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Inference in Simple Regression for the Intercept 
Utilizing Prior Information on the Slope 

 
Ayman Baklizi Adil E. Yousif 

Qatar University, Qatar 
 

 
Shrinkage type estimators are developed for the intercept parameter of a simple linear regression model 
and the case when it is suspected a priori that the slope parameter is equal to some specific value is 
considered. Three different estimators of the intercept parameters are examined. The relative 
performances of the estimators are investigated based on a simulation study of the biases and mean 
squared errors. The associated bootstrap confidence intervals are also studied and their performance is 
evaluated. 
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Introduction 
Consider the simple linear regression model 
 

,10 iii xy εββ ++= ni ,,1=  
 
where the error terms iε  are independent and 

identically distributed as ( )2,0 σN . The aim is 

to estimate the intercept parameter 0β  when 

prior information that the slope parameter, 1β , 

is equal to some specific value, 0
1β  is uncertain. 

In the absence of any prior information, the 
maximum likelihood (equivalent, least squares) 
estimator of the regression parameters are given 
by 
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If the slope parameter is known and is equal to 

0
1β , then the estimator of the intercept 

parameter 0β  is xy 0
10

ˆ ββ −=′ . The additional 

uncertain prior information about the slope 
parameter is utilized with a view to produce 
improved estimators. Khan and Saleh (1997) 
developed the preliminary test estimator and 
certain types of shrinkage estimators that utilize 
a so-called distrust factor and adopted this 
approach to estimate the slope parameters of two 
suspected parallel regression models. Bhoj and 
Ahsanullah (1993, 1994) considered estimating 
the conditional mean for simple regression 
model, and Khan and Saleh (1997) discussed the 
problem of shrinkage preliminary test estimation 
for the multivariate Student-t regression model. 
 
The Estimators 

The idea of preliminary test estimation 
is based on utilizing the result of a preliminary 
test in choosing between two alternative 
estimators. In the case considered herein, the 
two estimators are the unrestricted estimator 

xy 10
ˆˆ ββ −=  and the restricted estimator 

xy 0
10

ˆ ββ −=′ . The preliminary test is for the 
hypothesis: 
 

0
110 : ββ =H  vs. 0

111 : ββ ≠H . 
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The null hypothesis is rejected for large values 
T  where 
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The preliminary test estimator PTE is defined as 
 

( ) ( )2,202,200
ˆˆˆ

−− ≤′+>= nn
PT tTItTI αα βββ  

 
where I(A) denotes an indicator function of the 
set A. The PTE is a convex combination of 

xy 10
ˆˆ ββ −=  and xy 0

10
ˆ ββ −=′  and depends 

on the random coefficient ( )2,2 −≤ ntTI α  whose 

value is 1 when the null hypothesis is not 
rejected and is 0 otherwise. Thus, the PTE is an 

extreme compromise between 0β̂  and 0β̂ ′ . 

Moreover, the PTE does not allow a smooth 
transition between the two extremes. A possible 
remedy for this is to use an estimator with a 
continuous weight function. This function could 
be the P-value of the preliminary test.  

The use of the P-value as a continuous 
weight function in preliminary test estimation 
was utilized by Baklizi (2004) and Baklizi and 
Abu-Dayyeh, W. (2003). If 

( )2,2Pr −>=−= ntTvaluePv α , then a 

shrinkage estimator can be found as follows: 
 

( )PV
0 0 0

ˆ ˆ ˆ1 v v .′β = − β + β  

 
Another possibility is given by Khan and Saleh 
(1997) who suggested the estimator 
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where *c is the value that minimizes the mean 

squared error of SH
0β̂ . This value is given by 
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and does not depend on the significance level of 
the preliminary test. 
 
The Confidence Intervals 

Bootstrap intervals are computer 
intensive methods based on re-sampling with 
replacement from original data. Bootstrapping 
regression models can be constructed and run in 
several ways. The procedure adopted in this 
study was to resample with replacement from 
the pairs ( ) .,,1,, niyx ii =  Several bootstrap 

based intervals are discussed in the literature.; 
the most common are the bootstrap-t interval, 
the percentile interval and the bias corrected and 
accelerated (BCa) interval. 

