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Evaluating educational programs is a core component of assessment. One challenge occurs because 
participants often enter into programs with diverse skills and backgrounds. The regression-discontinuity 
design has been used to evaluate programs amongst a diverse group, but noncompliance is a limitation. A 
simulation analysis illustrates the impact of noncompliance. 
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Introduction 
Evaluating the effectiveness of educational 
programs can pose a challenge for researchers. 
One reason is because it is very difficult to 
isolate a program effect versus the effect 
attributed to differences between students who 
participate in such programs. Most evaluative 
studies compare different and diverse groups of 
students with respect to how well they perform 
by relying on observational versus experimental 
data. In order to estimate an actual program 
effect versus estimating differences between 
program participants, many studies have 
incorporated the regression-discontinuity design 
(Thistlethwaite & Campbell, 1960). The 
regression-discontinuity design allows for 
making causal inferences about program effects 
as the design has properties similar to a random 
experiment (Leake & Lesik, 2007; Lesik, 2006; 
Luyten, 2006; Moss & Yeaton, 2006). 

The regression-discontinuity design has 
become a popular statistical tool for program 
evaluation because when a prescribed pre-
treatment assignment measure is available, the 
regression-discontinuity design   can emulate a  
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random experiment (Pettersson-Lidbom, 2003). 
Because the design resembles a random 
experiment, it can be used to estimate a program 
effect versus simply describing differences 
between different groups of individuals (Lesik, 
2007). 

Although the regression-discontinuity 
can be used to evaluate educational programs, 
the design has some major limitations that can 
make it difficult to apply in practice. One 
limitation of the design is that it assumes that the 
functional form of the model is specified 
correctly (Schumacker & Mount, 2007). Given 
the correct model specification, the regression-
discontinuity design can provide an unbiased 
estimate of the program effect (Shadish, Cook & 
Campbell, 2002). However, if the functional 
form of the model is not known - and therefore 
not specified correctly - then any inferences 
made using a regression-discontinuity analysis 
may be biased and unreliable (Schumacker & 
Mount, 2007; Shadish, et al., 2002). 

Another limitation is that the regression-
discontinuity design requires approximately 
three times as many participants to achieve 
adequate power compared to a true random 
experiment (Cappelleri, Darlington & Trochim, 
1994). Thus, a large sample is needed in order to 
have sufficient power to detect an effect if such 
an effect were to exist (Cappelleri, et al., 1994; 
Shadish, et al., 2002). Considering these two 
limitations together, it can be challenging for 
researchers in less-than-perfect situations to use 
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the regression-discontinuity design. However, 
one of the more serious limitations of the 
regression-discontinuity design is the issue of 
noncompliance. Noncompliance occurs if some 
of the participants do not adhere to their 
treatment assignment based on the score they 
received on the pre-treatment assignment 
measure. 

The purpose of this study is to provide a 
simulation analysis using the regression-
discontinuity design to address the issue of non-
compliance within the framework of ordinary 
least squares regression. Using Monte Carlo 
techniques to simulate a regression-discontinuity 
analysis with different sample and effect sizes 
along with various degrees of noncompliance, 
this paper illustrates how noncompliance can 
bias the estimate of the treatment effect. A set of 
guidelines is developed that researchers can use 
to determine if the degree of noncompliance is 
severely biasing the estimate of the treatment 
parameter. 
 
Theoretical Background 

Many researchers have used the 
regression-discontinuity design to evaluate the 
effectiveness of educational programs (Jacob & 
Lefgren, 2002; Leake & Lesik, 2007; Lesik, 
2006; Moss & Yeaton, 2006; Ross & Lacey, 
1983). One of the core requirements for using 
the regression-discontinuity design is that a pre-
treatment assignment measure with a defined 
cutoff score is used as the sole mechanism for 
assigning participants to either the treatment 
group or the control group. When given such a 
pre-treatment assignment measure, those 
individuals who score just below and just above 
a defined cutoff score will be similar to what a 
true random assignment would generate 
(Shadish, et al., 2002; Thistlethwaite & 
Campbell, 1960; Trochim, 1984; 
vanDerKlaauw, 2002). 

