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Using Finite Mixture Modeling to Deal with Systematic Measurement Error: 
A Case Study 

 
Min Liu Gregory R. Hancock Jeffrey R. Harring 

University of Hawaii, 
Manoa, HI USA 

University of Maryland, 
College Park, MD USA 
 

 
Conventional methods and analyses view measurement error as random. A scenario is presented where a 
variable was measured with systematic error. Mixture models with systematic parameter constraints were 
used to test hypotheses in the context of general linear models; this accommodated the heterogeneity 
arising due to systematic measurement error. 
 
Key words: Finite mixture models, systematic measurement error, general linear model. 
 
 

Introduction 
In the social and behavioral sciences variables 
are frequently measured with error. A common 
approach is to treat measurement error as 
inherently unpredictable chance fluctuations, as 
opposed to something that can be caused by any 
factor that systematically affects measurement of 
a variable across the sample. This may be 
because systematic errors are – in general – 
difficult to detect, and because the estimation of 
the magnitude of such errors in practice is 
complex. 
 
Overview of Finite Mixture Models 

Finite mixture modeling is an analytical 
paradigm used to analyze data sampled from a 
heterogeneous   population   with   a   different 
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probability density function (PDF) for each 
component population. While population 
heterogeneity could arise from multiple 
unrelated probability distributions (e.g., Cauchy 
and Student’s t distributions), the more typical 
viewpoint is to assume that data come from a 
composite (i.e., mixture) of two or more 
distributions from the same parametric family, 
with the stipulation that parameters are 
permitted to differ across the unobserved 
components (see Titterington, Smith & Makov, 
1985). In the general case, for data in x, a finite 
mixture of K densities can be formulated as 
 

1

( | , ) ( | )
K

k k k
k

f fπ
=

=x π θ x θ ,          (1) 

 
where π contains mixing parameters kπ  (k = 

1,…,K) reflecting prior probabilities of sampling 
from the kth mixture component (class), 

( | )k kf x θ  represents the PDF for class k, and 

kθ  is a parameter vector for class k. In addition, 

kπ  values are restricted to be nonnegative and 

sum to 1 over all K classes. The likelihood for 
the general mixture in (1) can be written as: 
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For finite mixtures, model parameter 
estimation is typically carried out by 
maximizing the logarithm of the likelihood 
function in (2) via the iterative expectation-
maximization (EM) algorithm (Baum, Petrie, 
Soules & Weiss, 1970; Dempster, Laird & 
Rubin, 1977; Little & Rubin, 2002; McLachlan 
& Krishnan, 1997). In the current work, 
however, EM was not used in estimating 
parameters for the models of interest; instead, 
the natural logarithm of the likelihood in (2) was 
maximized directly using the Newton-Raphson 
algorithm (see Thisted, 1988). 

This procedure uses a second-order 
Taylor series expansion of the gradient (first 
partial derivatives of the log-likelihood function) 

around the current estimate ( )wθ  to produce the 

next estimate ( 1)w+θ . At each iteration the 
Newton-Raphson optimization scheme requires 
both first and second partial derivatives of the 
log-likelihood function with respect to the 
parameters, which can be computationally 
demanding. This challenge notwithstanding, 
Newton-Raphson and its many variants remain 
popular choices due to the algorithm’s quick 
convergence near the solution, and the fact that 
standard errors of the estimated parameters can 
be computed directly at convergence. 
 
Mixture Models with Functionally Related 
Parameters 

Applications of mixture models in the 
natural and biological sciences typically involve 
the blending of different natural groupings, such 
as visually similar species (e.g., crabs from the 
Bay of Naples; Pearson, 1894) or within-species 
age clusters (e.g., fish; Summerfelt & Hall, 
1987). Within the social and behavioral 
sciences, subgroups often result from differential 
responses to stimuli or treatments. This includes 
invoking different problem-solving strategies 
(e.g., in spatial rotation tasks; Mislevy & 
Verhelst, 1990), different responses to test 
speededness (Bolt, Cohen & Wollack, 2002), or 
different responses to individual test items (i.e., 
differential item functioning; Samuelsen, 2008). 
Ding (2008) recommended regression mixture 
models as useful tools for modeling population 
heterogeneity, thus improving the accuracy of 
the regression function as evidenced by the 

much lower error variance within each class or 
component population. 

