
Journal of Modern Applied Statistical
Methods

Volume 10 | Issue 1 Article 25

5-1-2011

Estimating Internal Consistency Using Bayesian
Methods
Miguel A. Padilla
Old Dominion University, mapadill@odu.edu

Guili Zhang
East Carolina University, zhangg@ecu.edu

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Padilla, Miguel A. and Zhang, Guili (2011) "Estimating Internal Consistency Using Bayesian Methods," Journal of Modern Applied
Statistical Methods: Vol. 10 : Iss. 1 , Article 25.
DOI: 10.22237/jmasm/1304223840

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss1/25?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
May 2011, Vol. 10, No. 1, 277-286                                                                                                                           1538 – 9472/11/$95.00 

277 
 

Estimating Internal Consistency Using Bayesian Methods 
 

Miguel A. Padilla Guili Zhang 
Old Dominion University East Carolina University 

 
 
Bayesian internal consistency and its Bayesian credible interval (BCI) are developed and Bayesian 
internal consistency and its percentile and normal theory based BCIs were investigated in a simulation 
study. Results indicate that the Bayesian internal consistency is relatively unbiased under all investigated 
conditions and the percentile based BCIs yielded better coverage performance. 
 
Key words: Bayesian internal consistency, coefficient alpha, confidence interval, Bayesian confidence 

interval, coverage probability. 
 
 

Introduction 
Psychological constructs are the building blocks 
of psychological/behavioral research. Indeed, 
one can easily argue that constructs are the 
foundation of these two sciences. A typical way 
of measuring a construct is through a 
questionnaire containing items that are purported 
to indirectly measure the construct of interest; 
thus, it becomes important that the items be 
consistent or reliable so that the questionnaire 
itself is consistent or reliable. Although there are 
several methods of measuring or estimating the 
reliability of a questionnaire, by far the most 
commonly used is coefficient alpha. 

Coefficient alpha has remained popular 
since its introduction in Cronbach’s (1951) 
article based on the work of Guttman and others 
in the 1940s (Guttman, 1945). Coefficient alpha 
is a measure of internal consistency for a group 
of items (i.e., questions) that are related in that 
they measure the same psychological/behavioral 
construct (Cortina, 1993). There are three main 
reasons for coefficient alpha’s popularity. First, 
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coefficient alpha is computationally simple. The 
only required quantities for its computation are 
the number of items, variance for each item and 
the total joint variance for all the items; 
quantities that can easily be extracted from the 
item covariance matrix. Second, coefficient 
alpha can be computed for continuous or binary 
data: this is a significant advantage when 
working with right/wrong, true/false, etc. items. 
Third, it only requires one test administration: 
Most other forms of reliability require at least 
two test administrations, which come at a cost of 
time and resources. For these reasons coefficient 
alpha’s power to assess the psychometric 
property of the reliability of a measurement 
instrument is widely used and it has remained 
relatively unchanged for over 60 years. 

The advent of Bayesian methodology 
has brought about exciting and innovating ways 
of thinking about statistics and analyzing data. 
Bayesian methods have several advantages over 
traditional statistics, sometimes referred as 
frequentist statistics (Gelman, 2004; Lee, 2004), 
but two advantages stand out. First, researchers 
can now incorporate prior knowledge or beliefs 
about a parameter by specifying a prior 
distribution for the parameter in the model; thus, 
the analysis is now composed of data and prior 
knowledge and/or beliefs. By contrast, 
traditional or frequentist analyses are composed 
only of data. Through this combination of data 
and prior knowledge, more can be learned about 
the phenomenon under study and knowledge 
about the phenomenon can be updated 
accordingly. Second, Bayesian methods provide 
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credible intervals (BCIs), the Bayesian analog to 
confidence intervals (CIs). However, credible 
intervals have a different interpretation from 
confidence intervals. A confidence interval 
allows one to make statements, such as “we are 
95% confident that the interval captures” the 
true population parameter. By contrast, a BCI 
allows one to say that “we are 95% confident 
that the true population parameter lies between 
the bands of the credible interval,” a simpler and 
more powerful statement. This is, in fact, the 
interpretation most researchers would like to 
make with confidence intervals. 

