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The accuracy of AIC and BIC is evaluated under simulated multiple regression conditions, varying number of 
total and valid predictors, R², and n. AIC and BIC were increasingly accurate as n increased and as total 
predictors decreased. Interactions of the ratio of valid/total predictors affected accuracy. 
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Introduction 
 
Exploratory model building is often used within 
the context of multiple regression (MR) analysis. 
As noted by Draper and Smith (1998), these 
undertakings are usually motivated by the 
contradictory goals of maximizing predictive 
efficiency and minimizing data 
collection/monitoring costs. A popular 
compromise has been to adopt some strategy for 
selecting a “best” subset of predictors. 
 Many different definitions of best can be 
found in the literature, including incremental 
procedures such as forward selection MR, 
backward elimination MR, stepwise MR, all-
possible subsets MR with criteria related to 
residual variance, multiple correlation, Mallows 
Cp, etc. Incremental procedures are efficient, 
computationally,  but  do  not  necessarily  result in  
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the selection of an unconditionally best model. For 
example, as usually implemented, forward 
selection MR includes additional variables in the 
regression model based on maximizing the 
increment to R-squared from step to step. At the 
third step, for example, the model contains the best 
three predictors only in a conditional sense. Also, 
the modifications to forward selection incorporated 
into stepwise MR do not guarantee finding the best 
three predictors.  

In contrast to incremental procedures, all-
possible subsets does choose a best model for a 
fixed number of predictors but not necessarily an 
overall best model. For the mth model based on pm 
out of a total of p independent parameters, 
Mallows Cp, for example, utilizes a criterion of the 
form SS n pm e m/ [ ( )]σ 2 2 1− − + where σ e

2 is the 
residual variance estimate based on the full model 
(i. e., the model with all p predictors). Models with 
values close to pm + 1 are best in a final prediction 
error (FPE) sense. Thus, a best model can be 
identified for fixed values of pm, but there is no 
general method for selecting an overall best model. 

Akaike (1973) adopted the Kullback-
Leibler definition of information, I f g( ; ) , as a 
natural measure of discrepancy, or asymmetrical 
distance, between a true model, f y( ) , and a 
proposed model, g y( | )β , whereβ  is a vector of 
parameters. Based on large-sample theory, Akaike 
derived an estimator for I f g( ; ) of the form: 
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 AIC Ln L km m m= − + ⋅2 2( )  , 
 
where Lm is the sample log-likelihood for the mth 
of M alternative models and km is the number of 
independent parameters estimated for the mth 
model. The term, 2 ⋅ km , may be viewed as a 
penalty for over-parameterization. The derivation 
of AIC involves the notion of loss of information 
that results from replacing the true parametric 
values for a model by their maximum likelihood 
estimates (MLE’s) from a sample. In addition, 
Akaike (1978b) has provided a Bayesian 
interpretation of AIC. 

A min(AIC) strategy is used for selecting 
among two or more competing models. In a 
general sense, the model for which AICm is 
smallest represents the “best” approximation to the 
true model. That is, it is the model with the 
smallest expected loss of information when MLE’s 
replace true parametric values in the model. In 
practice, the model satisfying the min(AIC) 
criterion may or may not be (and probably is not) 
the “true” model since there is no way of knowing 
whether the “true” model is included among those 
being compared. Unlike traditional hypothesis 
testing procedures, the min(AIC) model selection 
approach is holistic rather than piecemeal. Thus, 
for example, in comparing four hierarchic linear 
regression models, AIC is computed for each 
model and the min(AIC) criterion is applied to 
select the single “best” model. This contrasts with 
the typical procedure of testing the significance 
between models at consecutive levels of 
complexity. An excellent and more complete 
introduction to model selection procedures based 
on information criteria is presented by Burnham 
and Anderson (1998).  
 Typically, for regression models, the 
number of independent parameters, km , is equal to 
the number of predictor variables in the equation 
plus two since, in addition to partial slope 
coefficients, an intercept and residual variance 
term are estimated. It should be noted that the 
maximum likelihood estimator for the residual 
variance is biased (i. e., the denominator is the 
sample size, n, rather than n – pm– 1 for a pm-
predictor model). In particular, for p predictors 
based on a normal regression model (i. e., residuals 
assumed to be normally distributed with 
homogeneous variance), the log(likelihood) for the 

model is: − ⋅ + +. (ln( ) ln( / ) )5 2 1n SS neπ  where 
SSe  is the sum of squared residuals. Then, the 
Akaike information measure is: 
 