In the above examples there are 
typically no functional relations per se between 
the parameters governing distributions of the 
component populations, other than perhaps that 
one population should be higher on average than 
another (e.g., an older population of fish should 
be longer). In other cases, however, there might 
be a very specific relation between component 
populations’ parameters. Oja, Koiranen and 
Rantakallio (1991), for example, examined birth 
weight data from Northern Finland for two 
cohorts: one from 1966 and one from 1985-
1986. For the latter cohort the gestational age 
could be determined more accurately by 
reference to ultrasound measurements; for the 
earlier cohort, however, the gestational age 
could only be assumed based on each mother’s 
self-report regarding her last menstrual period.  

An examination of the data yielded an 
unexpected difference between the cohorts; 
specifically, the mean birth weight for the later 
cohort was higher than the earlier cohort, while 
its birth weight of (apparently) pre-term 
newborns was lower than those from the earlier 
cohort. To explain this difference, Oja, et al. 
(1991) hypothesized more frequent systematic 
measurement error in gestational assessment for 
the earlier cohort. As a result they modeled the 
two cohorts as being comprised of three 
subgroups: (1) newborns whose mothers 
correctly knew their last menstrual period, (2) 
newborns whose mothers mistakenly thought 
their last period was earlier, and (3) newborns 
whose mothers mistakenly thought their last 
period was later. The researchers successfully 
modeled both cohorts using these three classes, 
where relations among those classes’ 
distributional parameters were constrained as a 
function of three gestational ages (i.e., correct 
age, 4 weeks earlier and 4 weeks later). 

This last example demonstrates that, 
given specific knowledge or hypotheses about 
the origins of different classes, parameters may 
be functionally related across those classes. This 
study illustrates the case of such hypothesized 
relations across classes in the context of a 
systematic measurement problem as it relates to 
the accuracy of general linear model analyses. 
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Using Mixture Models to Accommodate 
Systematic Measurement Error 

This study was inspired by a systematic 
measurement problem encountered when 
exploring and analyzing existing data for 
National Survey of Child and Adolescent Well-
being (U.S. Department of Health and Human 
Services, Administration for Children, Youth 
and Families, 2003). Longitudinal data were 
collected from children who were subject to 
child abuse or neglect and included a wide 
variety of physiological and psychological 
variables.  

One key variable in the investigations of 
these data was head circumference for children 
up to 4 years old. Although members of the 
original research team had been instructed to 
measure head circumference in centimeters, an 
inspection of the data as shown in Figure 1 
suggested that some of the researchers might 
have actually taken the measurements in inches 
(where 1 inch = 2.54 centimeters). 
[Unfortunately, the principal researchers were 
unable to contact individual field researchers to 
confirm our suspicions.] For example, the 
sample mean for the overall distribution was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

38.99, which was inconsistent with prior 
published head circumference values for 
children in this age range (in either inches or 
centimeters).  

Likewise, as is clear from Figure 1, the 
estimated standard deviation (12.29) was much 
larger than one would expect had only one set of 
units been employed. Thus, the apparently 
compromised first and second moments could 
not be used directly for even basic general linear 
model statistical analyses, such as a t-test or 
simple linear regression. 

