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The accuracy of AIC and BIC is evaluated under simulated multiple regression conditions, varying number of
total and valid predictors, R?, and n. AIC and BIC were increasingly accurate as n increased and as total
predictors decreased. Interactions of the ratio of valid/total predictors affected accuracy.
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Introduction

Exploratory model building is often used within
the context of multiple regression (MR) analysis.
As noted by Draper and Smith (1998), these

undertakings are usually motivated by the
contradictory goals of maximizing predictive
efficiency and minimizing data
collection/monitoring costs. A popular

compromise has been to adopt some strategy for
selecting a “best” subset of predictors.

Many different definitions of best can be
found in the literature, including incremental
procedures such as forward selection MR,
backward elimination MR, stepwise MR, all-
possible subsets MR with criteria related to
residual variance, multiple correlation, Mallows
C,, etc. Incremental procedures are efficient,
computationally, but do not necessarily result in
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the selection of an unconditionally best model. For
example, as usually implemented, forward
selection MR includes additional variables in the
regression model based on maximizing the
increment to R-squared from step to step. At the
third step, for example, the model contains the best
three predictors only in a conditional sense. Also,
the modifications to forward selection incorporated
into stepwise MR do not guarantee finding the best
three predictors.

In contrast to incremental procedures, all-
possible subsets does choose a best model for a
fixed number of predictors but not necessarily an
overall best model. For the m"™ model based on DPm
out of a total of p independent parameters,
Mallows C,, for example, utilizes a criterion of the
form SS, /6. —[n—2(p, +1)]where &’is the
residual variance estimate based on the full model
(i. e., the model with all p predictors). Models with
values close to p,, + I are best in a final prediction
error (FPE) sense. Thus, a best model can be
identified for fixed values of p,, but there is no
general method for selecting an overall best model.

Akaike (1973) adopted the Kullback-
Leibler definition of information, /(f;g), as a
natural measure of discrepancy, or asymmetrical
distance, between a true model, f()), and a

proposed model, g(y|f), where £ is a vector of

parameters. Based on large-sample theory, Akaike
derived an estimator for /( f’; g) of the form:
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AIC, = 2Ln(L )+2-k, .

where L, is the sample log-likelihood for the mt
of M alternative models and k., is the number of
independent parameters estimated for the m"
model. The term, 2-k_, may be viewed as a

penalty for over-parameterization. The derivation
of AIC involves the notion of loss of information
that results from replacing the true parametric
values for a model by their maximum likelihood
estimates (MLE’s) from a sample. In addition,
Akaike (1978b) has provided a Bayesian
interpretation of AIC.

A min(AIC) strategy is used for selecting
among two or more competing models. In a
general sense, the model for which AIC,, is
smallest represents the “best” approximation to the
true model. That is, it is the model with the
smallest expected loss of information when MLE’s
replace true parametric values in the model. In
practice, the model satisfying the min(AIC)
criterion may or may not be (and probably is not)
the “true” model since there is no way of knowing
whether the “true” model is included among those
being compared. Unlike traditional hypothesis
testing procedures, the min(AIC) model selection
approach is holistic rather than piecemeal. Thus,
for example, in comparing four hierarchic linear
regression models, AIC is computed for each
model and the min(AIC) criterion is applied to
select the single “best” model. This contrasts with
the typical procedure of testing the significance
between models at consecutive levels of
complexity. An excellent and more complete
introduction to model selection procedures based
on information criteria is presented by Burnham
and Anderson (1998).

Typically, for regression models, the
number of independent parameters, k, , is equal to

the number of predictor variables in the equation
plus two since, in addition to partial slope
coefficients, an intercept and residual variance
term are estimated. It should be noted that the
maximum likelihood estimator for the residual
variance is biased (i. e., the denominator is the
sample size, n, rather than n — p,— 1 for a py-
predictor model). In particular, for p predictors
based on a normal regression model (i. e., residuals
assumed to be mnormally distributed with
homogeneous variance), the log(likelihood) for the

model is: —5n-(In(27)+In(SS, /n)+1) where
SS, is the sum of squared residuals. Then, the
Akaike information measure is:

AIC = n(In(27) +In(SS, / n) + 1)+ 2(p,, +2).