  AIC n SS n pe m= + + + +(ln( ) ln( / ) ) ( )2 1 2 2π .  
 
The Akaike model selection procedure entails 
calculating AIC for each model under 
consideration and selecting the model with the 
minimum value of AIC as the preferred, or “best,” 
model. In the context of selecting among 
regression models, a “best” model can be selected 
for each different size subset of predictors as well 
as overall. 
 AIC, which does not directly involve the 
sample size, n, has been criticized as lacking 
properties of consistency (e.g., Bozdogan, 1987; 
but see Akaike, 1978a for counter arguments). A 
popular alternative to AIC presented by Schwarz 
(1978) and Akaike (1978b) that does incorporate 
sample size is BIC where: 
 
 BIC Ln L n km m m= − + ⋅2 ( ) ln( ) . 
 
 BIC has a Bayesian interpretation since it 
may be viewed as an approximation to the 
posterior odds ratio. Note that BIC entails heavier 
penalties per parameter than does AIC when the 
sample size is eight or larger. When the order of 
the model is known and for reasonable sample 
sizes, there is a tendency for AIC to select models 
that are too complex and for BIC to select models 
that are too simple. In fact, the relative tendencies 
for the occurrence of each type of misspecification 
can be derived mathematically as shown by 
McQuarrie and Tsai (1998). The tendency for AIC 
to select overly complex models in cases where 
complexity is known has been interpreted as a 
shortcoming of this measure. Hurvich and Tsai 
(1991), for example, argue for a modified version 
of AIC that incorporates sample size. In practical 
applications, however, the performance of criteria 
such as AIC and BIC can be quite complex. 
 AIC was originally developed by Akaike 
within the context of relatively complex 
autoregressive time series models for which he 
presented some simulation results (Akaike, 1974). 
Bozdogan (1987) compared rates of successful 
model identifications for AIC and CAIC (a close 
kin of BIC) for a single cubic model with various 
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error structures. Hurvich and Tsai (1991) 
compared AIC and their own consistent estimator, 
AICC, for a normal regression case and for a 
complex time series. Bai et al. (1992) compared 
AIC and several modifications of AIC within the 
context of multinomial logistic regression models. 
Although each of these previous studies has 
investigated the use of AIC and related criteria in 
exploratory frameworks, the present study expands 
the focus to applications of multiple regression 
analysis that are more typical of a behavioral 
science setting. More specifically, AIC and BIC 
were investigated under a variety of realistic 
scenarios. 
 

Methodology 
 
AIC and BIC were evaluated under several 
simulated multiple regression conditions. Data 
were collected regarding the accuracy of both 
information criteria for each condition and the 
nature of the incorrect choices. The accuracy of an 
information criterion was defined as the percentage 
of iterations in which it selected the correct model. 
Incorrect model selections fell into one of three 
categories: 1) Low: The chosen model had too few 
predictors in it; 2) High: The chosen model had too 
many predictors in it; 3) Off: The chosen model 
had the correct number of predictors but included 
one or more that had a correlation of 0 with the 
criterion without including one or more that had a 
nonzero correlation with the criterion. 
 The number of total predictors, the number 
of valid predictors, R-squared, and sample size 
were manipulated. For total number of predictors, 
p, the values of 4, 7, and 10 were chosen. These 
values are a reasonable representation of the 
number of predictors found in applied research 
settings and they are sufficiently different to 
illustrate potential relationships between p and 
accuracy of the information criteria. With 4 total 
predictors, conditions with 2, 3, and 4 valid 
predictors (v) were simulated; with 7 total 
predictors, conditions with 2 through 7 valid 
predictors were simulated; and with 10 total 
predictors, conditions with 2 through 8 valid 
predictors were simulated. For p = 10, 9 and 10 
valid predictors were not included because 
predictor-criterion correlations for a ninth and 
tenth valid predictor at R² = .1, after controlling for 
the first eight predictors would have been trivially 