Fortunately, mixture modeling is a 
promising approach to accommodate systematic 
errors of this type. To this end, three studies 
were conducted using the problematic head 
circumference measure in the context of finite 
mixtures: a univariate analysis, a group means 
comparison and a simple regression. In each 
case competing models were constructed to 
analyze head circumference for a sample of 
2,028 children. As noted, the Newton-Raphson 
algorithm was used and implemented using R to 
estimate all models (see Appendix for technical 
details; R code is available upon request from 
the first author). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Histogram of Head Circumference 

 



MEASUREMENT ERROR MIXTURES 

252 
 

Methodology 
Univariate Analysis Model 1: 1-Class Model 

Based on the physiological literature 
(e.g., Fok, et al., 2003; World Health 
Organization, 2007), head circumference 
measurements were considered to approximate a 
normal distribution. A one-class model was used 
as a baseline with which to compare the results 
of other models. The PDF for each observation 
may be written as: 
 

2
2
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Assuming there were N independent 
observations, the log-likelihood was: 
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The two parameters to be estimated in this 
model were the distribution mean μ  and 

variance 2σ . 
 
Univariate Analysis Model 2: 2-Class Mixture 
Model without Constraints 

The second model was a composite of 
PDFs assuming that measurements of head 
circumference arose from two distributions 
distinguished by which units (centimeters and 
inches): 
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The corresponding log-likelihood function for 
the mixture was formulated as: 
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2 2

_ _
1

ln ( , , , , )

ln (1 )

cent cent inch inch inch
N

inch i cent inch i inch
i

LL L

f f

μ σ μ σ π

π π
=

=

 = − + 
. 

(3) 
 
Five parameters were estimated in this model: 

two means centμ and inchμ , two variances 2
centσ  

and 2
inchσ , and the class mixing proportion 

parameter inchπ . 

 
Univariate Analysis Model 3: 2-Class Mixture 
Model with Means Constrained 

This model was identical to Model 2, 
with the exception that the means were 
constrained based on the fixed ratio of inch to 
centimeter ( 2.54cent inchμ μ= ). Given this 

constraint, only four parameters were estimated 

in this model: inchμ , 2
centσ , 2

inchσ , and inchπ . 

 
Univariate Analysis Model 4: 2-Class Mixture 
Model with Variance Constrained 

The fourth model hypothesized that the 
variances of two populations followed a fixed 
ratio of 6.45. This value came directly from the 
variance property 
 

2

( ) (2.54 )

2.54 ( )

6.45 ( )

Var cent Var inch
Var inch

Var inch

=

=
=

. 

 
Similar to the mean-constrained Model 3, the 
variance-constrained model also had four 
unknown parameters to be estimated: centμ , 

inchμ , 2
inchσ , and inchπ . 

 
Univariate Analysis Model 5: 2-Class Mixture 
with Both Means and Variances Constrained 

The final model assumed that the means 
and variances of the two distributions differed 
by a function of 2.54. With the additional 
equality constraints placed on the means and 
variances ( 2.54cent inchμ μ=  and 

2 26.45cent inchσ σ= ), only three unknown 
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parameters needed to be estimated: inchμ , 2
inchσ , 

and inchπ . 

Model fit indices and corresponding 
parameter estimates for the univariate study are 
summarized in Tables 1 and 2, respectively. 
Three commonly used information criteria were 
determined for each analysis in this study. The 
Akaike’s Information Criterion (AIC; Akaike, 
1987) is based on the log-likelihood (LL) of the 
hypothesized model and the number of 
parameters (p), as follows: 
 

AIC 2 2LL p= − + . 
 
An alternative to the AIC, the Bayesian 
information criterion (BIC; Schwarz, 1978), is 
obtained by modifying the penalty term based on 
sample size (N) as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIC 2 ln( )LL p N= − + . 
 

