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General Piecewise Growth Mixture Model: 
Word Recognition Development for Different Learners in Different Phases 

 
Amery D. Wu  Bruno D. Zumbo Linda S. Siegel 
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The General Piecewise Growth Mixture Model (GPGMM), without losing generality to other fields of 
study, can answer six crucial research questions regarding children’s word recognition development. 
Using child word recognition data as an example, this study demonstrates the flexibility and versatility of 
the GPGMM in investigating growth trajectories that are potentially phasic and heterogeneous. The 
strengths and limitations of the GPGMM and lessons learned from this hands-on experience are 
discussed. 
 
Key words: Structural equation model, piecewise regression, growth and change, growth mixture model, 

latent class analysis, population heterogeneity, word recognition, reading development, 
trajectories, literacy development. 

 
 

Introduction 
People learn and develop in different ways in 
different phases. A rich body of literature has 
documented the complexities in human 
development, among which the best known is 
probably Piaget’s phasic theory about children’s 
cognitive development. However, in statistical 
modeling, such complexities are often disguised 
by a primitive assumption about homogeneity 
and linearity of data. The purpose of this study 
is, in the context of children’s reading 
development, to demonstrate the application of 
the General Piecewise Growth Mixture Model 
(GPGMM). GPGMM is a versatile modeling 
strategy that allows for the investigation of 
trajectories that are heterogeneous and phasic. 
GPGMM marries the general growth mixture 
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model (GGMM) articulated by Muthén (2004) 
with piecewise regression (Li, Duncan, Duncan, 
& Hops, 2001; McGee & Carleton, 1970; 
Muthén & Muthén, 1998-2007). 
 
Overview of Two Reading Development 
Theories 

The debate over the developmental 
pathways of children’s literacy achievement has 
not been resolved. Two major competing 
theories exist: the deficit and the lag models. 
The deficit model suggests that children who 
have a superior start in precursor linguistic and 
cognitive skills will improve their reading skills 
at a faster rate than those with a slower start 
(e.g., Bast & Reitsma, 1998; Francis, et al., 
1996). The increasing difference in reading 
performance among poor, average and advanced 
readers observed in early development is 
believed to be a result of initial skill sets that 
never develop sufficiently in those who turn out 
to be poor readers.  

An alternative view, the lag model, 
suggests that children with a poorer start in their 
cognitive skills will display a faster growth in 
their later development, whereas those with a 
superior start will display a slower growth 
(Leppänen, et al., 2004; Phillips, et al., 2002).  
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Protagonists of this view believe that children 
who differ in reading ability vary only in the rate 
at which cognitive skills develop so that lagging 
children will eventually catch up with their 
peers, and that the gap in the early development 
will eventually disappear. 

Empirical evidence has not consistently 
confirmed either the deficit or lag model. Bast 
and Reitsma (1998) provided support for the 
deficit model based on the findings that the rank 
ordering of the six waves of word recognition 
scores remained stable and that the differences 
in the score increased from grade one to grade 
three. They concluded that differences in reading 
achievement of the 280 Dutch children were 
cumulative. In a longitudinal study, Francis, et 
al. (1996) studied the trajectories of 403 non-
disabled and disabled children in Connecticut 
from grade one to grade nine using the Rasch-
scaled composite score of the Word 
Identification, Word Attack and Passage 
Comprehension subtests (Woodcock-Johnson 
Psychoeducational Test Battery; Woodcock & 
Johnson, 1977). They used quadratic trajectories 
to model the non-linear growth pattern displayed 
in the data. The results showed that the disabled 
readers were unable to develop adequate reading 
skills and their problems persisted into 
adolescence. They concluded that a deficit 
model best characterized the enlarging gap and 
an intervention at an early age is essential in 
order to reduce the impact of early deficit. 

Other studies, however, have reported 
that initially poor readers improved faster, and 
the early gap decreased over time (e.g., 
Anrnoutse, et al., 2001; Aunola, et al., 2002; 
Jordan, Kaplan & Hanich, 2002; Scarborough & 
Parker, 2003). For example, assuming linearity 
from grade two to grade eight, Scarborough and 
Parker (2003) reported decreasing gaps of 57 
non-disabled and disabled children in both WJ-
Word Identification and WJ-Passage 
Comprehension. 

In a longitudinal study of 198 English 
readers in Canada from grade one to grade six, 
Parrila, et al. (2005) studied the development of 
word identification, word attack and passage 
comprehension separately. For each outcome 
measure, they fitted a latent growth quadratic 
curve using growth mixture modeling and found 
that children with lower starting performance 

reduced the distance between themselves and 
children who had higher initial performance. 
Aarnoutse, et al. (2001) also failed to find the 
fan-spread pattern in reading comprehension, 
vocabulary, spelling or word decoding 
efficiency. Their results suggested that the 
initially low performers tended to show greater 
gains than did medium or high performers. 
Similarly, Aunola, et al. (2002) found a decrease 
in individual differences in a reading skill score 
(a composite of four different reading tasks) of 
Finnish children. Scarborough and Parker (2003) 
also reported that the difference between good 
and poor readers in their US sample were 
smaller in grade eight than grade two in a 
composite reading score made of word reading, 
decoding and passage comprehension. 

Existing evidence has not provided 
conclusive support for either the deficit or the 
lag models, or for the relationship between early 
performance and subsequent growth rate. The 
incongruence in the empirical findings is 
palpable if careful attention is paid to the 
diversified and piecemeal approach to the 
research design and data analysis (Parrila, et al., 
2005). 

As is evident from this brief review, the 
research designs varied in the length and phase 
of the studied time interval (i.e., earlier or later 
development in the grade school), the statistical 
analyses (e.g., ANOVA, regression or latent 
growth model), measures used to represent 
reading ability, the population of children whose 
growth trajectories were compared (e.g., 
normative or children with learning difficulties), 
the hypothesized pattern of growth trajectory 
(e.g., linear or quadratic), outcome measure 
(e.g., word recognition or reading 
comprehension) and sample size, as well as the 
terminologies and their operational definitions. 
Parrila, et al. (2005) concluded that reading 
development could follow multiple pathways, 
only some of which are captured by the existing 
conceptualizations. Thus, researchers could 
benefit from a more integral and comprehensive 
data analytical framework that is capable of 
modeling the complex, intricate, and diversified 
developmental nature of children’s reading 
development. 
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Methodology 
Data 

The data consists of 1,853 elementary 
school children from the North Vancouver 
school district in British Columbia. These 
children were measured every year in the fall 
starting from kindergarten to grade six. The 
dependent variable, word recognition, had a 
maximum score of 57, which was measured by 
naming 15 alphabet letters and followed by the 
reading subtest of the Wide Range Achievement 
Test-3 (WRAT-3; Wilkinson, 1995), which has 
a list of 42 words ordered by difficulty. The 
measurement of word recognition remained the 
same across the seven waves of data collection; 
hence, measurement invariance that warranted 
temporal score comparability across grades was  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

assumed. For demonstrative purposes, only the 
data of the 526 children who had all seven 
waves of data were included. Outliers were 
retained because this study aimed to model these 
cases through distinct latent classes so that – 
within each class – the distribution of reading 
performance was assumed to be normal. 

