adopted and treated as true 95% lower bound 
based on empirical simulations. 

Typically, π̂ ∗  will tend to be 
overestimated by a fraction that is directly 
related to the smaller of the observed row 
marginal proportion and the observed column 
marginal proportion related to the cell with a 
sampling zero (RCL). As noted above, in 
practice, researchers could test the π ∗  variation 
by setting some to-be-ignored cells to structural 
zeros and resolve. This study focused this issue 
on any frequency tables with only one structural 
zero and the procedure using EM based 

methodology to obtain π̂ ∗ . The two-point 
mixture using an expectation-maximization 
(EM) algorithm proposed by RCL could still be 
applied to structural zero conditions with minor 
modification as follows: 
 
1. Obtain π̂ ∗  treating zero cell as sampling 

zero utilized the same procedure in EM 
Algorithm and Interval Estimation; in this 
step the entire row or column with which 
smaller of observed row marginal proportion 
and the observed column marginal 
proportion would result in zero in the first 
component, Φ , which is defined as the 
probability distribution designated by H. 

 

2. Pull the proportion back from the second 
component,ψ , an unspecified probability 
distribution outside of model H for the entire 
row or column with zeros in component Φ  
at step 1. 

 

3. Temporally cross out the other column or 
row that contains the zero cell but has not 
been forced zero at step 1. 

 

4. Apply the same EM based procedure in the 
remaining contingency table while fixing all 
cell proportions in component 1, Φ  and 
component 2, ψ  except the row or column 
has frequency pulled back in step 2. 

 

5. After iterations converge to a preset 

criterion,, subtract original π̂ ∗  at step 1 with 
the sum of the proportion pulled back in Φ  
from step 4 and the final value is the 

estimate of π̂ ∗  using structural zero 
technique. 

 
For the other sampling zero techniques, 
procedures are same as sampling zeros, simply 
replace the zero cell with different small 
flattening constant (0.1, 0.5 and 1) and recall 

associated π̂ ∗  based on the EM based 
procedures in EM Algorithm and Interval 
Estimation. 
 
Simulation Details 

The simulation code was written in 
SAS/IML version 9.1 (SAS Institute, 2005). The 
EM algorithm was used to calculate the mixture 
index of fit. Each simulation consisted of 1,000 
replications with convergence criterion set to 10-

5. Data were randomly generated according to 
cumulative proportion resulting from the 
different combination scenarios. 

The method proceeded in the following 
manner:  
 
1. A sample contingency table was randomly 

generated based on cumulative proportion 
resulting from different factor combinations. 
(table size, sample size and marginal 
distribution). 

 

2. An EM algorithm based method for mixture 
index of fit (RCL) was implemented. π̂ ∗  

and 95% lower bound ˆLπ  were generated 

and saved in a matrix. 
 

3. Replicate steps 1 and 2 1,000 times, 

therefore 1,000 π̂ ∗  and ˆLπ  were obtained 

and exported into an external file. 
Additionally, if any of the 1,000 generated 
contingency tables contained zero cell(s), 
they were replaced with different small 
flattening constants 0.1, 0.5 and 1, 
respectively, when evaluating the 

performance of π̂ ∗  using flattening 
constants techniques. 
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The only difference between the 
structural zero and other sampling zero 
technique procedure is in the above-mentioned 
step 1. If the frequency tables generated by 
UNIFORM contained 1 or less than 1 frequency 
zero, it would proceed to step 2 otherwise it 
would regenerate the table until it met the 
requirement. 
 

Results 
Parameter Estimates and Bias 

For the conditions studied, π̂ ∗  was 
significantly (p < 0.05) positively, biased from 
its expected value of zero by an amount ranging 
from 0.02298 (2× 2 table, slightly dispersed row 
and column marginals with sample size equals to 
30 per cell) to 0.4086 (6× 6 table, evenly 
dispersed row and column marginals with 
sample size equal to 5 per cell). As shown in 
Figures 2 and 3, for 2× 2, 2× 3, 2× 4, 2× 6 

tables, as table size increases, π̂ ∗  consistently 
increased (with only two exceptions) for 
constant sample size (5, 10, 20 and 30 per cell) 
and marginal distribution (evenly, slightly and 
extremely dispersed).  