small. Furthermore, research contexts rarely 
incorporate 9 or 10 valid predictors for a single 
criterion. 
 Three values of R-squared, .1, .4, and .7, 
were evaluated. These values were chosen to 
represent small, moderate, and large multiple 
correlations, respectively. They were also chosen 
to allow for consideration of accuracy trends that 
were a linear function of R-squared. 
 Each combination of the above factors was 
tested with sample sizes that were 5, 10, 20, 30, 40, 
60 and 100 times the number of total predictors. 
Relative sample sizes were used rather than 
absolute sample sizes, because sample size 
recommendations in multiple regression are 
typically a function of the number of predictors in 
the model. These values for relative sample size 
were chosen to simulate conditions that were 
below generally accepted levels, at or somewhat 
above generally accepted levels, and clearly above 
generally accepted sample sizes. 
 All simulations were carried out by 
programs written and executed using SAS 8.0, and 
1000 iterations were conducted for each condition. 
The simulated data were generated for each 
condition based on a correlation matrix with the 
designated number of nonzero correlations 
between predictors and the criterion. The 
correlations in each combination increased from 
zero in a linear fashion based on their squared 
values, such that the r²-values summed to the 
designated R²-value. All correlations among 
predictors were set at 0. Although, in applied work, 
predictors are not independent of each other, this 
design does not lose generalizability since this is 
equivalent to residualizing the predictor-criterion 
correlations for all but the strongest predictor to 
compute R-squared, which results in all these 
intercorrelations becoming 0, regardless of their 
original values. 

Results 
 
Best Overall Models 
 The valid predictor ratio, VPR = v/p, is 
defined as the ratio of valid predictors (v) to total 
predictors (p). For purposes of interpreting 
accuracy in selecting true models, values of at least 
70% were considered satisfactory. The percentage 
of correct selection is presented for AIC and BIC 
in Tables 1 and 2 (see Appendix A). Results based 
on sample size sorted by total numbers of variables 
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equal to 4, 7 and 10 are summarized as graphs in 
Figures 1, 2, and 3, respectively (shown following 
tables in Appendix A). 
 
BIC 
 The accuracy of BIC for selecting the best 
overall model consistently improved as sample size 
increased and as R-squared increased. In general, 
accuracy declined with increases in the total 
number of predictors, p, with an exception being 
the behavior for two valid predictors, where 
accuracy steadily improved as p increased. The 
relationship of accuracy to VPR was not as 
straightforward, being complicated by interactions 
with sample size, R-squared, and p. For all 
combinations of R-squared and total number of 
predictors, there was an inverse relationship 
between accuracy and VPR for values of p at n = 
5p. For R² = .1, this relationship held across all 
sample sizes, with the differences between VPR’s 
generally increasing with sample size. For R² = .4, 
the differences in accuracy between the VPR’s 
within p slowly decreased, with the mid-range 
VPR’s consistently being superior to the others at 
the two largest relative sample sizes. For R² = .7, 
there was an inverse relationship between VPR and 
accuracy at the lowest sample sizes; the 
relationship became direct, however, by n = 30p 
with p = 7, and n = 20p at 4 and 10 total predictors. 
 For R² = .1, the accuracy of BIC was 
generally low. In only 10 of the 112 combinations 
in the simulation design did BIC achieve 
acceptable accuracy, doing so when n ≥ 400 with 
two valid predictors, n ≥ 600 with three valid 
predictors, and at n = 1000 with a VPR of 4/10. 
For R² = .4, the accuracy of BIC improved. For v = 
2, sample sizes of 10p were adequate to achieve 
acceptable accuracy. As VPR increased within p, 
and as p increased, the sample size necessary for 
acceptable accuracy also increased. At VPR’s of 
7/7 and 8/10, for example, acceptable accuracy 
was not achieved until n = 60p, while at VPR = 
4/4, BIC was 69.2% accurate at n = 30p and 80.5% 
accurate at 40p. 