The Akaike model selection procedure entails
calculating AIC for each model wunder
consideration and selecting the model with the
minimum value of AIC as the preferred, or “best,”
model. In the context of selecting among
regression models, a “best” model can be selected
for each different size subset of predictors as well
as overall.

AIC, which does not directly involve the
sample size, n, has been criticized as lacking
properties of consistency (e.g., Bozdogan, 1987;
but see Akaike, 1978a for counter arguments). A
popular alternative to AIC presented by Schwarz
(1978) and Akaike (1978b) that does incorporate
sample size is BIC where:

BIC, =-2Ln(L,)+In(n)-k,.

BIC has a Bayesian interpretation since it
may be viewed as an approximation to the
posterior odds ratio. Note that BIC entails heavier
penalties per parameter than does AIC when the
sample size is eight or larger. When the order of
the model is known and for reasonable sample
sizes, there is a tendency for AIC to select models
that are too complex and for BIC to select models
that are too simple. In fact, the relative tendencies
for the occurrence of each type of misspecification
can be derived mathematically as shown by
McQuarrie and Tsai (1998). The tendency for AIC
to select overly complex models in cases where
complexity is known has been interpreted as a
shortcoming of this measure. Hurvich and Tsai
(1991), for example, argue for a modified version
of AIC that incorporates sample size. In practical
applications, however, the performance of criteria
such as AIC and BIC can be quite complex.

AIC was originally developed by Akaike
within the context of relatively complex
autoregressive time series models for which he
presented some simulation results (Akaike, 1974).
Bozdogan (1987) compared rates of successful
model identifications for AIC and CAIC (a close
kin of BIC) for a single cubic model with various
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error structures. Hurvich and Tsai (1991)
compared AIC and their own consistent estimator,
AICC, for a normal regression case and for a
complex time series. Bai et al. (1992) compared
AIC and several modifications of AIC within the
context of multinomial logistic regression models.
Although each of these previous studies has
investigated the use of AIC and related criteria in
exploratory frameworks, the present study expands
the focus to applications of multiple regression
analysis that are more typical of a behavioral
science setting. More specifically, AIC and BIC
were investigated under a variety of realistic
scenarios.

Methodology

AIC and BIC were evaluated under several
simulated multiple regression conditions. Data
were collected regarding the accuracy of both
information criteria for each condition and the
nature of the incorrect choices. The accuracy of an
information criterion was defined as the percentage
of iterations in which it selected the correct model.
Incorrect model selections fell into one of three
categories: 1) Low: The chosen model had too few
predictors in it; 2) High: The chosen model had too
many predictors in it; 3) Off: The chosen model
had the correct number of predictors but included
one or more that had a correlation of 0 with the
criterion without including one or more that had a
nonzero correlation with the criterion.

The number of total predictors, the number
of valid predictors, R-squared, and sample size
were manipulated. For total number of predictors,
p, the values of 4, 7, and 10 were chosen. These
values are a reasonable representation of the
number of predictors found in applied research
settings and they are sufficiently different to
illustrate potential relationships between p and
accuracy of the information criteria. With 4 total
predictors, conditions with 2, 3, and 4 wvalid
predictors (v) were simulated; with 7 total
predictors, conditions with 2 through 7 wvalid
predictors were simulated; and with 10 total
predictors, conditions with 2 through 8 wvalid
predictors were simulated. For p = 10, 9 and 10
valid predictors were not included because
predictor-criterion correlations for a ninth and
tenth valid predictor at R* = .1, after controlling for
the first eight predictors would have been trivially

small. Furthermore, research contexts rarely
incorporate 9 or 10 valid predictors for a single
criterion.

Three values of R-squared, .1, .4, and .7,
were evaluated. These values were chosen to
represent small, moderate, and large multiple
correlations, respectively. They were also chosen
to allow for consideration of accuracy trends that
were a linear function of R-squared.