Table 1 displays the mean (M), standard 
deviation (SD) and skewness of the seven waves 
of the data. Figure 1 displays the boxplots for 
the seven waves of word recognition scores. It 
can be observed that the distributions of the 
seven word recognition measures are, for the 
most part, symmetric. The overall performance 
in word recognition improved across time, with 
faster growth in the period between kindergarten 
and grade two, and relatively slower growth in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Descriptive Statistics of the Word Recognition Scores 

 K G1 G2 G3 G4 G5 G6 

Mean 11.60 23.86 31.55 35.63 37.62 40.27 41.89 

SD 5.14 4.85 4.52 4.99 4.39 4.71 4.20 

Skewness -0.21 0.38 0.22 0.32 0.15 0.07 -0.14 

 
Figure 1: Boxplots for the Word Recognition Scores from Kindergarten to Grade Six 
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the period between grade three and grade six. 
Figure 2 shows the individual trajectories. The 
overall pattern of the trajectories was consistent 
with those revealed in the boxplots and the 
literature, which showed a nonlinear trend 
(Francis, et al., 1996; Parrila, et al., 2005). 

Given the observed non-linearity, it 
would seem inappropriate to impose a linear 
trajectory to the observed data as portrayed by 
the thick single straight line in Figure 2. Most 
previous studies fitted a quadratic curve to 
model this non-linear pattern as portrayed by the 
thick curve line in Figure 2, where the early 
development is assumed to improve with a faster 
growth, followed by a relatively slower growth, 
and then reach a peak with a possibility to 
decline near the end. Although a quadratic 
function is fairly accessible and widely used by 
applied researchers, it may be inappropriate for 
literacy development of school-age children, 
because it may portray a decline at the end of the 
developmental course, whereas reading 
development, at worst, is expected to plateau 
rather than decline, if not continue to grow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Also, the meaning of a quadratic parameter is 
often hard to interpret conceptually for 
phenomena studied in the social and behavioral 
sciences, such as word recognition. 

Another possibility for modeling the 
developmental pattern observed in Figure 2 is to 
fit a piecewise linear trajectory (Khoo, 1997; Li, 
et al., 2001; McGee & Carleton, 1970; 
Raudenbush & Bryk, 2002) as shown by the two 
thick segments connected at grade two in Figure 
2. A piecewise trajectory allows different linear 
growth rates to be fitted to different 
developmental phases that are empirically 
observed or theoretically hypothesized. 

Notice that despite the overall trend 
observed in Figure 2, a great deal of variation 
exists in individual’s developmental pattern as 
demonstrated by the differences in the starting 
performance, the speed of learning over time 
and the ending performance at grade six. 
Imposing a homogeneous trajectory to these 
heterogeneous learning patterns may overlook 
the complexities and diversity of children’s 
reading development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Observed vs. Modeled Trajectories (Single Linear, Quadratic and 2-piece 
Linear) of Word Recognition Scores from Kindergarten to Grade Six 
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General Piecewise Growth Mixture Model 
(GPGMM): What Can It Do? 

The GPGMM, at its foundation, is a 
structural equation model, a latent variable 
approach for investigating growth and change 
(Meredith & Tisak, 1990; Muthén, 2001; 
Muthén, 2008). GPGMM is a relatively new and 
fairly complex modeling framework for studying 
growth and change (Muthén, 2004). It combines 
the growth mixture model (GMM) that models 
population growth heterogeneity with the 
piecewise regression that models phasic growth 
rates. 

The “mixture” of growth mixture 
modeling refers to the finite mixture modeling 
element; that is, modeling with categorical latent 
variables that represent subpopulations (classes) 
where population membership is unknown but is 
inferred from the data (McLachlan & Peel, 
2000). The “piecewise” of the piecewise 
regression refers to the growth rates in different  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

developmental phases as reflected via the 
continuous latent growth factors. The GPGMM 
is an extension of the piecewise GMM by 
adding the covariates and the developmental 
outcome variable (Muthén, 2004). The 
combination of continuous and categorical latent 
variables of the GPGMM provides a very 
flexible analytical framework for investigating 
subpopulations showing distinct and phasic 
developmental patterns. 

GMM has gained increased popularity 
in studying children’s reading development. 
Statisticians and methodologists have proposed 
growth mixture models other than the GPGMM 
demonstrated in this paper that are of great 
theoretical and practical significance. Examples 
of these developments include Muthén, et al. 
(2003) and Boscardin, et al. (2008). The 
GPGMM specified for this demonstration is 
depicted graphically in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: GPGMM for Word Recognition Development 
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GPGMM attends to individual 
differences in developmental changes by 
allowing the growth factor to vary across 
individuals, resulting in individual varying 
trajectories over time. This individual 
heterogeneity in trajectories, in a conventional 
linear form, is captured by two continuous 
growth factors (a.k.a., random effects); one is a 
latent variable representing individual 
differences in the initial performance (i.e., 
intercept), and the other representing the 
individual differences in the growth rate (i.e., 
slope). Growth factors are created by 
summarizing the growth patterns observed in the 
repeated measures of the same individuals over 
time. The categorical latent variable C in Figure 
3 models the population heterogeneity in the 
growth factors. 

GPGMM can answer six crucial 
questions pertaining to children’s reading 
developmental complexities. These research 
questions, shown in two sequential sets, are: 
 
Set A: 
A1. Are there distinct phases where children 

differ in their speed of learning? 
A2. Are there unknown subpopulations (latent 

classes) that differ in their growth pattern? 
A3. How are the starting performance and 

growth rates related? 
 
Set B: 
B1. What are the characteristics of the latent 

classes? 
B2. For each class, what explains children’s 

starting performance and growth rates? 
B3. Do the latent classes differ in the reading 

developmental outcome? 
 
Note that although these questions were posed 
and answered herein as two sequential sets (A1-
A3 and B1-B3), the experience with the 
modeling procedures of the GPGMM in this 
study was non-linear; it required a recursive 
process of model specification, model selection, 
and meaning checking as would be the case with 
any other complex modeling. Nonetheless, two 
general modeling stages can be distinguished for 
a GPGMM. The first stage was the 
unconditional piecewise GMM (i.e., without the 
covariates and the proximal developmental 

outcome variable), that answered questions A1, 
A2 and A3. The major modeling task of this 
stage was to choose the optimal growth 
trajectories and number of classes. The second 
stage entailed the full GPGMM by incorporating 
the covariates and the developmental outcome 
variable (i.e., reading comprehension measured 
at the last time point) into the unconditional 
piecewise GMM. The conditional piecewise 
GMM further answered questions B1, B2, and 
B3. The major modeling task of this stage was to 
understand the characteristic of the classes and 
explain class-specific variations in the growth 
factors and the developmental outcome variable. 
 
Model Estimation and Fit 

The following briefly describes the 
model estimation method and fit statistics used 
for this demonstration. As asserted at the outset, 
the focus of this article is to provide a 
conceptual account and modeling demonstration 
of the GPGMM instead of technical details. 
General model specification can be found in 
Technical Appendix 8 of Mplus (Muthén, 1998-
2004) and Mplus User’s Guide (Muthén & 
Muthén, 1998-2007). The technical details can 
be found in Muthén and Shedden (1999) and 
Muthén and Asparouhov (2008).  To foster a 
wider use of the GPGMM, the Mplus syntax for 
the final model can be found in the Appendix. 

In Mplus, three estimators are available 
for a GMM: (1) maximum likelihood parameter 
estimates with conventional standard errors 
(ML), (2) maximum likelihood parameter 
estimates with standard errors approximated by 
first-order derivatives (MLF), and (3) maximum 
likelihood parameter estimates with robust 
standard errors (MLR). The major difference 
among these estimators lies in the approach for 
approximating the Fisher information matrix.  

The MLR is designed to be robust 
against non-normality and misspecification of 
the likelihood. Simulation studies have 
suggested that MLR standard errors perform 
slightly better than those of ML, and the 
standard errors of ML perform better than those 
of MLF (for details see Technical Appendix 8 of 
Mplus; Muthén & Muthén, 1998-2007). In this 
application, the GPGMM parameters were 
estimated in Mplus 5.21 with the default MLR 
estimation, since it is designed to model the 
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potential population non-normality due to the 
potentially unknown subpopulations. We also 
adopted the default number of 15 numerical 
integration points (Muthén & Muthén, 1998-
2007), because increasing the integration points 
can substantially increase the time for estimating 
a complex model like the GPGMM. 