If such an assignment measure is used, 
then an unbiased estimate of the program effect 
can be found by interpreting the estimated 

parameter β̂1( ) at the cutoff score that is 

associated with the dichotomous treatment 
variable (TREATMENT) in a baseline 
regression-discontinuity equation (Lesik, 2008; 
Shadish, et al., 2002). A baseline regression-

discontinuity equation requires that the 
assignment variable (ASSIGNMENT) and 
treatment indicator variable (TREATMENT) be 
included in a regression model as is illustrated in 
equation (1). 
 
Y = β0 + β1TREATMENT + β2ASSIGNMENT + ε (1) 

 
Although the baseline regression-

discontinuity design involves a very simple 
model (there are only two predictor variables 
represented in the model), there are some major 
limitations of the regression-discontinuity 
design. One such limitation is that the design 
requires the correct model specification between 
the assignment and outcome measure (Shadish, 
et al., 2002). Another limitation is that a larger 
sample size is needed for the regression-
discontinuity design as compared to a true 
random experiment (Cappelleri, et al., 1994). 
Furthermore, it is expected that participants will 
adhere to their assignment, and not enter the 
treatment group if they were assigned to the 
control group or vice-versa. 

The regression-discontinuity design 
requires that the regression model under 
consideration has the correct functional form 
with respect to the relationship between the 
assignment variable and the outcome measure of 
interest. For example, if the relationship between 
the assignment and outcome variables is linear, 
then the baseline regression-discontinuity model 
as given in equation (1) would suffice because 
this equation describes a linear relationship. 
However, if there is a non-linear relationship 
between the assignment and outcome variables, 
then using equation (1) would generate a biased 
estimate of the treatment effect (Shadish, et al., 
2002; Thistlethwaite & Campbell, 1960; 
Trochim, 1984). Thus, if a non-linear 
relationship represents the true functional form 
of the model, then higher order terms and their 
respective interactions would need to be added 
to the baseline regression-discontinuity model 
(Lesik, 2008; Schumacker & Mount, 2007; 
Shadish, et al., 2002; Trochim, 1984). Equation 
(2) is a regression-discontinuity model that 
includes higher-order terms and interactions in 
addition to the baseline regression-discontinuity 
model. 
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Many studies that have used the 

regression-discontinuity design have either 
employed exploratory techniques to empirically 
estimate the functional relationship between the 
assignment and outcome variables (Jacob & 
Lefgren, 2002; Lesik, 2006), or have added 
higher-order polynomial terms of the assignment 
variable along with possible interaction terms 
and then tested to determine if such terms are 
significant (Lesik, 2008; Moss & Yeaton, 2006). 
One concern with including higher-order terms 
and interactions in a regression-discontinuity 
design is that it can difficult to estimate the 
correct functional form by visualization. 
Furthermore, adding extra terms to the 
regression-discontinuity model reduces the 
power of the design (Cappelleri & Trochim, 
1994). Similarly, with the sample size 
limitations of the regression-discontinuity 
design, researchers often have to extrapolate 
more observations above and below the cutoff 
score in order to obtain a sufficiently large 
sample and then try to model the functional form 
appropriately (Lesik, 2006; Moss & Yeaton, 
2006; Shadish, et al., 2002). 

Clearly, a trade-off exists between the 
number of observations collected around the 
cutoff score and the functional form 
specification of the regression-discontinuity 
model. Collecting too few observations around 
the cutoff score would require including more 
observations that are further away from the 
cutoff score, thus making it more difficult to 
describe the appropriate functional form. 
Collecting a small number of observations that 
lie only within a very narrow range around the 
cutoff score may not provide enough power to 
detect a reasonably sized effect. 