 For R² = .7, BIC was quite accurate at all but 
the smallest relative sample size. At n = 5p, BIC’s 
accuracy was only acceptable with VPR = 2/4. At 
n = 10p, only VPR’s of 7/7, 7/10, and 8/10 failed 
to achieve acceptable accuracy. For the remaining 

relative sample sizes with R² = .7, BIC was at least 
80% accurate. 

AIC 
 Like BIC, the accuracy of AIC at selecting 
the best overall model consistently declined as the 
total number of predictors was increased. This was 
the only similarity in the pattern of results for AIC 
and BIC. The change in accuracy of AIC was not 
stable across any other single variable. 
 AIC was consistently at its worst at the 
smallest sample sizes, with improved accuracy 
attained with medium sample sizes. For larger 
sample sizes, AIC behaved nearly at its asymptote, 
although rarely at or near 100% accuracy. Only 
VPR’s of 4/4 and 7/7 approached 100% accuracy, 
doing so at the higher relative sample sizes with R² 
= .4, and doing so for n ≥ 30p with R² = .7. As R-
squared increased, each VPR behaved 
asymptotically at gradually smaller relative sample 
sizes. Lower VPR’s stabilized around their 
asymptotes sooner, in terms of sample size, than 
higher VPR’s due to a general tendency for the 
higher VPR’s to be less accurate at the smaller 
sample sizes and due to the fact that higher VPR’s 
consistently had higher asymptotes. 
 For the combinations with R² = .1, AIC 
achieved acceptable levels of accuracy even less 
frequently than did BIC, breaking the 70% barrier 
in only two cases: n = 400 at VPR’s of 2/4 and 3/4. 
With R² = .4, AIC did poorly for p = 10 with only 
the v = 8, n = 1000 case reaching satisfactory 
accuracy. At VPR = 7/7, AIC performed well for 
sample sizes of at least 30p.  
 AIC achieved acceptable accuracy at 
VPR’s of 2/4, 3/4, and 4/4 by n = 20p (albeit 
asymptotically for 2/4). For R² = .7, all VPR’s with 
p = 4, reached acceptable accuracy by 10p (again 
asymptotically for 2/4). With VPR = 5/7, the 
accuracy of AIC again appeared asymptotic at 
70%, but the VPR’s 6/7 and 7/7 demonstrated 
acceptable accuracy for all but the smallest sample 
size With eight valid predictors out of 10 total, 
AIC’s accuracy seemed to be asymptotic for a 
value just above 70% at n ≥ 30p. 
 
Comparison of BIC and AIC 
 At VPR’s of 4/4 and 7/7, AIC was 
consistently as good as or better than BIC at 
selecting the correct overall model regardless of 
sample size and R-squared. With R² = .1, AIC 
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outperformed BIC at all sample sizes when the 
VPR > .5. For R² = .4, AIC consistently 
outperformed BIC only at n = 5p and n = 10p in 
conjunction with VPR’s above .5. For R² = .7 and 
VPR > .5, AIC outperformed BIC only at n = 5p 
and for all other cases BIC outperformed AIC. 