When a mixture model is specified, 
Mplus uses random starts to guard against local 
maxima. The default starting values are 
automatically generated values that are used to 
create randomly perturbed sets of starting values 
for all parameters in the model except variances 
and covariances. Throughout the analyses, the 
number of initial stage random starts were, as a 
principle, first set to 1,000, and the final stage 
starts were set to 20 (e.g., the syntax reads 
STARTS = 1,000 20). If the log-likelihood 
values were not replicated as reported in the 
final 20 solutions, the number of the initial 
random starts was increased until the log-
likelihood was replicated at least twice. For all 
analyses, the initial stage iterations are set to 200 
and the maximum number of iterations for the 
EM algorithm was set to 3,000. 

To speed up the estimation, Mplus 
allows user-specified starting values. In this 
application, four strategies were considered for 
specifying the starting values. The first and 
simplest strategy was to specify some or all of 
the starting values to zeros; this would 
significantly reduce the computing time. The 
second strategy was to use descriptive statistics 
obtained from the given data or reported in the 
literature (e.g., the mean of the WRAT-3 at the 
kindergarten year as the starting value of the 
intercept growth factor. The third strategy was to 
estimate a multi-class model with the variances 
and covariances of the growth factors fixed at 
zero. The estimates of the growth factor means 
from this analysis were then used as the starting 
values in the analysis where the growth factor 
variances and covariances were freely estimated. 
The fourth strategy was to use the estimates 
from a simpler model as the starting values for a 
more complex model. For example, the 
estimated means of the growth factors from the 
1-class model were used for the 2-class model or 
the growth factor means estimated from the 
unconditional piecewise GMM were used as the 
starting values for the conditional piecewise 

GMM. These methods for specifying starting 
values were used interchangeably and in concert 
to help the model estimation. 

In the demonstration, the quality of a 
GMM model was assessed by several fit 
statistics and two alternative likelihood ratio 
tests (LRT). The conventional test of model fit 
based on the Chi-square likelihood ratio, 
comparing a compact model (K-1 classes) with 
an augmented model (K classes), does not 
function properly because it does not have the 
usual large-sample chi-square distribution. Two 
alternative likelihood-based tests have been 
developed to overcome this problem and have 
shown promise. 

The first is the Lo, Mendell, and Rubin 
(2001) likelihood ratio test (LMR LRT; Lo, 
Mendell & Rubin, 2001; Nylund, Asparouhov, 
& Muthén, 2007). Assuming within class 
normality, this test proposes an approximation to 
the conventional distribution of likelihood ratio 
test and provides a p-value for testing K-1 
classes against K class. A low p-value indicates 
that a K−1 class model has to be rejected in 
favor of a model with at least K classes. The 
second was the bootstrapped parametric 
likelihood ratio test (BLRT, described in 
McLachlan & Peel, 2000). As opposed to 
assuming that twice the difference between the 
two negative log-likelihoods follows a known 
distribution, the BLRT bootstraps samples to 
estimate the difference distribution based on the 
given data. The interpretation of the BLRT p-
value is similar to that of the LMR LRT. Both 
LMR LRT and BLRT are available in Mplus in 
the Technical Output 11 and 14 respectively. 

Another type of commonly used fit 
indices is the information criterion: Akaike 
Information Criteria (AIC), Bayesian 
Information Criteria (BIC), and Sample-Size 
Adjusted BIC (SBIC). These fit indices are 
scaled so that a small value corresponds to a 
better model with a large log-likelihood value 
and not too many parameters. The SBIC was 
found to give superior performance in a 
simulation study for latent class models in Yang 
(2006), and the BIC was found to give superior 
performance for mixture models including the 
GMM (Nylund, et al., 2007). Note that these 
indices do not address how well the model fit to 
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the data, but are relative fit measures comparing 
competing models. 

When classification is a major modeling 
concern as with a GMM, the classifying quality 
is often assessed. Entropy assesses the degree to 
which the latent classes are clearly 
distinguishable by the data and the model. It is 
scaled to have a maximum value of 1 with a 
high value indicating a better classification 
quality. Entropy is calculated based on 
individual’s estimated posterior probabilities of 
being in each of the K classes (analogous to 
factor scores in a factor analysis). 

Consider each individual is classified 
into one of the K classes by the highest 
estimated posterior probability (i.e., most likely 
classes), entropy value will approach one if 
individuals’ probabilities in the K classes 
approach one or zero, whereas the entropy value 
decreases if individuals’ posterior probabilities 
of being in the K classes depart from zero or one 
(see Technical Appendix 8 for the calculation of 
Entropy (Muthén, 1998-2007; Clark & Muthén, 
2009). In other words, Entropy reflects how 
much noise there is in the classification, hence, 
can be understood as an index for classification 
reliability. 

There is not yet consensus upon the 
level of satisfactory entropy. Clark and Muthén 
(2009), in studying the effect of entropy on 
relating the latent classes to covariates, 
arbitrarily used the value of 0.8 as an indication 
of high entropy; thus, this is the minimum value 
that was used 0.8 for being considered as 
reliable class classification. All the 
aforementioned fit indices and LRTs were 
reported and examined in concert to choose an 
optimal number of classes. 
 
Unconditional Piecewise GMM–Class 
Enumeration 

The main modeling task of the 
unconditional model was to select the optimal 
growth trajectories and number of classes; recent 
simulation studies of mixture models have 
suggested that this unconditional model is the 
more reliable method for determining the 
number of classes is to run the class enumeration 
without the covariates. Class enumeration with 
covariates (i.e., the conditional model) could 
lead to poor decisions regarding the number of 

classes, particularly when the entropy value is 
lower than 0.80. In some cases, researchers may 
not want the covariates to influence the 
determination of the class membership because 
the inclusion of covariates may potentially 
change the estimates of class distribution and 
growth factor means. For determining the 
number of classes using fit indices, recent 
simulation studies suggested that BIC performed 
best among the information criteria and BLRT 
was proved to be a consistent indicator for 
deciding on the number of classes (Chen & 
Kwok, 2009; Nylund-Gibson, 2009; Nylund, et 
al., 2007). 

Following the suggestion of these 
current developments, the demonstration of the 
unconditional piecewise GMM herein was 
geared to optimize the number of classes while 
choosing a better-fitting growth function. If the 
fit indices point to inconsistent suggestions on 
the number of classes, BIC and BLRT will be 
used as the determinant rules. In addition, the 
first set of questions A1 through A3 were also 
addressed at this stage. Note that although the 
substantive research questions (A1- A3) were 
posed as distinct and sequential, the actual 
modeling was executed simultaneously in one 
single unconditional piecewise GMM. Also note 
that the variances and covariances structure of 
the growth factors was specified to the same 
across classes throughout class enumerations. 
This is because – when the class-specific 
variances are allowed – the likelihood function 
becomes unbound, and because when class-
specific covariances between the growth factors 
are allowed, class separation and interpretation 
can be comprised. 
 
Question A1: Are there distinct phases where 
children differ in their speed of learning? 