Each combination of the above factors was
tested with sample sizes that were 5, 10, 20, 30, 40,
60 and 100 times the number of total predictors.
Relative sample sizes were used rather than
absolute sample sizes, because sample size
recommendations in multiple regression are
typically a function of the number of predictors in
the model. These values for relative sample size
were chosen to simulate conditions that were
below generally accepted levels, at or somewhat
above generally accepted levels, and clearly above
generally accepted sample sizes.

All simulations were carried out by
programs written and executed using SAS 8.0, and
1000 iterations were conducted for each condition.
The simulated data were generated for each
condition based on a correlation matrix with the
designated number of nonzero correlations
between predictors and the criterion. The
correlations in each combination increased from
zero in a linear fashion based on their squared
values, such that the r’>-values summed to the
designated R2?-value. All correlations among
predictors were set at 0. Although, in applied work,
predictors are not independent of each other, this
design does not lose generalizability since this is
equivalent to residualizing the predictor-criterion
correlations for all but the strongest predictor to
compute R-squared, which results in all these
intercorrelations becoming 0, regardless of their
original values.

Results

Best Overall Models

The valid predictor ratio, VPR = v/p, is
defined as the ratio of valid predictors (v) to total
predictors (p). For purposes of interpreting
accuracy in selecting true models, values of at least
70% were considered satisfactory. The percentage
of correct selection is presented for AIC and BIC
in Tables 1 and 2 (see Appendix A). Results based
on sample size sorted by total numbers of variables
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equal to 4, 7 and 10 are summarized as graphs in
Figures 1, 2, and 3, respectively (shown following
tables in Appendix A).

BIC

The accuracy of BIC for selecting the best
overall model consistently improved as sample size
increased and as R-squared increased. In general,
accuracy declined with increases in the total
number of predictors, p, with an exception being
the behavior for two valid predictors, where
accuracy steadily improved as p increased. The
relationship of accuracy to VPR was not as
straightforward, being complicated by interactions
with sample size, R-squared, and p. For all
combinations of R-squared and total number of
predictors, there was an inverse relationship
between accuracy and VPR for values of p at n =
5p. For R? = .1, this relationship held across all
sample sizes, with the differences between VPR’s
generally increasing with sample size. For R? = .4,
the differences in accuracy between the VPR’s
within p slowly decreased, with the mid-range
VPR’s consistently being superior to the others at
the two largest relative sample sizes. For R? = .7,
there was an inverse relationship between VPR and
accuracy at the lowest sample sizes; the
relationship became direct, however, by n = 30p
with p =7, and n = 20p at 4 and 10 total predictors.

For R* = .1, the accuracy of BIC was
generally low. In only 10 of the 112 combinations
in the simulation design did BIC achieve
acceptable accuracy, doing so when n > 400 with
two valid predictors, n > 600 with three valid
predictors, and at n = 1000 with a VPR of 4/10.
For R? = .4, the accuracy of BIC improved. For v =
2, sample sizes of 10p were adequate to achieve
acceptable accuracy. As VPR increased within p,
and as p increased, the sample size necessary for
acceptable accuracy also increased. At VPR’s of
7/7 and 8/10, for example, acceptable accuracy
was not achieved until n = 60p, while at VPR =
4/4, BIC was 69.2% accurate at n = 30p and 80.5%
accurate at 40p.

For R? = .7, BIC was quite accurate at all but
the smallest relative sample size. At n = 5p, BIC’s
accuracy was only acceptable with VPR = 2/4. At
n = 10p, only VPR’s of 7/7, 7/10, and 8/10 failed
to achieve acceptable accuracy. For the remaining

relative sample sizes with R? = .7, BIC was at least
80% accurate.

AIC

Like BIC, the accuracy of AIC at selecting
the best overall model consistently declined as the
total number of predictors was increased. This was
the only similarity in the pattern of results for AIC
and BIC. The change in accuracy of AIC was not
stable across any other single variable.