The same conclusion applies to 
symmetric tables: 2× 2, 3× 3, 4× 4, 6× 6. In 
particular, for sample sizes 5, 10, 20 and 30 per 

cell in evenly dispersed tables, π̂ ∗  increased on 
average from 0.1252 to 0.4086; 0.096 to 0.3031; 
0.0775 to 0.2242 and 0.0668 to 0.1867 for 2× 2 
to 6× 6 tables, respectively. For sample sizes 5, 
10, 20 and 30 per cell in extremely dispersed 

tables, π̂ ∗  increases on average from 0.0598 to 
0.03629; 0.0568 to 0.2593; 0.0476 to 0.1942 and 
0.0396 to 0.1626 for a 2× 2 table to a 6× 6 table, 
respectively.  

Moreover, with few exceptions, for each 
frequency table, as sample size increases, the 

bias in π̂ ∗  significantly decreased (p < 0.05,). 

For each size contingency table, π̂ ∗  is, on 
average, smallest for extremely dispersed row 
and column marginal distributions, and largest 
on average for evenly distributed row and 
column tables. The only exception is the 2× 2 
table where a slightly dispersed table contains 

slightly smaller π̂ ∗  values on average than an 
extremely dispersed frequency table; this is in 

part due to a convergence problem (using less 
than 0.001 instead of otherwise 0.00001). 

For all two-way tables, replacing zero 
with larger flattening values results in smaller 

average values of π̂ ∗ . For all extremely 
dispersed and most slightly dispersed (4 out of 6 
scenarios) row and column marginal 
distributions with small sample size (5 per cell) 
and small table size (2× 2, 2× 3, 2× 4, 3× 3) 

tables, the value of π̂ ∗  was smaller using 
structural zeros compared to using sampling 
zeros or any other replacement with positive 
flattening constants. Note that the techniques of 
replacing zero cell with flattening constants 
includes virtually any number of simulated zero 
cells for each table while the structural zero 
technique used in this study can only 
accommodate one zero cell per frequency table. 
Because the number of zero counts and patterns 
are somewhat different among these techniques, 
especially when encountering small sample sizes 
such as 5 per cell and 10 per cell, it might 
influence the comparison results between 
structural zero and using sampling zero or any 
other replacing with small positive flattening 
constants techniques. 
 
Lower Bound Comparisons of RCL and True 
Estimates 

The 95% lower bound estimate for π̂ ∗  
using the RCL method is generally close to the 
so-called true estimate based on empirical 
simulations. When, under some circumstances, 
the RCL method underestimates the lower 
bound value, the magnitude of underestimation 
is relatively small and the difference from the 
true estimate decreases as the sample size 
increases. 

Similar to parameter estimators for π̂ ∗ , 
the true (empirical) 95% lower bound estimates 

of π̂ ∗  consistently increased as table size 
increased within constant sample size per cell 
and constant marginal distribution (Figures 6 
and 7). There are exceptions for 2× 3 and 2× 4 
extremely dispersed tables with sample size 5 
for which estimates remain nearly unchanged 
over conditions. Also in general for each 
frequency table, as sample size increases the 
95% lower bound decreases. 
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Figure 2: π̂ ∗  for Evenly Distributed Marginals 

 
 
 

Figure 3: π̂ ∗  for Extremely Distributed Marginals 
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Figure 4: π̂ ∗  Comparison in {P1+=.9, P2+=.1, P+1=.8, P+2=.1, P+3=.1} 

 
 
 

Figure 5: π̂ ∗  Comparison in {P1+=.9, P2+=.1, P+1=.4, P+2=.4, P+3=.1, P+4=.1} 
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Figure 6: Empirical Simulation Based ˆ Lπ  with Evenly Distributed Marginals 

 
 