A Bayesian coefficient alpha retains the 
simplicity and power of the original coefficient 
alpha, but it also has the advantages of Bayesian 
methodology. By incorporating prior internal 
consistency information into the current 
estimation of coefficient alpha, more can be 
learned about the internal consistency of a 
measurement instrument and knowledge about 
the instrument can be updated accordingly. 
Additionally, credible intervals are generated for 
the Bayesian coefficient alpha. The bootstrap is 
the common method for generating confidence 
intervals for coefficient alpha; however, the 
bootstrap confidence interval has the same 
interpretation as the confidence interval from 
traditional statistical methods. With credible 
intervals direct statements can be made about 
where the true population coefficient alpha lies, 
which is a clear advantage over the standard 
confidence interval. 
 
Prior Research on Coefficient Alpha CIs 

As with all statistics, coefficient alpha is 
a population parameter and must be estimated 
from samples; thus, it is subject to sampling 
error that contributes to the variability around 
the true population parameter. Due to this, 
current statistical thinking and practice point to 
the need for providing confidence intervals to 
supplement point estimates and statistical tests 
(Duhachek, Coughlan & Iacobucci, 2005; 
Duhachek & lacobucci, 2004; Iacobucci & 
Duhachek, 2003; Maydeu-Olivares, Coffman & 
Hartmann, 2007). Many professional 
publications are beginning to require authors to 
provide CIs in addition to point estimates, 
standard errors and test statistics. For example, 
the American Psychological Association Task 

Force on Statistical Inference (Wilkinson, 1999) 
emphasizes the obligation of researchers to 
provide CIs for all principal outcomes; however, 
generating CIs for coefficient alpha has 
remained somewhat elusive and rarely 
implemented in practice. 

Confidence intervals for coefficient 
alpha were first introduced by Kristof (1963) 
and Feldt (1965). These CIs assume that items 
are normally distributed and strictly parallel 
(Allen & Yen, 1979; Crocker & Algina, 1986), 
which implies that the item covariance matrix is 

compound symmetric; i.e., ( )2
1 I i jσ σ+ =  

where σ1 are the item variances, and σ2 are the 
item covariances, and I(.) is the indicator 
function. These confidence intervals, however, 
do not perform well when items are not strictly 
parallel (Barchard & Hakstian, 1997). Given that 
the strictly parallel assumption is unreasonable 
in applied research and that these CIs do not 
perform well when this assumption is violated 
may be the reason why coefficient alpha CIs are 
rarely implemented in applied research 
(Duhachek & lacobucci, 2004). 

An improvement to the CIs proposed by 
Kristof (1963) and Feldt (1965) was introduced 
by van Zyl, Neudecker and Nel (2000) who 
showed that the standard method of estimating 
coefficient alpha is a maximum likelihood 
estimator (MLE) and derived its corresponding 
CIs. Although the coefficient alpha MLE 
assumes that items are normally distributed, a 
major advantage is that it does not require the 
compound symmetry assumption of the item 
covariance matrix. In a simulation study, 
Duhacket and Iacobucci (2004) compared the 
performance of the coefficient alpha CIs for the 
method proposed by Feldt (1965) and the MLE 
proposed by van Zyl, et al. (2000) under a non-
parallel measurement model. Their results 
indicate that the MLE method consistently 
outperformed the competing methods across all 
simulation conditions, but because the MLE 
method assumes that items are normally 
distributed, when the assumption is violated, the 
results can be untrustworthy. 