In the context of finite mixture 
modeling, BIC has been recommended for its 
consistency (Haughton, 1988; Leroux, 1992), 
meaning that it tends to select the correct model 
more frequently as sample size increases. Sclove 
(1987) suggested a further sample size 
adjustment for BIC (S-BIC) where N is replaced 
by ( 2) / 24′ = +N N , and Yang (2006) 
advocated this index, citing better performance 
when the model has either a large number of 
parameters or a small sample size. In this study, 
all three information criteria were used to 
compare both non-nested and nested models; 
when models being compared were nested, Chi-
square difference (likelihood ratio) tests were 
also conducted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Model Fit Indices from Univariate Analyses 
Model # Parameters lnL AIC BIC S-BIC 

1. 1 Class 2 -7964.97 15933.94 15945.17 15938.82 

2. 2-Class Mixture 5 -6501.70 13013.40 13041.47 13025.59 
3. 2-Class Mixture Mean 

Constrained 
4 -6504.55 13017.10 13039.56 13026.85 

4. 2-Class Mixture 
Variance Constrained 

4 -6561.07 13130.14 13152.60 13139.89 

5. 2-Class Mixture Both 
Constrained 

3 -6563.38 13132.76 13149.60 13140.07 

 
 

Table 2: Maximum Likelihood Estimates from Univariate Analyses 

Model ˆcentμ  2ˆcentσ  ˆ inchμ  2ˆ inchσ  ˆinchπ  

1. 1 Class 38.99 150.98 –  – – 

2. 2-Class Mixture 45.66 14.93 18.25 5.67 0.24 

3. 2-Class Mixture Mean 
Constrained 

45.73 15.01 18.00 5.63 0.24 

4. 2-Class Mixture Variance 
Constrained 

45.53 19.67 18.15 3.05 0.24 

5. 2-Class Mixture Both 
Constrained 

45.72 19.74 18.00 3.06 0.24 
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As shown in Table 1, compared with 
Model 1 (which assumed population 
homogeneity), all other 2-class mixture models 
provided much better fit to the data; this is 
indicated by the larger (i.e., less negative) log-
likelihood and the smaller fit indices (AIC, BIC 
and S-BIC). This finding provided initial 
support for the hypothesis that a systematic 
measurement error problem was present. Also 
noteworthy is the estimated mixing parameter 
(0.24), suggesting that roughly one-fourth of the 
subjects were improperly measured using inches 
rather than centimeters; this value was consistent 
across subsequent analyses as well. 

Comparing the fit indices of the four 
mixture models, the unconstrained and mean-
constrained models provided the best fit 
(BIC2=13041.47, BIC3=13039.54), whereas the 
last two models involving variance constraints 
did not fit as well. Looking at the two models 
without variance constraints shows that the 
estimated variances for the two classes did not 
follow the expected ratio of 6.45; this could be 
due to the different magnitudes of random 
measurement error caused by their different 
precisions of measurement. 

Relatively speaking, measurement in 
centimeter units is more precise than that in 
inches; the latter thus introduces more random 
measurement error. Regarding the means, Table 
1 shows the BIC favored the mean-constrained 
model (while the AIC and S-BIC were very 
close); Table 2 shows that the estimates from the 
mean-constrained and unconstrained models 
differed only at the decimal level. For these 
reasons, the functional relation of the two means 
was used in subsequent studies. 
 
Group Means Comparison 

The second study was a group means 
comparison that examined whether there was a 
gender difference in head circumference. Due to 
the apparent unit mixture problem, a typical t-
test comparing males and females could not be 
used; similarly, because cases’ membership into 
a centimeter or inch group was latent, separate 
male-female comparisons could not be directly 
conducted within each unit group. Thus, with the 
inch/centimeter mean constraint in place, the 
values of the log-likelihood were compared 
under two multi-sample mixture models: one 

assuming a common mean for both genders and 
one estimating a separate mean for males (M) 
and females (F). 

In the model assuming a gender 
difference, there were four normal PDFs 
crossing units and gender: 
 

1. 2( ; , )FemaleInchi FemaleInchf x μ σ  for females in 

inches with mixing proportion FemaleInchπ ; 

2. 2( ;2.54 , )i FemaleInch FemaleCentf x μ σ for females 

in centimeters with proportion of 
1− FemaleInchπ ; 

3. 2( ; , )MaleInchi MaleInchf x μ σ  for males in inches 

with proportion of MaleInchπ ; and 

4. 2( ;2.54 , )MaleCenti MaleInchf x μ σ  for males in 

centimeters with proportion of 1− MaleInchπ . 