Patterns of Misselection 
 Unlike the accuracy patterns of BIC and 
AIC, patterns of incorrect choices are nearly 
identical and relatively straightforward. The 
incorrect decisions made by both AIC and BIC 
tended to be in the direction of more complex 
models when sample size was large and valid 
predictor ratio was low. At lower sample sizes and 
higher valid predictor ratios, both criteria tended to 
select models that were too simple. 
 The rates of change from errors of 
complexity to errors of simplicity, however, were 
appreciably different for AIC and BIC. As sample 
size increased with decreasing VPR, incorrect 
decisions by BIC tended toward simpler models 
until reaching the higher relative sample sizes with 
the lower VPR’s. AIC, by contrast, made more 
errors of simplicity than of complexity only at the 
combination of the lower sample sizes and higher 
VPR’s. 
 Results were also obtained for incorrectly 
selecting models with the correct number of 
predictors but not the actual best predictors. This 
type of error occurred more often with AIC than 
with BIC and in general, it happened more often at 
smaller sample sizes, smaller R²-values, and for 
more total predictors. The relationship between 
VPR’s and the frequency of this type of incorrect 
selection interacted with R-squared and sample 
size. For R² = .1, these errors occurred 
predominantly at lower relative sample sizes with 
lower VPR’s. As VPR increased, the distribution 
became slightly quadratic, with the error occurring 
most at the moderate sample sizes and tapering to 
either side of the middle. At the higher values of 
VPR, the larger relative sample sizes contained the 
highest frequencies of this type of error. 
 For R² = .4, incorrectly selecting the right 
number but wrong set of predictors was generally 
limited to the lower sample sizes with the overall 
frequency dropping off rapidly after VPR = .5. For 
R² = .7, this type of error was rare; at no sample 
size above 5p was the frequency greater than 4.3% 
of the iterations, the frequency never exceeded 

10% for BIC and only at VPR’s of 7/10 (.136) and 
8/10 (.139) did it exceed 10% for AIC. 
 

Conclusion 
 
The results of the present study suggest that 
different multiple regression scenarios in applied 
research call for different information criteria for 
selecting the best set of predictors. As is so often 
the recommendation in research, the larger the 
sample sizes the better; both BIC and AIC were 
increasingly more accurate as sample size 
increased. The information criteria were also 
generally more accurate as the number of total 
predictors decreased, although the reverse was true 
of BIC with two valid predictors. The results also 
provide some unfortunately complex 
recommendations for accuracy based on 
interactions of VPR with other facets of model 
conditions. 
 When all, or nearly all, predictors in a set 
are valid predictors, AIC is as good as or better 
than BIC at selecting the best overall model at 
every sample size and R²-value tested. When R-
squared is low, the advantage of AIC at higher 
valid predictor ratios is essentially moot, because 
at higher VPR’s neither information criterion 
reached satisfactory accuracy (except AIC at VPR 
= 3/4 and n = 100p). With higher multiple 
correlations, however, AIC was at least 70% 
accurate at high VPR’s and sample sizes of 20 to 
30 times the number of predictors (with a negative 
relationship between sample size and R-squared 
required for good accuracy). For VPR’s above .5 
but below .8, sample size affects the relative 
performance of BIC and AIC. AIC is the better 
choice for relative sample sizes below 30p when 
R² < .7. BIC is generally the better choice for 
relative sample sizes of at least 30p or when R² ≥ 
.7, with one exception in the current study at VPR 
= 3/4 and R² = .1 in which AIC is better across 
sample size. It should be noted, however, that with 
VPR’s in the .5 to .8 range and relative sample 
sizes below 30p, neither AIC nor BIC reached 
satisfactory accuracy with R² < .7, so AIC’s 
advantage in such situations may not have practical 
importance. 
 For VPR’s ≤ .5, BIC performed uniformly 
better than AIC. The importance of this advantage 
was related to R-squared. With small multiple 
correlations, BIC only achieved satisfactory 
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accuracy at low VPR’s for relatively large sample 
sizes (n ≥ 400). At moderate levels of R-squared, 
BIC begins to perform well at lower relative 
sample sizes (20p with 3 valid predictors and 10p 
at v = 2, with R² = .4) when the VPR is low. At 
extremely high values of R-squared, BIC is at least 
70% accurate with sample sizes that are 10 times 
the number of predictors when VPR is low. 
 The sample sizes chosen for the present 
study seemed to provide a reasonable illustration 
of the patterns of accuracy at fixed relative sample 
sizes. There were, however, very few conclusions 
that could be made based on absolute sample size. 
Restructuring the tables and charts to line up 
sample sizes would line up only similar sample 
sizes, the conclusions of which would be 
confounded by having only similar valid predictor 
ratios. It might therefore be fruitful to investigate 
patterns of the accuracy of information criteria as a 
function of absolute sample size. 
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Appendix A: Tables & Figures 