Normally distributed items are not a 
completely realistic assumption in 
psychological/behavioral research. Most items in 
measurement instruments are dichotomous 
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(yes/no, true/false, etc.) or Likert-type items 
with several ordinal items: for these item types, 
normality is an unrealistic assumption. From this 
perspective, Yuan and Bentler (2002) extended 
the results of the coefficient alpha MLE to a 
wider range of distributions, pointing out that it 
is robust to some violations of normality. 
However, they point out that it is difficult to 
verify conditions to which the coefficient alpha 
MLE is robust to item non-normality. Thus, if 
the conditions cannot be verified theoretically 
then they are even more difficult to verify in 
applied work. 

Yuan and Bentler (2003) built on this by 
introducing what Maydeu-Olivares and 
colleagues (2007) call asymptotically 
distribution-free (ADF) CIs for coefficient 
alpha. In this study the authors compared the 
ADF, MLE, and bootstrap coefficient alpha CIs 
estimated from the Hopkins Symptom Checklist 
(HSCL; Derogatis, Lipman, Rickels, Uhlenhuth 
& Covi, 1974). The results of Yuan and Bentler 
suggest that the ADF CIs are between the MLE 
and bootstrap methods in terms of their 
accuracy. However, they point out that the ADF 
CIs cannot describe the tail behavior of 
coefficient alpha of the HSCL due to the small 
sample (n = 419); they suggest that with a larger 
sample size the ADF CIs could better describe 
the distribution of coefficient alpha. 

Maydeu-Olivares, et al. (2007) extended 
the work by Yuan, et al. (2003) by simplifying 
the computation of ADF CIs and investigating 
its performance under several simulation 
conditions. Of particular interest was the 
comparison of the ADF CIs to the MLE CIs 
under various conditions of skewness and 
kurtosis. In general, they concluded that - with 
approximately normal items - the MLE CIs 
perform well even with a sample size as small as 
50. However, once the items begin to deviate 
from normality, the ADF CIs begin to 
outperform the MLE CIs. In particular, the ADF 
CIs outperform MLE CIs with as little a sample 
size of 100. When the sample size gets larger 
than 100 the ADF CIs perform well regardless 
of the skewness and kurtosis investigated by the 
researchers. 

Recent research has thus been fruitful in 
investigating the properties of coefficient alpha 
CIs; however, these CIs are based on traditional 

frequentist statistics. As such, they have the 
traditional interpretation of CIs and cannot be 
updated with prior information. The primary 
purpose of this study is to develop a Bayesian 
internal consistency estimate and to evaluate its 
performances by investigating some of its 
properties through simulation. 
 
Coefficient Alpha 

Consider a measurement instrument 
containing p items, y1, y2, …, yp, that indirectly 
measure a single dimension, attribute, or 
construct. A useful and common computation in 
the psychological/behavioral sciences is the 
composite Y = y1 + y2+ …+ yp. This composite is 
placed in statistical models such as ANOVA and 
regression when conducting research using the 
corresponding attribute as a variable. Therefore, 
it is important to know the reliability of the 
composite and hence the construct being 
measured. 

A popular way to estimate the 
composite reliability is through coefficient 
alpha. Coefficient alpha for the population is 
defined as 
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Note that coefficient alpha is being subscripted 
with c to distinguish it from the other forms that 
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will shortly be introduced. Recall that Zyl, et al. 
(2000) showed that ˆcα is the MLE for cα . 

Coefficient alpha has three interesting 
properties implied from the classical true score 
model (Allen & Yen, 1979; Crocker & Algina, 
1986). First, when all items have equal true 
scores that relate equally to the observed scores 
along with equal measurement error variance, 
the items are said to be parallel. In this case the 
covariance matrix for the items has a compound 

symmetric structure; i.e., ( )2
1 I i jσ σ+ = . 