 
It should be noted that a different mixing 
proportion was allowed for males and females 
( FemaleInchπ  and MaleInchπ ), reflecting the 

possibility that researchers’ erroneous use of 
inches rather than centimeters could have been 
related in some way to child gender. Overall, the 
log-likelihood for this model, which contained 8 
parameters (4 per gender), could be written as: 
 

2 2

2 2

ln ( , , , ,

                , , , ).

FemaleInch FemaleInch FemaleCent FemaleInch

MaleInch MaleInch MaleCent MaleInch

LL L μ σ σ π
μ σ σ π

=

 
The second multi-sample mixture 

model, which assumed no gender difference in 
head circumference, included only one common 
mean for both gender groups to be determined. 
Thus, its log-likelihood, which contains 7 
parameters, could be written as 
 

2 2

2 2

ln ( , , ,

              , , , ).

common FemaleInch FemaleCent

FemaleInch MaleInch MaleCent MaleInch

LL L μ σ σ
π σ σ π

=

 
 

Using the same estimation process 
previously described, model fit indices and 
estimated parameters for the mean comparison 
analysis are presented respectively in Tables 3 
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and 4. These results show that all model fit 
indices supported the model specifying a gender 
difference in head circumference over that 
which assumed gender equality 
(BIC1=13036.50, BIC2=13057.74). Additionally, 
because the second model assuming no gender 
difference was nested within the first model, a 
Chi-square difference test was used to compare 
the fit of the two models.  

The observed Chi-square difference 

statistic ( 2
1 28.86dfχ = = , p < 0.001) indicated 

the first model with gender difference was 
statistically significantly better than the 
constrained model. Therefore, it was inferred 
that male and female children who experienced 
abuse or neglect did have different head 
circumferences, with males being larger (18.21 
inches vs. 17.82 inches). It is worth noting that if 
a traditional t-test had been used directly with 
the original unit-compromised variable, a non-
significant test result would have been obtained  
( ( 2026) 1.706dft = = − , .088p = ); thus, the 
model would have failed to detect any difference 
between males and females. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regression Analysis 
The third study investigated if age in 

months was a useful predictor of head 
circumference by applying systematically 
constrained mixture regression models to these 
two variables. After the first baseline model, 
four regression mixture models were 
investigated, assuming different regression 
functions for the two unknown groups with 
different measurement units. 
 
Model 1: Simple Regression of Head 
Circumference (y) on Age (x) 

The simple bivariate regression model 
could be specified as i i iy x eα β= + + , where 

α  is the population intercept and β  is the 

population slope. The residual ie  was assumed 

to be normally distributed, making the PDF for 
an individual observation 
 

2
2

22

1 ( )
( , ; , , ) exp .

22
i i

i i e
ee

y xf x y α βα β σ
σπσ

 − −= − 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Model Fit Indices from Mean Comparison Analyses 

Model # Parameters lnL AIC BIC S-BIC 

Assuming Gender 
Difference 

8 -6487.79 12991.58 13036.50 13011.08 

Assuming Gender 
Equality 

7 -6502.22 13018.44 13057.74 13035.50 

 
 

Table 4: Maximum Likelihood Estimates from Mean Comparison Analyses 

Model ˆFemaleInchμ  2ˆFemaleInchσ 2ˆFemaleCentσ ˆFemaleInchπ ˆMaleInchμ 2ˆMaleInchσ  2ˆMaleCentσ  ˆMaleInchπ

Assuming Gender 
Difference 

17.82 4.91 14.67 0.246 18.21 7.85 13.64 0.244 

Assuming Gender 
Equality 

18.02 4.93 14.96 0.246 18.02 7.47 14.18 0.243 
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The log-likelihood for the full sample was thus 
 

2

1

ln [ln( ( , ; , , ))]
N

i i e
i

LL L f x y α β σ
=

= = . 