Figure 7: Empirical Simulation Based ˆ Lπ  with Extremely Distributed Marginals 
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As shown in Figures 8 and 9, for each 
size of contingency table, the lower bound 

estimate of π̂ ∗  is generally smallest for 
extremely dispersed row and column marginal 
distributions, followed by slightly dispersed row 
and column marginal distributions; while largest  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for evenly distributed row and column tables. 
Different techniques for dealing with sampling 
zeros seem to have no effect on the lower bound 
estimate of π̂ ∗  for either the RCL method or the 
true lower bound estimate based on empirical 
simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: ˆLπ  Comparison between the RCL Method and Empirical Simulation Method 
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As shown in Figures 8 and 9, for each 
size of contingency table, the lower bound 

estimate of π̂ ∗  is generally smallest for 
extremely dispersed row and column marginal 
distributions, followed by slightly dispersed row 
and column marginal distributions; while largest 
for evenly distributed row and column tables. 
Different techniques for dealing with sampling 
zeros seem to have no effect on the lower bound 

estimate of π̂ ∗  for either the RCL method or the 
true lower bound estimate based on empirical 
simulations. 
 
Confidence Interval and Standard Errors 

Figures 10 and 11 show that, given the 
same table size, extremely dispersed row and 
column marginal distributions consistently 
provide narrower confidence intervals 

( )ˆ ˆLπ π∗ −  than evenly dispersed row and 

column tables using both the RCL method and 
empirical true estimates. Also, when sample size  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
increases, confidence intervals become narrower 
for each table size and shrink approximately to 
the same confidence intervals for different 
marginal distribution for the same table size 
using both estimation methods. It is apparent 
that the RCL method underestimates the lower 

bound of π̂ ∗  in many cases and, thus, leads to a 
higher standard error compared with empirical 
true lower bound estimates. 
 
Example 1: Fatal Crashes by Speed Limit 

Table 1 presents fatal crashes by speed 
limit and land use in the United States in 2004 
from Traffic Safety Facts 2004, a compilation of 
Motor Vehicle Crash Data from the Fatality 
Analysis Reporting System and the General 
Estimates System. There are three categories in 
the land use variable (rural, urban and 
unknown), and six categories in the speed limit 
variable (30 mph or less, 35 or 40 mph, 45 or 50 
mph, 55mph, 60 mph or higher and no statutory 
limit). This data table was used to compare the 
conclusion using traditional Chi-square and  

Figure 9: ˆLπ  Comparison between the RCL Method and Empirical Simulation Method (continued) 
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related model fit methods and the mixture index 
of fit introduced by RCL. More specifically, 
compare different sampling zero techniques 

impact on π̂ ∗  because there is one zero cell in 
the contingency table. 

The value of the Pearson Chi-Square 
statistic is 7200.090, and the likelihood ratio, G2 
statistic is 7600.54 both with degrees of freedom 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
equal to 10 (P < 0.01). Thus, an independence 
model is not tenable based on these Chi-squared 
tests of fit. As displayed in Table 3, the mixture 

index of fit π̂ ∗  is 0.294, indicating that about 
29.4% of the total of 37,295 cases (or, 10,965 
cases) must be removed in order to attain perfect 
model fit. The mixture index of fit provides an 
interpretation consistent with traditional Chi- 

Figure 10: Confidence Interval of π̂ ∗  Following Empirical Simulation Method 
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Figure 11: Confidence Interval of π̂ ∗  (continued) 

 

Table 1: Fatal Crashes by Speed Limit and Land Use 

Speed Limit 

Land Use 

Rural Urban Unknown 

30 mph or less 944 2929 27 

35 or 40 mph 1951 4463 41 

45 or 50 mph 3496 3559 46 

55 mph 9646 2121 91 

60 mph or higher 5484 2347 27 

No statutory limit 92 31 0 

Source: USDOT Traffic Safety Facts 2004 (Fatality Analysis Reporting 
System). Note: Omit 958 cases for the Unknown Speed Limit category. 
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Square analyses. Furthermore, π̂ ∗  only 
decreases to 0.293 when replacing sample zero 
with the flattening constant 0.1 and further 
reduces to 0.291 when replacing with 0.5 and 1 
as well as using the structural zero method. The 

amount of change in π̂ ∗ , as well as its 95% 
lower bound using different sampling zero 
techniques, is extremely small in this example. 
This occurs due to the very small percentage 
(0.62%) of unknown land. In fact, it would not 
substantially effect π̂ ∗  even if the entire column 
were zeros. 
 