Table 1. Percentage of correct model selection for AIC. 
 p 4 7 10
R² v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 9.7 3.9 1.8 8.8 2.2 0.7 0.4 0.1 0 8.7 3.3 0.4 0.2 0.1 0.1 0
10p 17.2 4.8 2.1 19 6 1.9 0.5 0.1 0.1 14.5 8.6 2.8 1.6 0.5 0 0
20p 35.5 18.2 5.7 29.3 20.2 10.5 5.6 2 1.3 20.9 18.1 10.6 6.5 3.4 1.7 0.2
30p 48 30.5 13.3 38 33 20.5 11 4.6 2.7 23 21.6 19.2 13.5 7.8 4.6 2.3
40p 57.8 42.1 23 37.6 39.8 30.3 20.3 12 6.1 23.6 26.5 23.6 20.3 13.2 8.3 7
60p 66.6 59.5 39.6 43.5 43.3 42.4 37.7 25.9 19.7 27.1 28.6 28.8 30.6 25.7 20.1 16.7

.1 100p 72.7 73.6 69.3 40.1 47.7 53.1 53.7 51.1 40.3 25.1 29.1 34.3 37 40.1 39.4 35.8
n=5p 44.4 25.3 13.3 28.5 21.9 13.4 9.7 6 2.5 16.6 19.6 13.8 8.1 6.6 3.9 2.2
10p 61.1 54 39.4 35.9 41.4 40.2 32.6 24.2 16.9 22.9 25.4 29.1 25.9 21.9 19.5 15.6
20p 68.7 77.2 74.7 43 46.5 55.3 59.2 56.6 49.2 24.3 31.8 33.1 39.1 39.4 41.6 40.5
30p 69.3 81.5 91.8 39.9 49.1 59.7 66.2 70.4 72.7 23.5 29.7 37.7 38.9 48.3 49.9 56.1
40p 70.1 82.6 95.9 43.9 48.4 57.1 67 79.9 88.2 25 28.7 33.7 39.6 47 54.6 64.8
60p 71.4 84.2 99.2 39.7 49.7 61.1 71.7 83.4 95.8 22 28.4 33.9 39.3 48.1 60.1 67.3

.4 100p 69.6 82.2 100 43.4 48 59.7 68.3 85.5 99.5 24.5 32.2 35 44.5 48.5 61.7 70.6
n=5p 60 62.4 61.8 35 41.6 41.5 45 45.4 38.7 19.1 26 29.5 27.5 33.1 31.3 28.2
10p 69.3 77.7 92.5 38.2 48.1 56.8 66.2 72.9 76.8 22.8 26.2 31.3 39.1 42.9 50.1 54.3
20p 67 81.9 100 41.6 52 58.6 66.8 84.4 95.4 23.5 29.7 33.2 40.7 47.6 56.9 68.3
30p 69.2 84.5 100 40.3 49.3 59.5 68.8 84.8 99.7 22.1 30.8 35.3 40.2 49.2 61.2 70.3
40p 71 83.6 100 39.9 47.7 61.3 68.6 83.1 100 27.4 28.8 33.7 40.6 49.6 60.6 72.6
60p 70.9 83.2 100 39.2 48.6 59.3 71.3 84.5 100 26.7 32.2 35.1 42.2 50 59.9 70.5

.7 100p 71.8 83.8 100 44.2 48 61.3 70.7 82.2 100 25.7 30.9 35.6 43.2 49.2 58.3 73.4
 