A visual inspection of the observed data 
displayed in Figures 1 and 2 suggested that a 2-
piece linear model summarizes the growth trend 
better than single linear and quadratic models. 
Figure 3 displays three latent continuous growth 
factors: (1) the intercept I representing the 
starting performance, (2) S1 representing the 
first growth rate, and (3) S2 representing the 
second growth rate. Two growth rate factors 
(i.e., two slopes), in contrast to the traditional 
one single linear growth rate, were specified to 
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more aptly portray the two-phase growth pattern 
observed in the data. The two growth rates S1 
and S2 depict the non-linear trend by assuming 
that, within each phase, the growth trajectory 
was linear. The three growth factors are 
indicated by part or all of the seven repeated 
word recognition scores from kindergarten to 
grade six as shown by the arrows going from the 
three growth factors in ovals to the seven word 
recognition scores in rectangles. Note that, at 
most, a 2-piece linear model was used because 
each piece requires a minimum of three waves 
of data, therefore a 3-piece model was not 
feasible with the study data which has 7 waves; 
a 3-piece model would require a minimum of 9 
waves. 

To specify the phasic trajectory, the 
loadings (i.e., time scores) of the seven measures 
must be fixed on the three growth factors using 
the coding scheme often seen in piecewise 
regression (See Table 2). For the starting 
performance, the loadings of the intercepts were 
all fixed at 1. In this demonstration, assuming a 
grade-2 transition, the loadings of the first 
growth phase from kindergarten to grade two 
were fixed at 0, 1, and 2, with an increment of 
one indicating a constant linear increase across 
each grade.  

In the second phase, the first growth 
phase loading remained at 2 showing no 
incremental change to indicate no growth effect 
in the second phase. The loadings of the second 
growth phase were fixed at 1, 2, 3 and 4 from 
grade three to grade six with an increment of one 
indicating a constant linear increase across each 
grade. The loadings for S2 were all fixed at zero  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with no increment indicating no growth effect in 
the first phase; note that the coding in Table 2 
assumed a transition point at the end of grade 
two. The transition point should be justified by 
multiple sources of information, including the 
existing literature, the observed growth trend, 
the statistical model fit, and the interpretability 
of the results. 
 
Results for Question A1 

First explored was which GMM – single 
linear, 2-piece linear, or quadratic – fit better by 
comparing the fit indices. Table 3 shows that the 
2-piece models yielded better fit indices than the 
quadratic models, which in turn fit better than 
the single linear models irrespective of the 
number of classes. This indicates that fitting a 2-
phase model not only captured the observed 
non-linearity better than a model merely 
ignoring the non-linearity but also did better 
than the commonly used quadratic model. (The 
default specification for estimation can be found 
in Chapter 13 of the Mplus User’s Guide.) 

The transition point dissecting the two 
phases was specified at the end of grade two; 
this decision was made for three reasons. First, 
the observed pattern shown in Figures 1 and 2 
indicated that the transition point occurred at 
either grade two or grade three. Second, Speece, 
et al. (2003) studied children from kindergarten 
to grade three and detected a non-linearity; this 
suggests that a turning point before grade three 
was necessary. Also, Francis, et al. (1996) 
argued that reading difficulty could not be 
defined at grade one or grade two because 
identifying reading difficulty often over- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Codes for 2-piece Linear Growth Model with Seven Wave of Data 
 

 First Phase Second Phase 

 K G1 G2 G3 G4 G5 G6 

I 1 1 1 1 1 1 1 

S1 0 1 2 2 2 2 2 

S2 0 0 0 1 2 3 4 
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identifies children who have not had adequate 
educational exposure to reading and under-
identifies children who demonstrate deficits in 
cognitive/linguistic skills. Third, the 2-piece 
grade-3 transition model yielded negative 
estimates of growth factor variances, which was 
undefined and counterintuitive, even with 
numerous trials of changing the starting values 
and increasing the number of starting sets up to 
1,000 (although the log-likelihood values were 
replicated). This problem suggested the 
possibility of an incorrect model. The grade-2 
transition models did not show these problems. 
 
Question A2: Are there unknown subpopulations 
(latent classes) that differ in their growth 
pattern? 

Different learners may display different 
learning patterns in their reading development. 
When different groups of learners are 
empirically observed or theoretically 
hypothesized, a statistical model must be able to 
aptly attend to this heterogeneity. Modeling 
population heterogeneity in growth trajectory is 
often carried out by a GMM. 

GMM is the bedrock of a fully 
developed GPGMM. GMM relaxes the single 
population assumption to allow for differences 
in growth factors across unobserved 
subpopulations (Kreuter & Muthén, 2007; 
Muthén, 2004). This flexibility in identifying 
unobserved subpopulations of people (a.k.a., 
classes), who are distinct in the developmental 
pathways, is the cornerstone of the GMM model. 
The unobserved class membership is modeled 
by a latent categorical variable where 
individuals’ developmental pathways are 
relatively similar within each class, yet distinct 
from one another across classes. As opposed to 
assuming that individuals vary around a single 
mean growth trajectory, GMM allows separate 
mean growth trajectories for each class. 
Individuals in each class are allowed to vary 
around the class mean of the growth factors. The 
variable C in Figure 3 represents such a 
categorical latent trajectory class. 
 
Results for Question A2 

Table 3 compares the results of the 2-
piece grade-2 transition models with the number 
of classes ranging from two to six (rows in 

bold). The 4-class model was supported by the 
BIC, the 5-class model was supported by the 
SBIC, LMR, LRT and BLRT, and the 6-class 
model was supported by the AIC. With the 
exception of the 6-class model, all models 
yielded high entropy values of greater than 0.8. 
The fit indices point to fairly inconsistent 
suggestions about the optimal number of classes 
to extract. The 6-class model was first 
eliminated from further consideration because it 
yielded an entropy value lower than 0.80 and 
because it was suggested only by AIC, which 
has been shown to be poorer criterion for 
choosing the correct number of classes (Nylund-
Gibson, 2009). 

The 4- and 5-class models were each 
supported by the determinant rule, BIC and 
BLRT, respectively. To compare the similarities 
and differences between the 4- and 5-class 
models, their growth factor means were 
tabulated and graphed on the first and second 
panel separately (see Figure 4). Figure 4 shows 
that the C3 class of the 4-class model branched 
into two classes of C3a and C3b resulting in 5 
classes in total. The 4- and 5-class models were 
not entirely distinct models; how elaborate the 
class classification was their main difference. 
This phenomenon is also common in factor 
analyses where a model with a greater number 
of factors is often a more elaborate version of a 
model with a fewer number of factors. 

For demonstrative purposes, it was 
necessary to select a model with which the 
conditional piecewise GMM could be 
demonstrated. In the trial runs of the conditional 
piecewise GMM, the 5-class model experienced 
a problem of non-identification and the problem 
that the log-likelihood could not be replicated – 
even with the number of starts increased to 
10,000 and the assistance of user-specified 
starting values. For these reasons, the 5-class 
model was eliminated from further 
consideration. 

The 4-class model, which still revealed a 
rich substantive story, was chosen because it 
yielded the smallest value of BIC, which has 
been shown to be superior in choosing the 
correct number of classes for GMMs. For real 
research contexts, choosing the number of 
classes to extract is not a simple technical task: a 
researcher must consider multiple factors such 
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as the research purpose, statistical fit and the 
substantive and practical gains that different 
numbers of classes may bring about. 
 
Question A3: How are the starting performance 
and growth rates related? 