AIC was consistently at its worst at the
smallest sample sizes, with improved accuracy
attained with medium sample sizes. For larger
sample sizes, AIC behaved nearly at its asymptote,
although rarely at or near 100% accuracy. Only
VPR’s of 4/4 and 7/7 approached 100% accuracy,
doing so at the higher relative sample sizes with R?
= .4, and doing so for n > 30p with R? =.7. As R-
squared  increased, each VPR  behaved
asymptotically at gradually smaller relative sample
sizes. Lower VPR’s stabilized around their
asymptotes sooner, in terms of sample size, than
higher VPR’s due to a general tendency for the
higher VPR’s to be less accurate at the smaller
sample sizes and due to the fact that higher VPR’s
consistently had higher asymptotes.

For the combinations with R? = .1, AIC
achieved acceptable levels of accuracy even less
frequently than did BIC, breaking the 70% barrier
in only two cases: n =400 at VPR’s of 2/4 and 3/4.
With R? = 4, AIC did poorly for p = 10 with only
the v = 8, n = 1000 case reaching satisfactory
accuracy. At VPR = 7/7, AIC performed well for
sample sizes of at least 30p.

AIC achieved acceptable accuracy at
VPR’s of 2/4, 3/4, and 4/4 by n = 20p (albeit
asymptotically for 2/4). For R? = .7, all VPR’s with
p = 4, reached acceptable accuracy by 10p (again
asymptotically for 2/4). With VPR = 5/7, the
accuracy of AIC again appeared asymptotic at
70%, but the VPR’s 6/7 and 7/7 demonstrated
acceptable accuracy for all but the smallest sample
size With eight valid predictors out of 10 total,
AIC’s accuracy seemed to be asymptotic for a
value just above 70% at n > 30p.

Comparison of BIC and AIC
At VPR’s of 4/4 and 7/7, AIC was
consistently as good as or better than BIC at

selecting the correct overall model regardless of
sample size and R-squared. With R? = .1, AIC
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outperformed BIC at all sample sizes when the
VPR > 5. For R* = 4, AIC -consistently
outperformed BIC only at n = 5p and n = 10p in
conjunction with VPR’s above .5. For R? = .7 and
VPR > .5, AIC outperformed BIC only at n = 5p
and for all other cases BIC outperformed AIC.

Patterns of Misselection

Unlike the accuracy patterns of BIC and
AIC, patterns of incorrect choices are nearly
identical and relatively straightforward. The
incorrect decisions made by both AIC and BIC
tended to be in the direction of more complex
models when sample size was large and valid
predictor ratio was low. At lower sample sizes and
higher valid predictor ratios, both criteria tended to
select models that were too simple.

The rates of change from errors of
complexity to errors of simplicity, however, were
appreciably different for AIC and BIC. As sample
size increased with decreasing VPR, incorrect
decisions by BIC tended toward simpler models
until reaching the higher relative sample sizes with
the lower VPR’s. AIC, by contrast, made more
errors of simplicity than of complexity only at the
combination of the lower sample sizes and higher
VPR’s.

Results were also obtained for incorrectly
selecting models with the correct number of
predictors but not the actual best predictors. This
type of error occurred more often with AIC than
with BIC and in general, it happened more often at
smaller sample sizes, smaller R2-values, and for
more total predictors. The relationship between
VPR’s and the frequency of this type of incorrect
selection interacted with R-squared and sample
size. For R®> = .1, these errors occurred
predominantly at lower relative sample sizes with
lower VPR’s. As VPR increased, the distribution
became slightly quadratic, with the error occurring
most at the moderate sample sizes and tapering to
either side of the middle. At the higher values of
VPR, the larger relative sample sizes contained the
highest frequencies of this type of error.

For R? = 4, incorrectly selecting the right
number but wrong set of predictors was generally
limited to the lower sample sizes with the overall
frequency dropping off rapidly after VPR = .5. For
R? = .7, this type of error was rare; at no sample
size above 5p was the frequency greater than 4.3%
of the iterations, the frequency never exceeded

10% for BIC and only at VPR’s of 7/10 (.136) and
8/10 (.139) did it exceed 10% for AIC.