Second, when the measurement error variances 
are not equal, the items are said to be tau-
equivalent. In both of these conditions 
coefficient alpha is equal to the reliability of a 
measurement instrument. Lastly, when the true 
scores do not relate equally to the observed 
scores and measurement error variances are not 
equal, the items are congeneric. This last 
condition is the more general and in this case 
coefficient alpha underestimates the reliability of 
a measurement instrument. It is from these three 
conditions that the conclusion ˆc xxα ρ ′≤  is 

made, where xxρ ′  is the reliability coefficient of 

a measurement instrument. 
 
Bayesian Internal Consistency 

The cornerstone of Bayesian 
methodology is Bayes’ theorem. Through 
Bayes’ theorem all unknown parameters are 
considered random variables. Due to this, prior 
distributions must be initially defined, which is a 
way for researchers to express prior beliefs or 
available information before data are involved in 
the statistical analysis. Using the observed data y 
and prior distribution p(θ), a posterior 
distribution π(θ|y) of the parameters θ can be 
constructed. The posterior distribution can be 
fully expressed through Bayes’ theorem as 
 

( ) ( ) ( )
( ) ( )

( ) ( )|
| |

|

L p
L p

L p d
π

Θ

= ∝


θ y θ
θ y θ y θ

θ y θ θ
(3) 

 
where L(θ | y) is the data likelihood function and 

( ) ( )|L p d
Θ y θ θ θ  

 

is a normalizing constant. One can directly see 
that the posterior is composed of both actual 
data and prior beliefs or knowledge about the 
parameter. After the posterior π(θ|y) is 
constructed it can be summarized by the mean 
and SD (or SE) along with other summarizing 
quantities. For example, the mean and variance 
can be computed as 
 

( ) ( )| |E dπ
Θ

= θ y θ θ y θ          (4) 

and 
 

( ) ( ) ( )2
var | | |E dθ π

Θ
= −  y θ θ y θ y θ , 

(5) 
 

where the ( )var |SD θ= y  is also the SE for 

( )|E θ y . At times, the median (or 50th 

percentile) computed as 
 

( ) ( ) 1
| |

2
P m P m≤ = ≥ ≥θ y θ y       (6) 

 
is of interest as it is less influenced by extreme 
values. 

For the Bayesian coefficient alpha 
(Balpha), first start with the multivariate normal 
distribution. The posterior of a multivariate 
normal can be described by 
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On the far right of (6), note that the prior for the 
mean is directly dependent on the prior 
covariance, in addition, this indicates that a 
different prior is specified for the covariance 
matrix and mean vector. By choosing the 
following conjugate priors for both the 
covariance matrix 
 

( )1
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and mean vector 
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Anderson (1984) and Schafer (1997) showed 
that the posterior distribution for the covariance 
matrix and mean vector is 
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where W–1() denotes an inverted Wishart 
distribution and d0, Λ, μ0, and n0 are 
hyperparameters chosen by the analyst, and y  
and S are the mean vector and covariance matrix 
estimated from the data. Thus, the posterior of 
the multivariate normal is described by two 
distributions which jointly are called the normal-
inverse Wishart distribution. Note that a prior 
needs be specified for μ and Σ. If no prior is 
available a generic noninformative prior such as 

( ) 1p ∝θ  can be used. In this case the posterior 

is completely defined by the data. This 
parameterization fully describes the posterior 
and it can now be directly computed. 

The coefficient alpha posterior can be 
difficult to obtain directly. However, by 
simulating 1, 2, ...,t T=  values from (9) and 

(10) as ( ) |tΣ y  and ( )( ) ( )| ,μ Σt t y , the 

estimation of the coefficient alpha posterior 
distribution can be obtained as 
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where ( )t
iiσ and ( )t

ijσ  are elements of ( ) |tΣ y . A 

Bayesian coefficient alpha (Balpha) can then 
obtained as 
 

( )|b cEα α= y .                 (13) 

 
An alternative Bayesian coefficient alpha 
(BalphaM) can be obtained through 
 

( ) ( ), ,| | 1 / 2c b m c b mP Pα α α α≤ = ≥ ≥y y . 