As discussed in the literature review, 
there has been a great deal of theoretical and 
practical interest in whether children with a 
better start will continue to learn faster and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

whether children who learn faster at an early age 
will continue to improve at a faster rate. The 
field of children’s reading development has not 
settled the debate over how earlier reading 
performance is related to the later development. 
In a GMM, these questions are answered by 
estimating the covariances among the growth 
factors, I, S1, and S2. These relationships are 
indicated by the curved arrows among the 
growth factor I, S1, and S2 in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Fit Indices for Single Linear, 2-piece Linear and Quadratic Unconditional Models with 2-6 Classes 
 

  df L AIC BIC SBIC LMR LRT BLRT Entropy 

Single 
Linear 

2-class 15 -10915.215 21856.430 21911.879 21870.613 p=0.169 p=1.000 0.729 

3-class 18 -10996.744 22029.488 22106.399 22049.262 P=0.151 p=0.030 0.489 

4-class 21 -10904.422 21846.844 21927.884 21867.573 P=0.118 p=0.500 0.668 

5-class 25 -10903.928 21851.855 21945.692 21875.858 P=0.365 p=0.800 0.709 

2-piece 
Linear 

2-class 20 -10015.847 20071.695 20157.001 20093.516 p= 0.349 p< 0.001 0.811 

3-class 24 -9960.502 19969.004 20071.372 19995.189 p< 0.001 p< 0.001 0.931 

4-class 28 -9946.927 19949.854 20069.282 19980.403 p= 0.065 p< 0.001 0.880 

5-class 32 -9936.602 19937.204 20073.693 19972.117 p= 0.043 p= 0.040 0.850 

6-class 36 -9930.838 19933.675 20087.226 19972.953 p= 0.692 p= 0.140 0.777 

Quadratic 

2-class 20 -10227.122 20484.243 20548.223 20500.609 p=0.047 p=1.000 0.682 

3-class 24 -10200.583 20439.166 20520.206 20459.895 p=0.005 p=0.600 0.568 

4-class 28 -10249.835 20543.670 20637.507 20567.673 p=0.099 p<0.001 0.818 

5-class 32 -10211.386 20474.773 20585.671 20503.140 p<0.016 p<0.001 0.823 
 

Notes: df: the number of free parameters of a specified model (when no parameters were fixing to zeros); L: log-
likelihood; AIC: Akaike information criterion; BIC: Bayesian information criterion; SBIC: Sample size adjusted 
BIC; LRT: Lo-Mendell-Rubin adjusted likelihood ratio test; BLRT: bootstrapped parametric likelihood ratio test. 
The fit indices for the 2-piece models are in bold. The model with the lowest AIC, BIC, or SBIC is underlined. The 
model with K classes is underlined if the p-value of the LMR LRT or BLRT for the K+1 model was greater than 
0.05. When the variance of a growth factor was estimated to be negative, the estimation proceeded with fixing it to 
zero. 
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Figure 4: Comparison among the 4- and 5-Class Unconditional and 4-Class Conditional Models 
 

 
 

Notes: I denotes the initial performance at the kindergarten year, S1 denotes the growth rate in the first 
phase, S2 denotes growth rate in the second phase, E denotes the ending performance at grade six, and 
% denotes the proportions for the latent classes. 
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Results for Question A3 
By default, Mplus outputs estimate the 

covariances of growth factors. For interpretation 
ease, however, the growth factor correlations 
were reported by requesting the standardized 
command in the output. Recall that, for 
estimation reasons, the covariance structure was 
fixed to be the same across classes, that is, class-
specific correlations among the growth factors 
were not allowed. 

Based on the 4-class unconditional 
piecewise model, results show that the initial 
performance was not significantly correlated 
with the first growth rate (r = −0.06, p = 0.762), 
nor was it significantly correlated with the 
second growth rate (r = −0.345, p = 0.053). 
However, the two growth rates were 
significantly and negatively correlated (r = 
−0.599, p = 0.001). 

These findings suggest that word 
recognition performance at the beginning of the 
kindergarten year, as measured by WRAT-3, 
was not a good indicator of children’s later 
speed of learning. However, the speed of 
learning in the first phase may be associated 
with children’s development in the second 
phase. This suggests that early identification of 
advanced or disadvantaged children should not 
rely solely on children’s starting performance. 
Rather, early identification of advanced or 
disadvantaged children should also look into 
children’s early speed of learning. If a single 
linear trajectory had been modeled, the 
relationship between two growth rates would 
have been overlooked. 
 
Conditional Piecewise GMM with an Auxiliary 
Developmental Outcome Variable 

The conditional piecewise GMM is the 
full version of GPGMM. It incorporates the 
covariates and an auxiliary developmental 
outcome variable into the unconditional 
piecewise GMM. In this demonstration, five 
covariates were included. Three were 
cognitive/linguistic variables that were measured 
prior to the first assessment of word recognition 
in the kindergarten year and were standardized 
scores of verbal working memory, phonological 
awareness, and word retrieval time. The other 
two were demographic background variables: 
gender (boy = 0; girl = 1, 50.2%) and first 

language reported in the fall of kindergarten year 
(English = 0, ESL = 1, 15%). 

Covariates can have direct and indirect 
effects on the growth factors. As shown in 
Figure 3, direct covariate effects explain the 
growth factor variations, as indicated by the 
arrow going from the covariates to the growth 
factors I, S1, and S2. Covariates can also have 
an indirect effect on the growth factors via their 
effects on the latent class as indicated by the 
arrow going from the covariates to the latent 
class C and then to the growth factors (see 
Figure 3). The developmental reading outcome 
variable used in this demonstration was the 
Stanford Diagnostic Reading Test (SDRT; 
Karlesen, Madden, & Gardener, 1966) measured 
at grade six. This developmental outcome 
variable served as an auxiliary dependent 
variable for checking the latent class validity, 
and was standardized for ease of interpretation. 

Estimates of class distribution and 
growth factors means will change as a result of 
incorporating covariates information and how 
their effects are specified. Misspecification of 
the direct and/or indirect effects can lead to 
untrustworthy estimates. Because the correct 
population model is unknown and “all models 
are wrong, the practical question is how wrong 
they have to be to not be useful” (Box & Draper, 
1987, p. 74), it is recommended that researchers 
experiment with various models. The choice of 
which model to select must rely heavily on the 
researchers’ discretion borne on the model 
results (e.g., whether a model terminated 
normally) as well as their substantive 
knowledge, and common sense (e.g., checking 
the tenability of the direction and size of the 
covariate effects). 

In this demonstration, all direct and 
indirect effects were first allowed on the growth 
factors for all classes. This model was not 
identified and the best log-likelihood value was 
not replicated after numerous trials of starting 
values and the number of starting values sets = 
10,000. Based on the estimated posterior 
probabilities, this model distributed two very 
small classes (≈1% and ≈5%; size ≈ 5 and 26), 
leading to some difficulties in estimating the 
direct effects on the growth factors (e.g., empty 
cells in the joint distribution of the model 
variables). For these reasons, the direct covariate 
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effects of the two small classes were fixed to 
zeros. This model terminated normally, the log-
likelihood values were replicated 3 times with 
STARTS = 1000 20 (the other 17 differed with 
their next best values only in the third decimal 
place). In addition, this model estimated 92 
parameters with log-likelihood value = 
−9693.008. The information criteria of AIC = 
19570.016, BIC = 19962.424, SBIC = 
19670.392 all (except entropy = 0.768) 
suggested that this conditional model was a 
better fitting model than the unconditional 
model (compare the fit indices of the 2-piece 4-
class unconditional model in Table 3). 

Note that various models that allowed 
partial direct effects for the two smaller classes 
were also examined. Although the log-likelihood 
values of some of these models were replicated, 
their the BIC values were all greater than that of 
the model finally selected and their growth 
trajectories were harder to recognize and 
interpret, for these reasons they were not chosen 
and reported. 