Let 0
~β  be an estimator of 0β  and let 

*
0

~β  be the estimator calculated from the 

bootstrap sample. Let *
αz  be the α  quantile of 

the bootstrap distribution of 
*

0
*
0

* ˆ/)
~~

( ηββ −=Z , where *η̂  is the 

estimated standard deviation of 0
~β  calculated 

from the bootstrap sample. The bootstrap-t 
interval for 0β  is given by 

( )ηβηβ αα ˆ
~

 , ˆ
~ *

20
*

210 zz −− −  where *
αz  is 

determined by simulation.  
When a variance estimate of the 

estimator under consideration is unavailable or 
difficult to obtain, a modification of the 
bootstrap-t interval is needed. Such a 
modification is based on using a further 
bootstrap sample from the original bootstrap 
sample to estimate the variance or the standard 

deviation ( )*
0

* ~βsd  of *
0

~β . The modified 

bootstrap-t interval is thus given by; 
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The percentile interval may be described 

as follows, let *
0

~β  be an estimate of the 

intercept parameter calculated from the 
bootstrap sample. Here the bootstrap distribution 

of *
0

~β  is simulated by re-sampling repeatedly 

from the regression model based on the original 

data and calculating Bii ,,1,
~*

0 =β  where B is 

the number of bootstrap samples. If Ĥ  is the 

cumulative distribution function of *
0

~β , then the 

α−1  interval is given by 
 

1 1ˆ ˆH  ,   H 1 .
2 2

− − α α    −        
 

 
The bias corrected and accelerated 

interval is also calculated using the percentiles 

of the bootstrap distribution of 0
~β . The 

percentiles depend on two numbers, â  and 0ẑ , 

called the acceleration and the bias correction. 
The interval (BCa) is given by 
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( ).Φ  is the standard normal cumulative 

distribution function, αz  is the α  quantile of 

the standard normal distribution. The values of 
â  and 0ẑ  are calculated as follows: 
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where ( )i0
~β  is the intercept estimator using the 

original data excluding the ith pair and 
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The value of 0ẑ  is given by 
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Methodology 

Simulation Study 
A simulation study was designed to 

evaluate the performance of the shrinkage 
estimators in terms of their biases and mean 
squared errors. Results for the preliminary test 
estimator are included for comparison purposes 
and the performance of the bootstrap intervals 
associated with the shrinkage estimators is also 
studied. The simulations used the sample sizes 

=n 15, 30 and 45. The slope parameter true 

value was chosen to be =1β 0, 1, 2, 3 and 4, the 
true value of the intercept parameter was set at 

00 =β , and the guess value of the slope is set 

equal to zero in all cases. The predictor values 
are generated from the uniform distribution 
while the error terms are generated from 

( )2,0 σN  with =2σ 1 or 4.  
For each combination of the simulation 

indices 1,000 pairs of ( )yx,  values were 
generated and the estimators were calculated. 
The level of the preliminary test is set to 

05.0=α . The biases and mean squared errors 
are calculated as: 
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where 0β  is the true value of the intercept 

parameter and 0
~β  is the shrinkage estimator 

under consideration. 
The performance of the intervals is 

evaluated in terms of their coverage probabilities 
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(CP) and expected lengths (EL), which are 
calculated as follows: For the confidence 
interval CI , 
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11000

1

i
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where LB  and UB  are the lower and upper 
bounds of the confidence interval. The nominal 
coverage probability of each interval is taken as 

%95.0 . The bootstrap calculations used 500 
replications, and the second stage used 25 
replications to estimate the variances of the 
estimators. 
 

Results 
The results for biases are shown in Table 1. It 

appears that PV
0β̂  has the least bias among the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shrinkage estimators. The bias of all estimators 
increases as the initial guess moves further from 
the true value to a certain point and then 
decreases again, and the biases of all estimators 
decreases as the sample size increases. Results 
for the MSE performance are shown in Table 2; 

it appears that PV
0β̂  also has the best overall 

performance among the shrinkage estimators. 
For the confidence intervals, it appears that 

intervals based on PV
0β̂  perform better than 

intervals based on SH
0β̂  in terms of the 

attainment of coverage probabilities (see Table 
3). Results indicate that the BCa intervals and t-
int intervals perform better than the PRC 

intervals among intervals based on PV
0β̂ . 