Conclusion

The results of the present study suggest that
different multiple regression scenarios in applied
research call for different information criteria for
selecting the best set of predictors. As is so often
the recommendation in research, the larger the
sample sizes the better; both BIC and AIC were
increasingly more accurate as sample size
increased. The information criteria were also
generally more accurate as the number of total
predictors decreased, although the reverse was true
of BIC with two valid predictors. The results also
provide some unfortunately complex
recommendations  for accuracy based on
interactions of VPR with other facets of model
conditions.

When all, or nearly all, predictors in a set
are valid predictors, AIC is as good as or better
than BIC at selecting the best overall model at
every sample size and R2-value tested. When R-
squared is low, the advantage of AIC at higher
valid predictor ratios is essentially moot, because
at higher VPR’s neither information -criterion
reached satisfactory accuracy (except AIC at VPR
= 3/4 and n = 100p). With higher multiple
correlations, however, AIC was at least 70%
accurate at high VPR’s and sample sizes of 20 to
30 times the number of predictors (with a negative
relationship between sample size and R-squared
required for good accuracy). For VPR’s above .5
but below .8, sample size affects the relative
performance of BIC and AIC. AIC is the better
choice for relative sample sizes below 30p when
R? < 7. BIC is generally the better choice for
relative sample sizes of at least 30p or when R? >
.7, with one exception in the current study at VPR
= 3/4 and R? = .1 in which AIC is better across
sample size. It should be noted, however, that with
VPR’s in the .5 to .8 range and relative sample
sizes below 30p, neither AIC nor BIC reached
satisfactory accuracy with R*? < .7, so AIC’s
advantage in such situations may not have practical
importance.

For VPR’s < .5, BIC performed uniformly
better than AIC. The importance of this advantage
was related to R-squared. With small multiple
correlations, BIC only achieved satisfactory



BEST REGRESSION MODEL USING INFORMATION CRITERIA 484

accuracy at low VPR’s for relatively large sample
sizes (n > 400). At moderate levels of R-squared,
BIC begins to perform well at lower relative
sample sizes (20p with 3 valid predictors and 10p
at v = 2, with R? = 4) when the VPR is low. At
extremely high values of R-squared, BIC is at least
70% accurate with sample sizes that are 10 times
the number of predictors when VPR is low.

The sample sizes chosen for the present
study seemed to provide a reasonable illustration
of the patterns of accuracy at fixed relative sample
sizes. There were, however, very few conclusions
that could be made based on absolute sample size.
Restructuring the tables and charts to line up
sample sizes would line up only similar sample
sizes, the conclusions of which would be
confounded by having only similar valid predictor
ratios. It might therefore be fruitful to investigate
patterns of the accuracy of information criteria as a
function of absolute sample size.
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Appendix A: Tables & Figures
Table 1. Percentage of correct model selection for AIC.

p 4 7 10

R v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 970 39 18 88 22 07 04 0.1 of 87 33 04 02 01 o0l 0