 
As indicated by the log-likelihood function, 3 
parameters needed to be determined. 
 
Model 2: Mixture Regression Models without 
Any Constraints 

In this model, all of the regression 
coefficients, residual variances, and class 
proportions were free to be estimated. Its 
equation could be expressed as 

ik k k i iy x eα β= + +  for each kth class, with 

1, 2k =  representing the inch and centimeter 
classes; thus, the two unit groups each had their 
own regression coefficients to be determined. 
Because each observation could be sampled 
from either of the two unit classes, there were 
two class-specific PDFs for an individual: 
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and 
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The corresponding log-likelihood was 
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1
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[ln( (1 ) )];
N

inch i inch inch i cent
i
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in this case 7 parameters needed to be estimated. 
 
Model 3: Mixture Regression Model with Slope 
Constraint 

Given that the slope represents the 
degree of expected change in head 

circumference per unit increase in age, the 
suspected unit problem would lead to the 
relation: 2.54cent inchβ β= . Using this relation as 

a constraint, the PDF for centimeter group was 
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The resulting log-likelihood was 
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with 6 unknown parameters to estimate. 
 
Model 4: Mixture Regression Model with 
Intercept Constraint 

Based on the population relation for the 
intercept k y k xα μ β μ= − , and assuming 

comparable ages for the two classes, it was not 
unreasonable to expect the familiar functional 
relation between the two classes’ intercept terms 

2.54cent inchα α= . After this replacement, the 

PDF for the centimeter group was 
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The resulting log-likelihood is 
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with 6 parameters to be estimated. 
 
Model 5: Mixture Regression Model with 
Constraints on Both Intercepts and Slopes 

Based on the rationales provided for 
Models 3 and 4, both relations 2.54cent inchβ β=  

and 2.54cent inchα α=  were applied in this 
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model. From these constraints, the PDF for the 
centimeter group was specified as 
 

2

_ _

2

22
__

( , ; , , )

1 ( 2.54 2.54 )
exp .

22

i cent i i inch inch e cent

i inch inch i

e cente cent

f f x y

y x

α β σ

α β
σπσ

=

− −
= −

 
 
 

 
The corresponding log-likelihood function was 
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with 5 parameters to be estimated in total. 
 

Results 
All estimated results and corresponding model 
fit indices are summarized in Tables 5 and 6, 
respectively. Table 5 shows that the mixture 
models (Models 2 - 5) were similar in fit and 
were strongly favored over the simple regression 
model (Model 1). Among the four mixture 
models, the choice depended on the information 
criterion measure used; specifically, while all 
mixture models were fairly close in information 
criteria values, the AIC and S-BIC favored the 
model with only the slope constrained (Model 3) 
while the BIC favored the model with intercept 
and slope constraints (Model 5). 

A comparison of these two models using 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Chi-square difference test yielded a 

statistically significant difference ( 2
1=dfχ  = 6.08, 

p < 0.01), thus favoring the model without the 
intercept constraint. A potential reason for this 
constraint’s failure is that it rests upon the 
assumption that the mean age for the inch and 
centimeter classes is the same (i.e., that a 
researcher’s mistaken decision to use inches was 
unrelated to the child’s age); however, the 
estimated mean age for the two classes (based 
on a posterior probability-based group 
assignment) was 16.77 months for the inch class 
and 15.65 for the centimeter class. This mean 
difference notwithstanding, the slope and 
intercept parameter estimates for all regression 
mixture models, constrained or unconstrained, 
are practically close in value. Thus, to assess the 
linear relation between age in months and head 
circumference, the slope would lead to an 
estimate roughly one-fifth (0.20) of a centimeter 
increase in head circumference for each one 
month increase in age. 