Example 2: Eye Color and Hair Color 

Table 2 presents a cross-classification of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eye color and hair color table (Snee, 1974), a 4 
×  4 table with total sample size of 592. 

RCL utilized these data to study the 
properties of the mixture index of fit. In this 
study, these data were used to compare the 
differences in estimates that result from using 
sampling zeros and structural zeros. The 16 cells 
were set to zero one-by-one and the results are 
shown in Table 4. The percentage differences 
between use of sampling zero and structural zero 
techniques range from 11.1% to 40.0%, Note 
that 6 of these differences are statistically 
significant (p < 0.05) using conventional z tests 

for proportions. The largest reductions in π̂ ∗  
using structural zero occurs when black hair and 
hazel eye color is set to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Cross-classification of Eye Color and Hair Color 

Eye Color 
Hair Color 

Black Brunette Red Blonde 
Brown 68 119 26 7 
Blue 20 84 17 94 
Hazel 15 54 14 10 
Green 5 29 14 16 

Source: Snee (1974), Diaconis & Efron (1985). 

Table 3: Fit Statistics for Fatal Crashes by Speed Limit and Land Use 
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Recommendations 
Among all the sampling zero techniques 
compared in terms of parameter bias, replacing 
zeros with larger flattening constants such as 1 
and the structural zero technique appear to 

perform better in the sense that, on average, π̂ ∗  
is smaller. Between these two techniques, the 
structural zero technique is generally 
recommended for extremely and slightly 
dispersed row and column marginal distributions 
tables with small sample sizes and small table 
sizes while in other cases replacing with larger 
flattening constant (i.e., 1) is preferred. 

Based on the current findings, RCL 
standard error estimates were comparatively 
conservative. In general, it is preferable in 
practice to use variance estimates that tend to be 
conservative (i.e., larger) rather than liberal (i.e., 
smaller). However, it would be valuable to 

investigate the standard error of π̂ ∗  using re-
sampling methods to provide better guidance for 
users. 
 
Implications for Future Research 
 
1. Evenly distributed, slightly and extremely 

dispersed marginal distributions for each 
different size of tables were manipulated in 
the current study. It would be valuable to 
investigate more diversified marginal 
distribution in future studies. 

2. As noted, the limitation of structural zero 
technique with number of zero cells might 
affect the results when compared with other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sampling zero techniques. It would be of 
interest to investigate structural zero 
technique applied in two-point mixture 
model index in contingency tables with 
more than one zero when the independence 
assumption holds. 

3. In order to attain reasonable execution times 
for the simulation, in this study, an 
increment of .01 was adopted to 
successively increase π̂ ∗  when estimating 

π̂ ∗  using an EM algorithm. For very small 

true values of *π , it would be necessary to 
use a value of .001 or even .0001 in order to 
obtain a more detailed picture, especially for 

the lower bound of π̂ ∗ .  
4. In a future study, it would be beneficial to 

investigate the standard error of π̂ ∗  using 
other re-sampling methods (e.g., jackknife) 
and compare with RCL to provide a more 
concrete guide. 

5. The larger value of flattening constants (e.g., 
1) might affect the original data structural 
when sample size of a contingency table is 
small (e.g., 5 per cell) and thus the results 
could be slightly influenced. Alternative 
ways to define the flattening constants such 
as a percentage to total sample size is of 
interest in future study. 

6. Finally, it would be valuable to evaluate the 

performance of *π  under conditions where 
the independence assumption does not hold. 

 
 

Table 4: π̂ ∗  Comparison of Sampling Zero and Structure Zero using Eye Color Data 
(Each cell manipulated to be zero in turn.) 
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