The bottom panel of Figure 4 shows the 
trajectories and estimated growth factor means 
of the selected conditional model. Two overall 
observations are pointed out here. First, a 
noticeable parameter shift was observed when 
being compared to the unconditional model. The 
cross-class differences in the growth trajectories 
diminished a great deal as a result of 
incorporating the covariates information. 
Second, it was observed that there was little 
difference in the estimates of the second growth 
rates (which only differed in the first decimal 
place). This result may be a true reflection of the 
small differences in the speed of recognizing 
new words among the subpopulations.  

The potential ceiling effect of WRAT-3 
on the lack of variation in the second growth rate 
should be considered, however. This instrument 
lists 42 words for recognition ordered in 
difficulty and was not originally designed for 
children. WRAT-3 is known to have a strong 
ceiling effect (Strauss, Sherman & Spreen, 2006, 
p. 388). The difficulty level elevates quickly as 
the words approach the end the list leading to 
few or no successes in word recognition. This 
ceiling effect may explain the small class 
differences in the second growth rates for the 
present child sample. 

The results for specific classes (see the 
bottom table and graph in Figure 4) indicated 
that, on average, children in the first class 
recognized 14.31 words in the kindergarten year, 
learned 8.69 words per year in the first phase, 
and 2.65 words per year in the second phase 
with an ending performance (E) of 42.29 words. 
This class was referred to the normative class 
because it consisted of 38.33%, the largest 
proportion, of the sample, and because its 
growth trajectory was relatively more typical 
than those of the other classes. 

Children in the second class (33.60%) 
initially recognized 3.05 fewer words on 
WRAT-3 than did the normative class. 
However, their first phase growth rate was 3.77 
words faster than the normative class leading to 
a projection that this class would surpass the 
normative class at grade one and they would 
manage to stay ahead of the normative class 
thereafter despite the slightly slower second 
growth rate. This class was referred to as the 
advanced class. 

Children in the third class (6.58%) 
initially recognized 4.59 fewer words on 
WRAT-3 than did the normative class, but were 
slowly catching up with the normative class with 
0.70 words per year in the first phase and 0.22 
words per year in the second phase. This class 
was referred to as the catch-up class.  

The fourth class (21.49%) began with 
the lowest performance; initially recognizing 
5.99 words fewer on WRAT-3 than did the 
normative class. Although this class appeared to 
catch up with the normative class with 1.55 
words per year in the first phase, they slowed to 
a rate of 0.15 words per year slower than the 
normative class in the second phase. In grade 
six, they recognized 3.50 fewer words than did 
the normative class and 6.21 fewer words than 
did the advanced class. This class was referred 
to as the disadvantaged class. 
 
Question B1: What are the characteristics of the 
latent classes? 

Similar to factors in a factor analysis, 
the latent trajectory classes do not have inherent 
meanings (Bauer & Curran, 2003; Kreuter & 
Muthén, 2007; Muthén, 2003; Muthén, 2004). 
To understand the characteristics of the latent 
classes, the categorical latent class variable C is 
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regressed on to the covariates. Covariates play 
important roles in the GPGMM – they can aid in 
checking the interpretability and trustworthiness 
of the selected model. If classes are not 
statistically different with respect to the 
covariates, which theoretically or logically 
should characterize the classes, then there is 
weak support for the selected model. In Figure 
3, the class characteristics regression is shown 
by the arrow going from the covariates to the 
latent trajectory class C. Recall that class 
characterization by covariates can have indirect 
effects on the growth factors. 

Characterization of the latent classes by 
the set of covariates involves a multinomial 
logistic regression (or a binary logistic 
regression for the 2-class case). Coefficients of 
the covariates in a multinomial logistic 
regression are linear in the logit form; the 
increase in the log odds of being in a particular 
class versus the reference class. The reference 
class is normally the class with the largest size 
or the class or that is better recognized by the 
researchers. The exponent of the slope 
coefficient, Exp (slope), is the odds ratio for 
being in one particular class versus the reference 
class. For example, when comparing ESL 
(coded as 1) to non-ESL children (coded as 0); a 
slope = 1 implies that the odds of being in one 
particular class versus the reference class is Exp 
(1) = 2.72 times higher for ESL children than 
non-ESL children. 
 
Results for Question B1 

To understand the characteristics of the 
classes, the results of the multinomial logistic 
regression were reported and interpreted using 
the normative class as the reference class. The 
normative class was used because of its 
estimated largest proportion and better-known 
growth pattern. Table 4 reports the slope 
coefficients (i.e., partial regression coefficient) 
for the five covariates and their corresponding 
standard errors and odds ratios. Bear in mind 
that the interpretation of the odds was based on 
per one unit change in the covariate. Because the 
ESL and gender variables were both coded as 0 
and 1, their odds reflected the gender and first 
language differences, and because the 
cognitive/linguistic variables were all 

standardized, their odds reflected per SD 
change. 

Relative to the normative class, the odds 
of membership in the advanced class were 
significantly increased by being boys. The odds 
of being in the advanced class versus the 
normative class were 2.667 (1/odds= 1/0.375) 
times higher for boys than girls. Relative to the 
normative class, the odds of membership in the 
catch-up class were significantly increased by 
word retrieval time. The odds of being in the 
catch-up class versus in the normative class were 
4.289 times higher per SD increase in word 
retrieval time. Relative to the normative class, 
the odds of membership in the disadvantaged 
class were significantly increased by being a 
boy, being non-ESL, having poorer phonological 
awareness and longer retrieval time. The odds of 
being in the disadvantaged class versus the 
normative class were 3.106 (1/0.322) times 
higher for boys than girls, 3.497 (1/0.286) times 
higher for non-ESL students than ESL students, 
2.165 (1/0.462) times higher per SD decrease in 
phonological awareness, and 1.725 times higher 
per SD increase in word retrieval time. 
 
Question B2: For each class, what explains 
children’s starting performance and growth 
rates? 

In a GPGMM, the growth factors’ 
variations can also be explained by the same set 
of covariates. This relationship is analogous to a 
multiple regression where each of the 
continuous dependent variables, I, S1 and S2, is 
regressed onto the covariates. This relationship 
models the direct effects of the covariates on the 
growth factors as indicated by the arrows going 
from the covariates directly to the growth 
factors. As aforementioned, in the final model 
only direct effects were allowed on the two 
classes with larger class proportion, that is, the 
normative and advanced classes. Note that the 
indirect effect of covariates on the growth 
factors via the latent classes, as demonstrated in 
B2, is reflected by allowing class-varying 
regression coefficients of the covariates on the 
growth factors. Thus, the class-varying residual 
variances were also allowed. 
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Results for Question B2 

Results for the class-specific multiple 
regressions are shown in Table 5. The first row 
for each covariate reports the estimates of the 
slope coefficient (partial regression coefficient) 
and their standard errors were placed underneath 
in italic face. Significant slope estimates at α= 
0.05 level were highlighted in bold. For 
example, phonological awareness had a 
significant effect on all growth factors, except 
for the second growth rate of the normative 
class. Differential covariate effects in terms of 
size and direction were found across classes. For 
example, the initial growth factor I, gender and 
verbal working memory had significant effects 
only for the normative class, and word retrieval 
time had an effect only for the advanced class. 
Useful substantive information is revealed by 
comparing differential covariate effects across 
classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question B3: Do the latent classes differ in the 
reading developmental outcome? 