 
Bayesian credible intervals can then obtained by 
the lower α/2 and upper 1–α/2 percentiles of the 
sample, where α is the type I error rate. One can 
also obtain a normal theory based credible 
interval as /2b Z SDαα ± . Other summary 

measures can also be computed as indicated 
above. 
 

Methodology 
Simulation 

A 4 × 3 × 6 Monte Carlo simulation 
design was utilized to investigate the properties 
of Bayesian coefficient alphas. First, the number 
of items was investigated: 5, 10, 15 and 20 and it 
was found that coefficient alpha increases as a 
function of the number of items, however, it is 
constrained to one. Although it is possible for 
tests and/or surveys to have more than 20 items, 
going beyond 20 items reaches a point of 
diminishing returns in terms of investigating 
coefficient alpha. 

Second, the mean item correlation ( )r  

was investigated: 0.173, 0.223, and 0.314. The 
mean item correlation is defined as 
 

( )

2

1

p

ij
i j

r
r

p p
<=

−


                         (14) 

 
These mean items correlations were investigated 
because they generate coefficient alphas that 
range from 0.50 to 0.90, a sufficient range to 
investigate the properties of the Balpha. 

Third, sample size was also explored: 
50, 100, 150, 200, 250 and 300. As is the case 
for the number of items, going beyond a sample 
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size of 200 reaches a point of diminishing 
returns in terms of investigating coefficient 
alpha (Duhachek & lacobucci, 2004); however, 
these are sample sizes typically found in 
psychological/behavioral research. Table 1 
presents coefficient alpha as a function of mean 
item correlation and number of items and shows 
a reasonable range of coefficient alpha that may 
be found in psychological/behavioral research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multivariate normal data were generated 
with mean vector zero and correlation matrix R 
of dimensions defined by the number of items in 
the simulation. R was chosen to have 
homogenous off-diagonal elements that 
generated the corresponding mean item 
correlation. 

For each condition of the simulation 
study 1,000 replications were obtained. In each 
replication, Balpha was computed along with the 
SE and 95% BCIs. Relative bias for Balpha was 
computed as: 
 

ˆ
ˆ b

b
α αα

α
−= .                      (15) 

 
The average of the estimated SE was computed 
as 

( ),
1

ˆ
B

b i
i

SE
SE

B

α
==


               (16) 

 
where B is the number of replications. Lastly, 
two forms of BCI intervals were computed. The 

first BCI was obtained by the lower α/2 and 
upper 1–α/2 percentiles of the sample. The 

second BCI was obtained as ( )/2
ˆ ˆb bZ SEαα α± . 

The coverage probability of the 95% BCIs were 
computed as the proportion of times the BCI 
contains the population parameter cα . 

Coverage can be judged by forming 
confidence intervals around the coverage. 
Coverage should not fall approximately two 
standard errors (SEs) outside the nominal 
coverage probabilities (p) (Burton, Altman, 
Royston & Holder, 2006). The standard error is 
defined as 
 

( ) ( )1p p
SE p

B
−

=                  (17) 

 
where B is the number of simulations in the 
study. For the current study, .95p = with 

( ) .006892SE p =  and the CI is [ ].936,  .964 . 

Thus, coverage that falls outside this CI is 
considered unacceptable. 

For this study, Balpha and 
corresponding 95% BCIs were estimated from a 
total of 1,000 simulations from the posterior 
distribution. In addition, the prior for Balpha 
was set to be noninformative. A noninformative 
prior essentially lets the data essentially speak 
for themselves. 
 

Results 
Relative bias for Balpha and corresponding 
standard errors are reported in Table 2. First, 
Balpha and BalphaM always tend to slightly 
underestimate the population coefficient alpha; 
however, both Balpha and BalphaM are 
relatively unbiased under all investigated 
conditions. Second, Balpha and BalphaM 
estimates get closer to the population coefficient 
alpha as sample size increases. Third, Balpha 
and BalphaM estimates get closer to the 
population coefficient alpha as the number of 
items increases. In addition, Balpha and 
BalphaM estimates get better as the mean item 
correlation increases. Lastly, BalphaM is 
consistently closer to the population coefficient 
than Balpha although the difference is nominal. 