Regarding interval widths, it appears that the t-
int intervals are the shortest followed closely by 
the BCa intervals (see Table 4). The PRC 
intervals are very wide compared to the other 

intervals based on PV
0β̂ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Biases of the Estimators 
0

1β  0β̂  PT
0β̂  SH

0β̂  PV
0β̂  

15=n , 1=σ  
0.0 -0.010 -0.002 -0.007 -0.009 
1.0 -0.008 0.314 0.255 0.066 
2.0 0.002 0.316 0.354 0.065 
3.0 0.012 0.179 0.375 0.042 

15=n , 2=σ  
0.0 -0.008 -0.004 -0.021 -0.013 
1.0 0.007 0.374 0.318 0.100 
2.0 0.065 0.661 0.555 0.204 
3.0 -0.009 0.715 0.639 0.142 

30=n , 1=σ  
0.0 -0.007 0.000 0.004 -0.003 
1.0 -0.002 0.230 0.221 0.047 
2.0 0.003 0.093 0.258 0.020 
3.0 -0.004 0.001 0.252 -0.002 

30=n , 2=σ  
0.0 0.010 -0.004 -0.001 0.007 
1.0 -0.019 0.311 0.278 0.062 
2.0 -0.007 0.445 0.435 0.089 
3.0 0.010 0.369 0.512 0.079 
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Table 2: MSEs of the Estimators 
0

1β  0β̂  PT
0β̂  SH

0β̂  PV
0β̂  

15=n , 1=σ  
0.0 0.297 0.127 0.154 0.224 
1.0 0.296 0.371 0.273 0.281 
2.0 0.316 0.695 0.425 0.355 
3.0 0.290 0.627 0.438 0.322 

15=n , 2=σ  
0.0 1.169 0.485 0.606 0.872 
1.0 1.200 0.789 0.801 0.979 
2.0 1.238 1.467 1.154 1.164 
3.0 1.194 2.211 1.406 1.267 

30=n , 1=σ  
0.0 0.138 0.063 0.073 0.105 
1.0 0.142 0.259 0.165 0.152 
2.0 0.139 0.269 0.207 0.153 
3.0 0.143 0.153 0.208 0.145 

30=n , 2=σ  
0.0 0.564 0.250 0.300 0.434 
1.0 0.566 0.529 0.441 0.504 
2.0 0.580 1.049 0.662 0.620 
3.0 0.546 1.239 0.786 0.621 

 
Table 3: Coverage Probabilities of the Intervals 

0
1β  

SH
0β̂  PV

0β̂  

t-int BCa PRC t-int BCa PRC 
15=n , 1=σ  

0.0 0.744 0.963 0.925 0.922 0.937 0.950 
1.0 0.709 0.910 0.856 0.904 0.931 0.876 
2.0 0.787 0.842 0.866 0.876 0.925 0.890 
3.0 0.855 0.854 0.913 0.910 0.946 0.935 

15=n , 2=σ  
0.0 0.744 0.957 0.927 0.928 0.941 0.946 
1.0 0.705 0.936 0.900 0.910 0.929 0.920 
2.0 0.705 0.905 0.862 0.909 0.932 0.885 
3.0 0.757 0.875 0.853 0.881 0.919 0.878 

30=n , 1=σ  
0.0 0.761 0.969 0.933 0.944 0.955 0.944 
1.0 0.764 0.892 0.869 0.918 0.949 0.883 
2.0 0.863 0.855 0.926 0.925 0.960 0.951 
3.0 0.859 0.841 0.922 0.923 0.956 0.928 

30=n , 2=σ  
0.0 0.733 0.970 0.928 0.937 0.955 0.946 
1.0 0.718 0.945 0.893 0.929 0.946 0.903 
2.0 0.756 0.874 0.861 0.904 0.933 0.867 
3.0 0.838 0.877 0.901 0.916 0.957 0.920 
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Conclusion 

In conclusion, it is recommended that PV
0β̂  and 

the associated t- interval be employed for 
inference about the intercept parameter when 
there uncertain prior information exists 
regarding the slope. 
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Table 4: Widths of the Bootstrap Intervals 

0
1β  
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0β̂  PV

0β̂  
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1.0 1.148 1.301 1.733 1.430 1.517 1.853 
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