The GPGMM incorporates an auxiliary 
outcome variable that can either be proximal or 
distal. Note that this outcome variable is an 
auxiliary variable; it is not modeled as an 
observed dependent variable, nor was it part of 
the model. Its major role in a GPGMM is to 
assist in checking the validity of the latent 
classes by comparing and testing equalities in 
the class means of this variable (Masyn, 2009; 
Petras & Masyn, 2009). Because it is an 
auxiliary variable, the outcome variable is 
represented in Figure 3 as a dashed square to 
show that it not an actually modeled outcome 
variable. This part of the modeling is shown by 
the arrow going from the latent class variable to 
the reading comprehension outcome. Cross-class 
equality in the means of the reading 
comprehension was tested using the posterior  

Table 4: Indirect Covariate Effects: Multinomial Logistic Regression for Classes Characterization 
 

 A vs. N C vs. N D vs. N 

Gender (Girl) 
-0.981 
0.303 
0.375 

0.060 
0.810 
1.062 

-1.134 
0.314 
0.322 

ESL (Yes) 
0.633 
0.389 
1.833 

-0.442 
0.842 
0.643 

-1.252 
0.633 
0.286 

Verbal Working Memory 
0.183 
0.204 
1.201 

-0.133 
0.585 
0.875 

-0.083 
0.229 
0.920 

Phonological Awareness 
-0.120 
0.187 
0.887 

-0.909 
0.502 
0.403 

-0.773 
0.175 
0.462 

Word Retrieval Time 
-0.077 
0.245 
0.926 

1.456 
0.374 
4.289 

0.545 
0.231 
1.725 

 

Notes: A: advanced class; N: normative class; D: disadvantaged class; C: catch-up class. Values in 
the first row of each covariate were the estimates of the slope coefficient, of which the standard 
errors were placed underneath in italic face, and the corresponding odds ratios were underlined. 
Significant slope coefficients at the 0.05 level were highlighted in bold face. 
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probability-based multiple imputations method. 
Since the class means of the reading 
comprehension were not part of the models, 
Mplus needed to estimate means and their 
asymptotic variances/covariance using the 
pseudo-class draw technique (Wong, Brown & 
Bandeen-Roche, 2005). First, individuals’ 
posterior class probabilities (conditional on the 
model and the observed data) were computed. 
Next, using this posterior distribution, L pseudo 
draws were generated for the latent class 
variable C for individuals – L denotes the 
number of pseudo draws. Class-specific sample 
means of the outcome variable then were 
obtained by taking the average of the L pseudo 
draws (see Mplus technical note at 
http://www.statmodel.com/download/MeanTest
1.pdf). 

As recommended in Wong, et al. (2005), 
the Mplus default number of pseudo draws of 20 
was adopted. Equality in the class means were 
tested using Wald’s Chi-square with degree of 
freedom = K−1 for the omnibus test and 1 
degree of freedom for the pairwise tests; a 
statistically and theoretically/ practically  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
significant and meaningful mean difference 
should be detected for supporting the validity of 
the latent class variable. This validity check is 
analogous to the criterion validity in the 
traditional psychometrics literature. 
 
Results for Question B3 

The last two rows of Table 6 show the 
class means in the reading comprehension and 
their corresponding standard errors. First, note 
that the order of the size of the estimated class 
means were as expected (i.e., Advanced > 
Normative > Catch-up > Disadvantaged). The 
omnibus Wald χ2(3) = 80.094, p < 0.001. The 
Chi-square values for the paired tests were 
shown on the upper diagonal of the class matrix 
in Table 6, and their corresponding p-values 
were shown underneath in italic face. Significant 
mean differences, highlighted in bold, were 
found in four of the six paired tests. Mean 
differences between all non-neighboring classes 
were all found to be significant (e.g., the 
difference between the advanced and 
disadvantaged classes). Mean differences 
between two of the neighboring classes were 
found to be non-significant (differences between 

Table 5: Direct Covariate Effects: Class-specific Multiple Regression of Growth Factors 
 

 Normative Advanced 

 I S1 S2 I S1 S2 

Gender (Girl) 
0.565 
0.224 

-0.009 
0.483 

-0.098 
0.197 

0.713 
0.867 

-0.611 
0.493 

-0.011 
0.161 

ESL (Yes) 
0.190 
0.272 

0.971 
0.449 

-0.377 
0.237 

-0.550 
1.125 

-0.813 
0.566 

0.290 
0.219 

Verbal working memory 
-0.258 
0.132 

0.282 
0.226 

-0.107 
0.115 

-0.676 
0.451 

0.148 
0.148 

0.130 
0.094 

Phonological awareness 
0.482 
0.120 

0.553 
0.234 

-0.147 
0.084 

4.167 
0.455 

-1.345 
0.281 

-0.300 
0.083 

Word retrieval time 
-0.240 
0.234 

-0.183 
0.245 

0.146 
0.141 

-1.714 
0.495 

0.692 
0.289 

0.119 
0.114 

 

Notes: Values in the first row of each covariate were the estimates of the slope coefficient, of which 
the standard errors were placed underneath in italic face. Significant slope coefficients at the 0.05 
level were highlighted in bold face. 
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the advanced and the normative classes and 
between the catch-up and disadvantaged 
classes). Judging by the order and size of the 
class mean estimates and the pattern of the 
significance tests, the results provided adequate 
criterion validity evidence for the latent 
trajectory class variable. 
 

Conclusion 
People learn and develop in different ways at 
different times. These developmental 
complexities and diversities are often 
overlooked or modeling tools are incapable of 
revealing them. This study demonstrated, with 
children’s word recognition development, that 
by taking into account the phasic learning speed 
and population heterogeneity, the GPGMM is 
able to point up evidence for both the deficit and 
lagging theoretical models reported in literature 
depending on which classes and developmental 
phases are being compared. 

The advantages of the GPGMM, 
however, come with a price. To find the optimal 
model that is both statistically adequate and 
theoretically interpretable, the GPGMM requires 
fairly sophisticated modeling techniques that 
involve iterative and intricate trials of parameter 
specifications. For a complex model like the 
GPGMM, the parameter estimates can change 
remarkably in size and direction from one start 
set to another. Users are reminded to increase  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the number of iterations and starting sets when 
necessary so as to ensure that the log-likelihood 
of the selected model is replicated. Also, due to 
the model complexity, the time taken for the 
estimation to terminate can be much longer than 
what is needed for simpler models. This is 
particularly the case when the random start sets 
are increased to a large number or when the 
bootstrapped likelihood ratio test is requested. It 
is suggested that, wherever possible, the 
GPGMM be run on a spare but fast computer. 

To date there is no single agreed-upon 
best practice for choosing the optimal 
conditional model. The general statistical 
problem of choosing the optimal conditional 
model in latent class models shares a conceptual 
core in common with indeterminacy problems in 
factor analysis – note that there are several 
indeterminacies in factor analysis; for example, 
indeterminacy of common factors, and an 
indeterminacy in factor rotation. There may be 
something to be gained by noting this 
commonality between latent class and factor 
analysis. At this point, it is advisable that the 
unconditional model be used for class 
enumeration – i.e., for deciding the number of 
classes. Like the indeterminacy problem of 
factor rotation, estimates of class distribution 
and the growth factors of the conditional model 
may shift from those of the unconditional model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Wald’s Chi-square Tests of Class Equality in the Means of the Reading 
Development Outcome 

 A N C D 

A  
0.049 
0.826 

17.688 
<0.001 

72.170 
<0.001 

N   
16.377 
<0.001 

60.159 
<0.001 

C    
0.161 
0.688 

M 
SE 

0.273 
0.066 

0.250 
0.076 

-0.605 
0.196 

-0.694 
0.092 

 

Notes: A: advanced class; N: normative class; D: disadvantaged class; C: catch-
up class. The Chi-square values for the paired tests were shown on the upper 
diagonal of the class matrix; the corresponding p-values were shown underneath 
in italic face. Significant p-values were highlighted in bold. The class means and 
their corresponding standard errors were shown in the last two rows. 
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depending on how the direct and indirect effects 
are specified. Recent work by Nylund-Gibson 
(2009) suggests that first the indirect effects be 
added to the unconditional model followed by 
the direct effects. The parameter shift then is 
examined throughout the steps. Implicitly, this 
suggestion was used along with verifying the 
substantive interpretability, as a rough guide for 
checking and selecting a conditional model. 