Table 1: Population Coefficient Alpha for 
Items by Mean Item Correlations 

 

Items 
Mean Item Correlations 

.1667 .2208 .3103 

5 .5001 .5862 .6923 

10 .6667 .7392 .8182 

15 .7500 .8095 .8709 

20 .8000 .8500 .9000 
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In terms of the standard error (SE), a 
few things should be pointed out. First, the SEs 
are smaller as the mean item correlation 
increases. Second, standard errors improve as 
sample size increases as should be expected. For 
samples sizes from 100 to 300, the SE difference 
is nominal when the number of items is between  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 and 10. When the number of items is between 
15 and 20, the SE difference is nominal 
regardless of the sample size. Third, the SEs 
improve as the mean item correlation increase 
although the difference can be considered 
nominal; in most of these conditions, increasing 
the number of posterior samples should improve 
the estimation of the SEs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Balpha and BlaphaM Relative Bias with Standard Errors* 
 

Number of 
Items 

Sample Size 
Mean Item Correlation 

.1667 .2208 .3103 

5 

50 

100 

150 

200 

250 

300 

-.0639, -.0458 (.1189) 

-.0384, -.0278 (.0835) 

-.0278, -.0205 (.0673) 

-.0198, -.0145 (.0577) 

-.0121, -.0079 (.0510) 

-.0167, -.0133 (.0467) 

-.0592, -.0434 (.1034) 

-.0304, -.0226 (.0699) 

-.0191, -.0141 (.0557) 

-.0128, -.0092 (.0477) 

-.0104, -.0074 (.0424) 

-.0103, -.0078 (.0387) 

-.0437, -.0328 (.0792) 

-.0173, -.0124 (.0518) 

-.0098, -.0066 (.0412) 

-.0109, -.0085 (.0357) 

-.0055, -.0037 (.0314) 

-.0070, -.0012 (.0285) 

10 

50 

100 

150 

200 

250 

300 

-.0537, -.0421 (.0860) 

-.0250, -.0203 (.0546) 

-.0100, -.0071 (.0426) 

-.0145, -.0122 (.0370) 

-.0073, -.0055 (.0324) 

-.0075, -.0061 (.0295) 

-.0325, -.0243 (.0666) 

-.0137, -.0103 (.0423) 

-.0090, -.0068 (.0335) 

-.0074, -.0059 (.0287) 

-.0075, -.0063 (.0256) 

-.0054, -.0044 (.0231) 

-.0228, -.0176 (.0468) 

-.0084, -.0062 (.0295) 

-.0062, -.0049 (.0235) 

-.0040, -.0030 (.0199) 

-.0034, -.0026 (.0177) 

-.0027, -.0020 (.0161) 

15 

50 

100 

150 

200 

250 

300 

-.0328, -.0245 (.0672) 

-.0136, -.0105 (.0410) 

-.0083, -.0064 (.0321) 

-.0082, -.0068 (.0275) 

-.0089, -.0078 (.0245) 

-.0048, -.0039 (.0219) 

-.0252, -.0192 (.0516) 

-.0104, -.0082 (.0314) 

-.0068, -.0055 (.0246) 

-.0056, -.0046 (.0209) 

-.0033, -.0025 (.0184) 

-.0037, -.0031 (.0167) 

-.0152, -.0115 (.0348) 

-.0052, -.0038 (.0211) 

-.0042, -.0034 (.0167) 

-.0036, -.0030 (.0142) 

-.0023, -.0018 (.0125) 

-.0017, -.0013 (.0113) 

20 

50 

100 

150 

200 

250 

300 

-.0276, -.0205 (.0580) 

-.0100, -.0076 (.0335) 