10p 172] 48/ 2.1 19 6f 19 035 01 01 145 86 28 16 05 0 0

20p 355 182 57| 293 202[ 1035 56 2| 13] 209 181 106/ 65 34 17 02

30p 48] 305 133] 38 33] 205 11| 46 27| 23] 216 192 135 7.8 46| 23

40p 578 421 23| 37.6] 39.8 303 203] 12| 61| 236 265 236/ 203 132 83 7

60p 66.6] 59.5| 39.6| 43.5 433] 424 377 259 197 27.| 28.6| 288 306 257 201 167

1 100p 727 73.6] 693 401 47.7] 53.| 537 511 403] 251 290 343] 37| 40.1| 394 358

n=5p 444 253 133] 285 219 134 97 6| 25 166 196 138 81 66 39 22

10p 61.1 54 394 359 414 402 326 242| 169 229 254 29.1] 259 219 195 156

20p 687 772 747| 43| 465 553 592 56.6 492 243 31.8] 33.1] 39.1] 394 41.6] 405

30p 693 815 91.8] 399 49.1] 597 662 704/ 727 235 297 377 389 483 499 56.1

40p 70.1]  82.6| 959 439 484 57| 67| 799 882 25| 287 337 39.6] 47| 546 648

60p 714] 842 992 397 497 61| 717] 834 958 22| 284 339 393 481 60.1 673

4 100p 69.6] 822 100] 434 48] 59.7| 683] 855 99.5 245 322 35| 445 485 617 706

n=5p 60| 624 61.8] 35| 416 41.5] 45 454[ 387 19| 26| 295 275 33.1| 31.3] 282

10p 693 77.7] 92.5| 382 481 568 662 729 768 228 262 31.3] 39.1] 429 50.1| 543

20p 67 819 100 416 52| 58.6] 66.8] 844 954 235 297 332 407 47.6] 569 683

30p 69.2| 845 100 40.3] 493 595 68.8 84.8 997 22.1] 308 353 402[ 492 612 703

40p 71 83.6] 100 399 47.7] 613 68.6] 83.1] 100] 274 288 337 406 49.6| 60.6] 72.6

60p 709 832 100] 39.2| 486 593 713| 845 100] 267 322 351 422 50 599 70.5

7 100p 71.8]  83.8] 100| 44.2] 48 613 707 822 100 257 309 35.6] 432] 492 583 734
Table 2. Percentage of correct model selection for BIC.

p 4 7 10

R v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 6 2l 03 77 09 01 0.1 0 of 82 14 o1 0 0 0 0

10p 88 15 ol 163 15 0.1 0 0 of 215 39 01 02 0 0 0

20p 223 41] 03] 346 85 14 o0l 0 01] 485 176/ 38 01 0.1 0 0

30p 343 75 09 579 213 42 05 0 0| 69 324 116 22 04 03 0

40p 458 124 17 69 292 133| 1.9 04 0.1 89 468 195 56 13| 02 0

60p 683 268 72| 868 536 251 68 12 03] 895 712 405 18 49 14 07

0.1]100p 88.2] 532 21.1] 942| 79.8] 499 243] 89 29| 918 91 704[ 469 235 104 34

n=5p 445 179 65| 484 235 83| 41| 14 02] 504/ 355 152 57 21| 02| 02

10p 722|401 177 73| 588 33.8] 175 57 27| 748/ 634 483 273] 117 53] 22

20p 88.8 74.1 464 869 859 69.8 462 29.1| 13.6] 83.1] 86| 749 63.5| 447 282 149

30p 93.1] 879 69.2| 89.8] 904 843 719 51.2| 33.1| 859 874 88.8] 814 667 524 36

40p 947 94.1] 805 917 929 905 822 67.3] 507 885 90| 90.5 893 79.1 659 52.5

60p 955 972 933| 91.8] 946] 967 923 87.3] 706 906 91.1| 943 944[ 92.1] 862 756

0.4]100p 97|  98.6| 99.3] 94.6] 94.1| 97.1| 97.4] 967 919 922| 94.6] 943| 958 968 97.3] 93.4

n=5p 727 628 457 654 672 541 437 33.1] 173 58] 61.6| 61.3] 506 385 26.8] 182

10p 882 874] 806 792 83.1] 808 773| 679 516 748 772 774 79| 72| 633 5l

20p 917 952 979 86.8 88 909 915 91.1] 85| 832 847 87.1] 899 899 894 849

30p 926 968 999 89.7 907 925 96.1| 97.1] 965 855 87.2] 902 915 93.6] 93.8] 93.2

40p 94.6] 96.6| 100] 899 92.2| 943 956 984 99.2| 882 90.6] 91.8 927 951 952 963

60p 95.5| 979 100] 925 945 944 97.7] 983 100 90.3| 91.7| 928 944[ 95| 958 972

0.7)100p 97.2 98.6] 100] 942( 969 96.6] 98.1] 99 100 934 945 957 952| 964 977 984




BEST REGRESSION MODEL USING INFORMATION CRITERIA

Figure 1. Percentage of correct model selection for BIC and AIC; four total predictors
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Figure 2. Percentage of correct model selection for BIC and AIC; seven total predictors
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BEST REGRESSION MODEL USING INFORMATION CRITERIA

Figure 3. Percentage of correct model selection for BIC and AIC; ten total predictors
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