Although the functional form and 
sample size limitations of the regression-
discontinuity design can be difficult to address 
in practice, one of the most serious limitations of 

the design occurs when participants do not 
adhere to their assignment that is based only on 
the score received on the assignment measure. 
Typically, in order to address such non-
compliance, researchers have modeled selection 
effects by using the probability of actually 
participating in the treatment program as an 
instrumental variable for the program 
assignment (Lesik, 2006).  

The technique of instrumental variable 
estimation measures the effect of the treatment 
rather than just the assignment to the treatment 
group (Angrist & Krueger, 1991; Jacob & 
Lefgren, 2002). However, most research using 
instrumental variables estimation has the first 
stage probability of actually participating in the 
program described by a linear probability model 
(Lesik, 2006; 2007), and this introduces some of 
the limitations of the linear probability model, 
such as probabilities greater than one or less 
than zero (Wooldridge, 2003). Nonlinear first-
stage instrumental variables estimation tends not 
to be used in practice because their behavior is 
generally not well known (Wooldridge, 2002).  
Another concern with using instrumental 
variables estimation is that this technique on in 
its own relies on some very strong assumptions 
which can be difficult to assess in practice 
(Wooldridge, 2002, 2003). 

A simpler strategy to assess the effect of 
non-compliance in a regression-discontinuity 
analysis is to determine how much of an effect 
keeping those observations that did not comply 
with their assignment in the model. A basic 
sensitivity analysis can be used to determine if 
the estimate of the treatment effect is different 
when including and excluding non-compliers in 
the model (Leake & Lesik, 2007). However, 
there remains the need to establish some general 
guidelines that can be used to assess whether the 
amount of non-compliance could be introducing 
bias in the estimate of the treatment effect if 
these observations are included in the analysis, 
as well as to determine what happens to the 
estimate of the treatment effect when non-
compliers are removed from the analysis. 

 
Methodology 

In order to address the impact of non-
compliance on the estimate of the treatment 
effect as obtained through a regression-
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discontinuity design, the results of a simulation 
analysis are presented within the framework of 
an ordinary least squares regression. The 
simulation analysis was executed using Version 
10 of STATA® (STATA Corporation, 2007). 
 
Simulation Analysis 

A simulation analysis was performed to 
investigate how participant noncompliance can 
impact the estimate of the treatment effect in a 
regression-discontinuity design within the 
framework of ordinary least squares regression. 
The challenge with running a simulation 
analysis for a regression-discontinuity design 
revolves around simulating realistic regression-
discontinuity data. Figure 1 illustrates a 
hypothetical regression-discontinuity design 
(Shadish, et al., 2002). A perfect regression-
discontinuity indicates 100% compliance. 

Perfect compliance is when those 
participants who were assigned to the treatment 
group actually did participate in the treatment, 
and those who were assigned to the control 
group did not participate in the treatment at all.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notice that the discontinuity in Figure 1 
represents a simulated treatment effect of −0.50 
at the cutoff score of 0. 

In order to generate realistic regression-
discontinuity data, a random component was 
introduced (see Figure 2). Figure 2 shows the 
scatter plot along with the lines of best fit and a 
lowess smoother estimating the relationship 
between the assignment variable and the 
outcome variable. The random component was 
fixed at one-half of the effect size to ensure that 
a linear model would be appropriate. 

Appendix 1 contains an example of how 
Stata code can be written to simulate the 
regression-discontinuity data presented in Figure 
2. This Stata code randomly generates 50 
observations on the interval −1, 1( ) , which 

centers about the cutoff score of 0. Observations 
that are greater than or equal to zero are assigned 
the value 0 to represent that they are assigned to 
the control group, whereas all other observations 
that fall below the cutoff score of 0 are assigned 
to the treatment program and given the value 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Simulated Regression-Discontinuity Data with an Effect Size of −0.50 
At the Centered Cutoff Score of 0 
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This example illustrates a random 
component that is generated between −0.25 and 
0.25 from the original data: In other words, each 
observation is randomly assigned to be within 
±0.25 of its original value. The simulated 
treatment effect of 0.50 is generated for those 
observations that are assigned to the treatment 
group so around the cutoff score of 0, the 
treatment effect remains at 0.50. The choice of 
considering a small interval around the cutoff 
score and of having the random component 
equal to half of the effect size was introduced to 
generate what realistic regression-discontinuity 
data would look like and to ensure a linear 
model specification is appropriate. 