These results are corroborated by the 
plot in Figure 2, where circles represent 
bivariate age/head circumference observations. 
It may be observed that the solid simple 
regression line does not capture the relation 
between the two variables, while the two dashed 
regression lines generated from the mixture 
model provided a much better approximation to 
the plotted observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Model Fit Indices from Regression Analyses 

Model # Parameters lnL AIC BIC S-BIC 

1. Simple Regression 3 -7942.91 15908.66 15899.13  15899.13 

2. 2-Class Regression Mixture No 
Constraint 

7  -5918.70 11851.40 11890.70  11868.46 

3. 2-Class Regression Mixture 
Constrained Slope 

6  -5918.90 11849.80 11883.49  11864.43 

4. 2-Class Regression Mixture 
Constrained Intercept 

6  -5920.70 11853.40 11887.09  11868.03 

5. 2-Class Regression Mixture 
Constrained Intercept and Slope 

5  -5921.94 11853.88 11881.95  11866.07 
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Conclusion 
Based on the series of analyses examined in this 
study, mixture modeling appears to be an 
effective tool for investigating data consisting of 
variables with systematic measurement error. 
Systematic measurement errors have the 
potential to render data virtually useless: the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
implementation of mixture models thus has the 
potential to salvage information regarding the 
key population relations in the data thereby 
avoiding the otherwise tremendous waste of 
time and expense associated with gathering such 
problematic data. 

Table 6: Maximum Likelihood Estimates from Regression Analyses 

Model ˆinchα  închβ  
2
_ˆe inchσ ˆinchπ  ˆcentα  ˆ

centβ  
2
_ˆe centσ

1. Simple Regression 36.70 0.14  147.73 – – – – 

2. 2-Class Regression Mixture No 
Constraint 

17.04 0.08  5.88  0.25  42.34  0.22  6.83  

3. 2-Class Regression Mixture  
Constrained Slope 

16.95 0.08  5.89  0.25  42.35  0.20  6.83  

4. 2-Class Regression Mixture  
Constrained Intercept 

16.69 0.09  5.92  0.25  42.39  0.21  6.83  

5. 2-Class Regression Mixture 
Constrained Intercept and Slope 

16.69 0.08  5.93  0.25  42.39  0.20  6.84  

 
 

Figure 2: Simple Regression Line (Solid) vs. Unconstrained Mixture Regression Lines (Dashed) 
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The studies presented may be viewed as 
a tip of the analytical iceberg. Although the only 
analyses demonstrated regarded mean 
comparisons and simple regression, extensions 
exist for the multivariate general(ized) linear 
model, as well as for latent variable models 
(e.g., structural equation models). The key to the 
implementation of such models is to have a 
specific hypothesis about the nature of the 
systematic measurement error and then translate 
that hypothesis into model constraints. It is 
hoped that the current case study has provided a 
useful illustration of the accommodation and 
adjustment for such measurement errors thereby 
bringing meaning to otherwise compromised 
data. 
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Appendix 
The Newton-Raphson is a general optimization 
strategy based on a quadratic Taylor series 
expansion of the gradient (first partial 
derivatives of the log-likelihood function with 
respect to model parameters). To fashion the 
Newton-Raphson update, this quadratic function 
is maximized with respect to θ  in order to 
generate the next iterate. Setting the gradient 
expression equal to zero and solving for θ  
provides the update 
 

1 1( ) ( )w w w w+ −= −θ θ H θ g θ  
 
where H is the Hessian, the matrix of partial 
second derivatives of the log-likelihood with 
respect to the parameter vector, and g is the 
gradient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recall the log-likelihood function from 
Equation (3): 
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The gradient is defined as 
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with elements defined as shown in Appendix 
Figures. After elements of the gradient have 
been computed analytically, subsequent 
elements of the Hessian matrix can be obtained 
numerically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix Figures: Elements of Gradient 
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Appendix Figures: Elements of Gradient (continued) 
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