-.0065, -.0050 (.0260) 

-.0047, -.0036 (.0219) 

-.0050, -.0042 (.0194) 

-.0040, -.0033 (.0175) 

-.0213, -.0162 (.0440) 

-.0090, -.0073 (.0254) 

-.0041, -.0030 (.0194) 

-.0039, -.0032 (.0165) 

-.0028, -.0022 (.0145) 

-.0024, -.0019 (.0132) 

-.0129, -.0097 (.0292) 

-.0049, -.0037 (.0168) 

-.0033, -.0026 (.0130) 

-.0027, -.0022 (.0110) 

-.0013, -.0009 (.0096) 

-.0014, -.0011 (.0088) 

*Note: The first number is Balpha followed by BalphaM. Numbers in parentheses are standard errors. 
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The Bayesian credible intervals are 
displayed in Table 3 and are more interesting. In 
general, most of the credible intervals fall within 
the acceptable range of [.936, .964] based on 
1,000 replications. In addition, the percentile 
based BCIs are consistently closer to 0.95 than 
the normal theory based BCIs. With 5 items, 
only two BCIs were not within the acceptable 
range. When the number of items shifts to 10, 
seven BCIs were not within the acceptable 
range, but most of the unacceptable BCIs are 
normal theory based. 

As the number of items increases, more 
BCIs begin to fall outside the acceptable range, 
but once again, most of the unacceptable BCIs 
are normal theory based. However, the 
unacceptable BCIs occur when the numbers of 
items are between15 to 20 and are paired with 
the smaller sample sizes. Specifically, when the 
numbers of items are 15, unacceptable BCIs 
occur at a sample size of 50. Also, when the 
numbers of items are 20, unacceptable BCIs 
occur at sample sizes of 50 to 100. In both cases, 
more normal theory BCIs become unacceptable 
as the item mean correlation increases. 
However, the percentile based BCIs tend to 
remain more stable and closer to 0.95. 
 

Conclusion 
The building blocks of psychological/behavioral 
research are psychological constructs, which are 
typically indirectly measured through items on 
questionnaires. It is crucial to have items that are 
consistent or reliable in order for research results 
to be trustworthy and useful. A popular method 
for estimating a form of reliability is internal 
consistency via coefficient alpha (Cronbach, 
1951; Guttman, 1945). However, coefficient 
alpha has remained unchanged for over 60 years. 
Many professional publications are encouraging 
and/or mandating researchers to supplement 
their parameter estimates with CIs. Although CIs 
for coefficient alpha have recently enjoyed 
fruitful research (Barchard & Hakstian, 1997; 
Duhachek & lacobucci, 2004; Feldt, 1965; 
Kristof, 1963; Maydeu-Olivares, et al., 2007; 
van Zyl, et al., 2000; Yuan & Bentler, 2002; 
Yuan, et al., 2003), they are rarely implemented 
in applied research. In addition, all current 
coefficient alpha CIs are frequentist based and, 
as such, they have the traditional, less desirable 

CI interpretation and cannot use prior 
information to stabilize inferences or update 
information. 

This study developed a Bayesian 
coefficient alpha (Balpha or BalphaM) and its 
corresponding BCIs. The results from the Monte 
Carlo investigations indicate that Balpha and 
BalphaM are relatively unbiased under all 
investigated conditions of the simulation. 
However, Balpha and BalphaM have the added 
advantage of having the BCIs, which have the 
interpretation researchers really want to make 
with CIs. Again, BCIs allow one to make the 
following simpler and more powerful statement: 
results show 95% confidence that the true 
population parameter lies between the bands of 
the credible interval. 