In order to generate non-compliers, a 
random number on the interval 0,1)  was 

generated and, for each observation, this random 
number was compared to the given percent of 
non-compliance. If the observation was designed 
as a crossover because the random number was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
less than the given percentage of non-non-
compliance, then the treatment indicator was 
changed for these observations. 
 

Results 
A series of Monte Carlo simulations were run to 
investigate the impact of sample size, non-
compliance and the effect size on the estimate of 
the treatment effect when non-compliers were 
kept in the analysis, when there was perfect 
compliance, and when non-compliers were 
deleted from the analysis. A total of 10,000 
simulations were run for each of the different 
combinations of effect sizes, sample sizes, and 
percentages of non-compliance. Table 2 shows 
the estimate of the treatment effect and standard 
error for including non-compliers in the analysis, 
with perfect compliance and for deleting non-
compliers from the analysis. 

The results of the simulation analysis 
indicate that for any sample size, any effect size 
and any degree of non-compliance, keeping non-

Figure 2: Regression-Discontinuity Data with Added Random Component of 0.25 
and a −0.5 Discontinuity at the Centered Cutoff Score of 0 
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compliers in the analysis will generate a biased 
estimate of the treatment effect. Also interesting 
is that larger sample sizes show greater bias as 
compared to smaller samples even for the same 
percent of non-compliance. In addition, as the 
degree of non-compliance increases, the 
estimate of the treatment effect becomes more 
biased. Furthermore, for any degree of non-
compliance less than 10%, running the 
regression-discontinuity analysis without the 
non-compliers generates similar estimates of the 
treatment effect than was found assuming 
perfect compliance. This is consistent with Judd 
and Kenny (1981) and Trochim (1984), who 
suggest that excluding no more than 5% of the 
non-compliers should provide reasonable 
estimates of the treatment effect. 

This simulation analysis illustrates that - 
if non-compliance is random - then excluding no 
more than 10% of the observations provides a 
reasonable estimate of the treatment effect. It is 
also interesting to note that analyses with greater 
effect sizes show a similar bias compared to 
smaller effect sizes. For example, for a sample 
of 500 with an effect size of 0.500, if 10% of the 
observations are non-compliers and if they are 
kept in the analysis, then the estimated effect 
size becomes 0.193, a reduction of 
approximately 60%. For a sample of 500 with an 
effect size of 2.000, if 10% of the observations 
are non-compliers and they are kept in the 
analysis, then the estimated effect size becomes 
0.775, again a reduction of approximately 60%. 
Similarly for a sample size of 20 with 1% of the 
non-compliers kept in the analysis, then the 
estimated effect size becomes 0.458 for an effect 
size of 0.500, a reduction of approximately 8%, 
and for a sample of size 20 with 1% of the non-
compliers kept in the analysis, then the 
estimated effect size becomes 1.834 for an effect 
size of 2.000, again a reduction of approximately 
8%. 
 

Conclusion 
Although this study contributes to the literature 
by providing some guidelines for dealing with 
the noncompliance limitation of the regression-
discontinuity design, this study did not address 
other issues such as attrition or numerous other 
threats to validity that are inherent with virtually 
every type of analyses (Shadish, et al., 2002). 