Table 2. Percentage of correct model selection for BIC. 
 p 4 7 10
R² v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 6 2 0.3 7.7 0.9 0.1 0.1 0 0 8.2 1.4 0.1 0 0 0 0
10p 8.8 1.5 0 16.3 1.5 0.1 0 0 0 21.5 3.9 0.1 0.2 0 0 0
20p 22.3 4.1 0.3 34.6 8.5 1.4 0.1 0 0.1 48.5 17.6 3.8 0.1 0.1 0 0
30p 34.3 7.5 0.9 57.9 21.3 4.2 0.5 0 0 69 32.4 11.6 2.2 0.4 0.3 0
40p 45.8 12.4 1.7 69 29.2 13.3 1.9 0.4 0.1 82.9 46.8 19.5 5.6 1.3 0.2 0
60p 68.3 26.8 7.2 86.8 53.6 25.1 6.8 1.2 0.3 89.5 71.2 40.5 18 4.9 1.4 0.7

0.1 100p 88.2 53.2 21.1 94.2 79.8 49.9 24.3 8.9 2.9 91.8 91 70.4 46.9 23.5 10.4 3.4
n=5p 44.5 17.9 6.5 48.4 23.5 8.3 4.1 1.4 0.2 50.4 35.5 15.2 5.7 2.1 0.2 0.2
10p 72.2 40.1 17.7 73.1 58.8 33.8 17.5 5.7 2.7 74.8 63.4 48.3 27.3 11.7 5.3 2.2
20p 88.8 74.1 46.4 86.9 85.9 69.8 46.2 29.1 13.6 83.1 86 74.9 63.5 44.7 28.2 14.9
30p 93.1 87.9 69.2 89.8 90.4 84.3 71.9 51.2 33.1 85.9 87.4 88.8 81.4 66.7 52.4 36
40p 94.7 94.1 80.5 91.7 92.9 90.5 82.2 67.3 50.7 88.5 90 90.5 89.3 79.1 65.9 52.5
60p 95.5 97.2 93.3 91.8 94.6 96.7 92.3 87.3 70.6 90.6 91.1 94.3 94.4 92.1 86.2 75.6

0.4 100p 97 98.6 99.3 94.6 94.1 97.1 97.4 96.7 91.9 92.2 94.6 94.3 95.8 96.8 97.3 93.4
n=5p 72.7 62.8 45.7 65.4 67.2 54.1 43.7 33.1 17.3 58 61.6 61.3 50.6 38.5 26.8 18.2
10p 88.2 87.4 80.6 79.2 83.1 80.8 77.3 67.9 51.6 74.8 77.2 77.4 79 72.1 63.3 51
20p 91.7 95.2 97.9 86.8 88 90.9 91.5 91.1 85 83.2 84.7 87.1 89.9 89.9 89.4 84.9
30p 92.6 96.8 99.9 89.7 90.7 92.5 96.1 97.1 96.5 85.5 87.2 90.2 91.5 93.6 93.8 93.2
40p 94.6 96.6 100 89.9 92.2 94.3 95.6 98.4 99.2 88.2 90.6 91.8 92.7 95.1 95.2 96.3
60p 95.5 97.9 100 92.5 94.5 94.4 97.7 98.3 100 90.3 91.7 92.8 94.4 95 95.8 97.2

0.7 100p 97.2 98.6 100 94.2 96.9 96.6 98.1 99 100 93.4 94.5 95.7 95.2 96.4 97.7 98.4
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Figure 1. Percentage of correct model selection for BIC and AIC; four total predictors 
 
 BIC      R² = .1       AIC 

 
 BIC      R² = .4       AIC 

 
 BIC      R² = .7       AIC 
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Figure 2. Percentage of correct model selection for BIC and AIC; seven total predictors 
 
 BIC      R² = .1       AIC 

 
 BIC      R² = .4       AIC 

 
 BIC      R² = .7       AIC 
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Figure 3. Percentage of correct model selection for BIC and AIC; ten total predictors 
 
 BIC      R² = .1       AIC 

 
 BIC      R² = .4       AIC 
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