In terms of coverage, the percentile 
based BCIs performed better than the normal 
theory based BCIs. In particular, the normal 
theory BCIs begin to perform poorly when the 
mean item correlation is .3101r = , and the 
condition worsens as the number of items 
increases. However, increasing the sample size 
offsets these conditions. In fact, having a sample 
size of 250 or more appears to provide 
protection against this breakdown of the normal 
theory BCIs. Conversely, the percentile based 
BCIs remain more consistent, but begin to 
become unacceptable with the smaller sample 
sizes and when the number of items is between 
15 and 20. However, they remain acceptable as 
long as the sample size is at least 100. Thus, 
percentile based BCIs are recommended over 
the normal theory BCIs. 

In general, this suggests that as the 
number of items increases a larger sample size is 
required to provide stable inferences. This is not 
a surprising result. In traditional frequentist 
statistics, this would be the only option. 
However, in Bayesian methodology there are 
two potential additional options to stabilize 
inferences. First, the number of posterior 
samples can be increased. This would increase 
the precession of the estimates. Second, a prior 
can be specified, which will stabilize inferences 
that, in turn, will provide better coverage. 

It should be noted that the purpose of 
this study was to demonstrate how a Bayesian 
internal consistency can be estimated under the 
basic assumptions made of reliability (Allen &  
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Yen, 1979; Crocker & Algina, 1986), thus, study 
provides a springboard from where future 
research on Bayesian coefficient alpha can be 
conducted. However, like any simulation study, 
this research is limited by the type and number 
of conditions investigated. In this study, only 
homogenous items were investigated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additionally, items were continuous and 
normally distributed. Further research is 
required to investigate the robustness of a 
Bayesian coefficient alpha to violations of the 
basic reliability assumptions and to establish its 
properties under binary or ordinal items. 

Table 3: Balpha and BalpahM Bayesian Credible Interval Coverage 
 

Number of 
Items 

Sample Size 
Mean Item Correlation 

.1667 .2208 .3103 

5 

50 

100 

150 

200 

250 

300 

.974, .963 

.949, .953 

.944, .956 

.947, .955 

.938, .948 

.845, .949 

.945, .951 

.959, .958 

.952, .960 

.946, .953 

.944, .948 

.959, .960 

.949, .968 

.942, .950 

.951, .953 

.942, .949 

.950, .954 

.948, .948 

10 

50 

100 

150 

200 

250 

300 

.961, .971 

.949, .961 

.951, .951 

.937, .942 

.951, .958 

.949, .953 

.952, .968 

.961, .965 

.960, .961 

.953, .958 

.945, .951 

.947, .954 

.966, .980 

.968, .976 

.954, .959 

.959, .963 

.963, .965 

.947, .949 

15 

50 

100 

150 

200 

250 

300 

.979, .992 

.968, .969 

.955, .955 

.954, .966 

.941, .944 

.957, .957 

.977, .988 

.969, .970 

.958, .964 

.963, .964 

.946, .956 

.945, .948 

.970, .981 

.962, .969 

.965, .966 

.941, .947 

.952, .959 

.955, .953 

20 

50 

100 

150 

200 

250 

300 

.978, .991 

.967, .967 

.960, .966 

.953, .963 

.950, .953 

.964, .968 

.979, .997 

.958, .967 

.962, .958 

.955, .960 

.960, .964 

.953, .958 

.984, .989 

.973, .974 

.962, .968 

.957, .968 

.962, .960 

.955, .968 

*Note: The first number is the percentile BCIs followed by the normal theory based BCIs. Unacceptable 
coverage is bolded; acceptable coverage is within [.936, .964]. 
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As noted by Duhachek and Iacobucci 
(2004) and Maydeu-Olivares, et al. (2007), 
reporting only a point estimate of coefficient 
alpha is no longer sufficient. With inferential 
techniques reporting the SE and CIs provide 
more information as to the size and stability of 
the point estimate; in this case the point estimate 
is coefficient alpha. Within this context, a 
Bayesian internal consistency estimate may 
provide an attractive alternative to current 
coefficient alpha CIs because it provides 
researchers with BCIs that can be interpreted in 
a way researchers want and can make use of 
prior information to stabilize inferences. 
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