Furthermore, because the range of data collected 
around the cutoff score was fixed to only include 
those observations within one point of the 
centered cutoff score of 0 the issue of correct 
functional form for this study was not relevant. 
However, as is often the case in practice, more 
observations need to be collected around a 
greater range of the cutoff score, and thus 
functional form specification becomes more of a 
concern. In this simulation, the functional form 
was forced to be approximately linear in order to 
avoid trying to model functional form and non-
compliance together. 

Results of the simulation analysis 
suggest that if non-compliance is essentially a 
random phenomenon, then removing the non-
compliers from the analysis does not appear to 
bias the estimate of the treatment effect if the 
percentage of non-compliers is relatively small, 
such as less than 10%. However, if non-
compliance is not random, then this may not be 
the case. For example, if only those participants 
who were on one side of the cutoff score chose 
not to comply with their assignment, then 
deleting them from the analysis will likely 
produce a biased estimate of the treatment 
effect. In cases where non-compliance is not 
random, instrumental variables estimation may 
be a better strategy to use, even given the 
relatively strong assumptions of instrumental 
variables estimation. 
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Appendix 1: Example of Stata Code 
for Simulation Analysis 

 
program rdgen, rclass 
version 10.1 
drop _all 
 set obs 50 
 generate x = -1 + (1-(-1))*uniform() 
 generate treat = 1 
 replace treat = 0 if x > = 0 
 generate y = x + 2 
 replace y = (y - 0.05) if treat == 0 
 generate z = -0.25 + (0.25-(-

0.25))*uniform() 
 generate crossover = 0 
 generate w = uniform() 
 generate treatcr = treat  
 replace treatcr = treat + 1 if w < 0.05 
 replace crossover = 1 if w < 0.05 
 replace treatcr = 0 if treatcr == 2 
 replace y = z+y  
 regress y treatcr x 
 return scalar B1cr = _b[treatcr] 
 return scalar seB1cr = _se[treatcr] 
 regress y treat x 
 return scalar B1 = _b[treat] 
 return scalar seB1 = _se[treat] 
 drop if crossover == 1 
 regress y treat x 
 return scalar B1nocr = _b[treat] 
 return scalar seB1nocr = _se[treat] 
end 
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Table 2: Estimate of the Treatment Effect and Standard Error (in [ ]) for Simulated Regression-Discontinuity Data Including Non-Compliers (NC), 
with Perfect Compliance and Without Non-Compliers for Various Percentages of Non-Compliance (% NC) 

 

% 
NC 

Sample 
Size 

With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 

Effect 
Size 

0.500 1.000 1.500 2.000 

1% 

20 
0.458 

[0.135] 
0.500 

[0.137] 
0.500 

[0.138] 
0.917 

[0.270] 
1.003 

[0.273] 
1.002 

[0.275] 
1.371 

[0.405] 
1.498 

[0.410] 
1.498 

[0.412] 
1.834 

[0.541] 
1.997 

[0.548] 
1.996 

[0.551] 

30 
0.453 

[0.108] 
0.500 

[0.110] 
0.500 

[0.110] 
0.901 

[0.216] 
0.996 

[0.219] 
0.996 

[0.220] 
1.363 

[0.324] 
1.504 

[0.329] 
1.504 

[0.330] 
1.807 

[0.432] 
1.995 

[0.439] 
1.995 

[0.441] 

40 
0.449 

[0.093] 
0.501 

[0.094] 
0.500 

[0.094] 
0.900 

[0.186] 
1.001 

[0.187] 
1.001 

[0.188] 
1.353 

[0.278] 
1.503 

[0.281] 
1.503 

[0.283] 
1.800 

[0.371] 
2.001 

[0.375] 
2.001 

[0.377] 

50 
0.450 

[0.083] 
0.501 

[0.084] 
0.501 

[0.084] 
0.894 

[0.165] 
0.998 

[0.167] 
0.998 

[0.168] 
1.346 

[0.248] 
1.500 

[0.250] 
1.499 

[0.251] 
1.796 

[0.330] 
2.003 

[0.333] 
2.002 

[0.335] 