An intuitive, yet less than ideal solution, 
is to fix the growth factor parameters of the 
conditional model to those estimated by the 
unconditional model. By doing so, the covariate 
effects can be investigated without shifting the 
growth factor parameter estimates. This method 
could be problematic because it treats the fixed 
parameters as if they were true population values 
and ignore the sampling errors. Moreover, using 
the estimates of the unconditional model for the 
conditional model may be considered as 
cheating because both models are based on the 
same sample set. Hence, this strategy is not 
recommended if the purpose of the GPGMM is 
of an exploratory nature as demonstrated in this 
study. It may be more justified if the purpose is 
to cross-validate, that is, to verify growth 
trajectories suggested by other samples from the 
same population. 

Traditionally, questions B1, B2, and B3, 
as addressed by the conditional model, are often 
answered by saving the likely class membership 
or the posterior probabilities for each individual 
in a new data file and running separate analyses. 
This method could also be problematic because 
the class membership or the posterior 
probabilities are treated as being observed, but 
they are, in fact, model estimates with errors. 
Recent studies have shown that these traditional 
approaches may yield incorrect parameter 
estimates and standard errors leading to 
incorrect conclusions about significance testing 
(Clark & Muthén, 2009; Masyn, 2009; Petras & 
Masyn, 2009). Answering these questions using 
a single GPGMM circumvents this problem, 
especially when the entropy is high (Clark & 
Muthén, 2009). 

A trade-off between the number of 
classes extracted and the amount of variance of 
the growth factors (or residual variance after 
adding the covariates) was noticed. This 
phenomenon makes sense conceptually and 

statistically because the mechanism behind the 
GMM is to extract K classes where people are 
relatively similar within each class, yet distinct 
from one another across classes.  

In a highly hypothetical situation where 
K is equal to the sample size, there will be no 
within-class variation in the growth factors. The 
4- and 5- class conditional models encountered 
scenarios where the variances and/or residual 
variances of the growth factors being estimated 
were negative and received warning messages 
such as non–positive definite latent variable 
covariance matrix. Fixing the negative residual 
variances to zero may solve these problems, 
however, these problems may be indicative of 
class over-extraction or misspecification of the 
covariate effects – this is conceptually similar to 
a Heywood case in factor analysis. 

The balance between number of classes 
and the within-class variances/residual variances 
often dictates the number of classes one is able 
to interpret, especially for the conditional model. 
The maximum number of interpretable classes is 
often bounded by how much variance the growth 
factors are estimated to have and whether the 
variance is sufficient for the conditional model. 
Using the study data, difficulty in identifying the 
5-class conditional model was experienced, 
although it is preferred for more richness in the 
substantive information. 

With a full GPGMM, a large number of 
parameters are simultaneously estimated and the 
number of parameter estimates increases rapidly 
in multiples as the number of classes and 
covariates increase. The large set of the 
parameters is deemed to be the best solution for 
the data simply because it yields the least -2 log-
likelihood value. The maximum likelihood 
algorithm cannot tell whether or not the 
parameter estimates, in term of size and 
direction, make sense for a real and specific 
research context. Valid interpretations of the 
GPGMM results rely heavily on the users’ 
methodological and substantive knowledge of 
the study. This demonstration showed that the 
speed of learning new words slowed down in the 
second phase for all classes; however, it would 
be inappropriate to conclude that children learn 
fewer words annually after grade two than 
before grade two without some special caution. 
As mentioned, this finding may result from the 
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low floor effect but strong ceiling effect of the 
WRAT-3. As stated by Muthén (2003) and 
stressed throughout this article, a quality 
GPGMM should be guided not only by the 
statistical information, but also by the 
substantive interpretability of the results. 
GPGMM, in essence, is merely an analytical 
tool. Substantive expertise throughout the 
process of model specification, selection, and 
verification is the key to the success of a 
GPGMM. 
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Appendix:  
Mplus Syntax for the Final GPGMM 

Conditional Model 
 
TITLE: GPGMM WORD RECOGNITION 
 
DATA: 

FILE IS wrat526.dat; 
FORMAT IS 418F22.0; 

 
VARIABLE: 

NAMES ARE K G1 G2 G3 G4 G5 G6 
Gender FirstLanguage 
WorkingMemory PhonoAwareness 
RetrievalTime ReadingComprehension; 
CLASSES = C(4); 
MISSING = K G1 G2 G3 G4 G5 G6 
ReadingComprehension (9999); 
AUXILIARY= (e)ReadingComprehension; 
USEVAR = K G1 G2 G3 G4 G5 G6 Gender 
FirstLanguage 
WorkingMemory PhonoAwareness 
RetrievalTime ReadingComprehension; 

ANALYSIS: 
TYPE = MIXTURE; 
STARTS = 1000 20; 
STITERATIONS = 100; 
MITERATIONS = 2000; 

 
MODEL: 

%OVERALL% 
I S1 | K@0 G1@1 G2@2 G3@2 G4@2 
G5@2 G6@2 ; 
I S2 | K@0 G1@0 G2@0 G3@1 G4@2 
G5@3 G6@4 ; 
C#1 C#2 C#3 on Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
I ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
S1 ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
S2 ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
 
%C#1% 
K@0 G1 G2 G3 G4 G5 G6 
I S1 S2@0; 
[I*14.326 S1*8.665 S2*2.612; 
I with S1 @0; 
I          ON 
Gender*0.597 
FirstLanguage*0.175 
WorkingMemory*-0.221 
PhonoAwareness *0.470 
RetrievalTime*-0.185; 
S1         ON 
Gender* -0.007 
FirstLanguage* 0.907 
WorkingMemory*0.300 
PhonoAwareness *0.500 
RetrievalTime*-0.162; 
S2         ON 
Gender*-0.074 
FirstLanguage*-0.375 
WorkingMemory*-0.081 
PhonoAwareness*-0.141 
RetrievalTime*0.183; 
 
%C#2% 
K@0 G1 G2 G3@0 G4 G5 G6 ; 
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I S1 S2@0; 
[I*8.436 S1*10.289 S2*2.911]; 
I with S1 @0; 
I          ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S1         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S2         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
 
%C#3% 
K* G1 G2 G3 G4 G5 G6; 
I S1 S2@0; 
[I*11.329 S1*11.352 S2*2.156]; 
I with S1@0; 
 
I          ON 
Gender*0.338 
FirstLanguage* 0.177 
WorkingMemory*-0.745 
PhonoAwareness*4.112 
RetrievalTime*-1.645; 
S1         ON 
Gender*-0.524 
FirstLanguage*-0.914 
WorkingMemory*0.146 
PhonoAwareness*-1.250 
RetrievalTime*0.659; 
S2         ON 
Gender*0.025 
FirstLanguage*0.215 
WorkingMemory*0.141 
PhonoAwareness*-0.304 
RetrievalTime*0.055; 
 
 
 
 
 

%C#4% 
K G1 G2 G3 G4 G5 G6@0; 
I S1@0 S2; 
[I*8.386 S1*10.041 S2*2.513]; 

I WITH S2@0; 
I          ON 
Gender@0 
FirstLanguage@0 
WorkingMemory @00 
PhonoAwareness@0 
RetrievalTime@0; 
S1         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S2         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory @0 
PhonoAwareness@0 
RetrievalTime@0; 
 

OUTPUT: 
TECH1 TECH4; 
!STANDARDIZED; 
SAVEDATA:File is final.sav; 
SAVE = FSCORES; 
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