100 
0.443 

[0.058] 
0.500 

[0.058] 
0.500 

[0.059] 
0.885 

[0.116] 
0.997 

[0.117] 
0.997 

[0.117] 
1.328 

[0.174] 
1.499 

[0.175] 
1.499 

[0.176] 
1.775 

[0.231] 
2.002 

[0.233] 
2.003 

[0.234] 

200 
0.441 

[0.041] 
0.501 

[0.041] 
0.500 

[0.041] 
0.879 

[0.082] 
1.000 

[0.082] 
0.999 

[0.082] 
1.323 

[0.122] 
1.500 

[0.123] 
1.501 

[0.124] 
1.765 

[0.163] 
2.001 

[0.164] 
2.001 

[0.165] 

300 
0.440 

[0.033] 
0.500 

[0.033] 
0.500 

[0.034] 
0.880 

[0.066] 
1.000 

[0.067] 
1.000 

[0.067] 
1.321 

[0.100] 
1.502 

[0.100] 
1.502 

[0.101] 
1.760 

[0.133] 
1.998 

[0.134] 
1.998 

[0.134] 

500 
0.439 

[0.026] 
0.500 

[0.026] 
0.500 

[0.026] 
0.880 

[0.051] 
1.000 

[0.052] 
1.000 

[0.052] 
1.317 

[0.077] 
1.501 

[0.078] 
1.501 

[0.078] 
1.756 

[0.103] 
2.000 

[0.104] 
2.000 

[0.104] 

5% 

20 
0.327 

[0.127] 
0.496 

[0.137] 
0.496 

[0.143] 
0.658 

[0.255] 
1.002 

[0.274] 
1.004 

[0.282] 
0.988 

[0.382] 
1.498 

[0.411] 
1.499 

[0.423] 
1.335 

[0.511] 
2.010 

[0.548] 
2.010 

[0.564] 

30 
0.315 

[0.102] 
0.501 

[0.109] 
0.500 

[0.113] 
0.633 

[0.204] 
1.002 

[0.219] 
1.002 

[0.226] 
0.948 

[0.305] 
1.502 

[0.328] 
1.502 

[0.338] 
1.273 

[0.407] 
2.007 

[0.436] 
2.008 

[0.449] 

40 
0.310 

[0.087] 
0.500 

[0.094] 
0.500 

[0.097] 
0.617 

[0.175] 
1.002 

[0.187] 
1.002 

[0.193] 
0.931 

[0.262] 
1.502 

[0.281] 
1.501 

[0.289] 
1.235 

[0.350] 
1.998 

[0.375] 
1.999 

[0.386] 

50 
0.304 

[0.079] 
0.500 

[0.084] 
0.501 

[0.086] 
0.608 

[0.156] 
1.002 

[0.167] 
1.002 

[0.172] 
0.911 

[0.233] 
1.498 

[0.250] 
1.498 

[0.257] 
1.216 

[0.311] 
2.001 

[0.334] 
2.001 

[0.343] 

100 
0.295 

[0.054] 
0.500 

[0.058] 
0.500 

[0.060] 
0.588 

[0.109] 
1.000 

[0.117] 
1.000 

[0.120] 
0.887 

[0.163] 
1.501 

[0.175] 
1.502 

[0.180] 
1.184 

[0.218] 
2.003 

[0.233] 
2.003 

[0.240] 

200 
0.291 

[0.038] 
0.500 

[0.041] 
0.500 

[0.042] 
0.580 

[0.077] 
0.990 

[0.082] 
0.999 

[0.084] 
0.876 

[0.115] 
1.500 

[0.123] 
1.500 

[0.126] 
1.164 

[0.153] 
1.999 

[0.164] 
1.999 

[0.169] 

300 
0.290 

[0.031] 
0.500 

[0.033] 
0.500 

[0.034] 
0.580 

[0.062] 
1.000 

[0.067] 
1.000 

[0.069] 
0.868 

[0.094] 
1.499 

[0.100] 
1.499 

[0.103] 
1.158 

[0.125] 
2.001 

[0.134] 
2.002 

[0.137] 

500 
0.288 

[0.024] 
0.500 

[0.026] 
0.500 

[0.027] 
0.577 

[0.048] 
1.000 

[0.052] 
1.000 

[0.053] 
0.865 

[0.072] 
1.500 

[0.078] 
1.500 

[0.080] 
1.152 

[0.096] 
1.999 

[0.104] 
1.999 

[0.106] 
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Table 2 (continued): Estimate of the Treatment Effect and Standard Error (in [ ]) for Simulated Regression-Discontinuity Data 
Including Non-Compliers (NC), with Perfect Compliance and Without Non-Compliers for Various Percentages of Non-Compliance 

(% NC) 

% 
NC 

Sample 
Size 

With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 

Effect 
Size 

0.500 1.000 1.500 2.000 

10% 

20 
0.229 

[0.119] 
0.502 

[0.137] 
0.503 

[0.146] 
0.450 

[0.236] 
1.000 

[0.274] 
1.001 

[0.292] 
0.671 

[0.354] 
1.504 

[0.410] 
1.503 

[0.436] 
0.903 

[0.474] 
2.002 

[0.548] 
2.005 

[0.584] 

30 
0.214 

[0.094] 
0.500 

[0.110] 
0.500 

[0.116] 
0.429 

[0.189] 
1.002 

[0.218] 
1.001 

[0.232] 
0.645 

[0.283] 
1.505 

[0.328] 
1.504 

[0.348] 
0.853 

[0.376] 
1.999 

[0.437] 
2.001 

[0.464] 

40 
0.206 

[0.081] 
0.500 

[0.094] 
0.500 

[0.099] 
0.416 

[0.161] 
1.002 

[0.187] 
1.002 

[0.198] 
0.619 

[0.242] 
1.495 

[0.281] 
1.497 

[0.297] 
0.830 

[0.323] 
1.995 

[0.375] 
1.998 

[0.397] 

50 
0.205 

[0.072] 
0.500 

[0.083] 
0.500 

[0.088] 
0.405 

[0.143] 
0.996 

[0.167] 
0.997 

[0.177] 
0.610 

[0.215] 
1.496 

[0.251] 
1.496 

[0.265] 
0.817 

[0.287] 
1.999 

[0.333] 
2.000 

[0.353] 

100 
0.197 

[0.050] 
0.500 

[0.058] 
0.501 

[0.062] 
0.395 

[0.100] 
1.002 

[0.117] 
1.002 

[0.123] 
0.595 

[0.150] 
1.502 

[0.175] 
1.503 

[0.185] 
0.791 

[0.200] 
2.002 

[0.233] 
2.002 

[0.246] 

200 
0.195 

[0.035] 
0.500 

[0.041] 
0.500 

[0.043] 
0.388 

[0.070] 
1.000 

[0.082] 
1.000 

[0.087] 
0.582 

[0.105] 
1.498 

[0.123] 
1.498 

[0.130] 
0.781 

[0.141] 
2.001 

[0.164] 
2.001 

[0.173] 

300 
0.194 

[0.029] 
0.500 

[0.033] 
0.500 

[0.035] 
0.389 

[0.057] 
1.000 

[0.067] 
1.000 

[0.071] 
0.582 

[0.086] 
1.498 

[0.100] 
1.498 

[0.106] 
0.773 

[0.114] 
1.998 

[0.134] 
1.998 

[0.141] 

500 
0.193 

[0.022] 
0.500 

[0.026] 
0.500 

[0.027] 
0.387 

[0.044] 
1.000 

[0.052] 
1.000 

[0.055] 
0.579 

[0.066] 
1.499 

[0.078] 
1.499 

[0.082] 
0.775 

[0.088] 
2.000 

[0.103] 
2.001 

[0.109] 
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