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Limiting follow-up hypotheses to be tested can reduce problems relating to the control of Type I and 
Type II errors in multivariate analysis of variance (MANOVA). Such limitations can also improve the 
interpretability of results. The importance of sample size, shape of population distribution, within-group 
correlations and heterogeneity of variances are demonstrated. The protected greatest characteristic root 
(GCR) procedure is shown to work well for small, group size, N (≤ 10). The unprotected GCR is shown to 
work well for larger N. 
 
Key words: Any-pair power, discriminant functions, MANOVA, pair-wise test. 
 
 

Introduction 
Testing for the significance of differences in 
means of k groups on p variables can be 
accomplished with multivariate analysis of 
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variance (MANOVA). The full, null hypothesis 
is 

H0: μ1 = μ2 … = μk, 
 
where μi (i = 1, …, k) is the vector of population 
means for group i on the p variables. The 
hypothesis degrees of freedom is dfh = k – 1. In 
the general case, the parameter, s = min (p, dfh). 
In MANOVA a variety of test statistics for the 
null hypothesis are possible. Taking p x p 
matrices, H and E, of the sum-of-products for 
hypotheses and error respectively as 
 

1

( )( ) '
=

= − −H X X X X
k

i i i
i

n , 

(1) 
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and 

1 1

( )( ) '
ink

ij ij
i j= =

= − − j jE X X X X , 

(2) 
 
where Xij is the jth of ni observation vectors in 

group i, Xi  is the mean vector for the ith group 

and X is the grand mean vector. The s, nonzero 

eigenvalues of HE−1  can be designated as λ1, 
…, λs in order from largest to smallest. 
Equivalently, the s, nonzero eigenvalues (also 

called characteristic roots) of H(H + E)-1  can 

be designated as θ1, … θw in order from largest 
to smallest. Each corresponding member of the 
respective sets of eigenvalues can be related by 
θ = λ/(1 + λ). 
 
Multivariate Test Procedures 

The four, most common MANOVA test 
statistics are: 

1. The Pillai-Bartlett trace, V = 
i=1

s

  θi; 

 

2. Wilks’ likelihood ratio, W = 
i=1

s

C (1 – θi); 

 

3. The Hotelling-Lawley trace, T = i
1

s

i=

λ ; and 

 
4. Roy’s greatest characteristic root (GCR),    

R = θ1. 
 
Computer packages such as SPSS and SAS 
typically provide approximate and sometimes 
exact p values for each of these four test 
statistics. 
 
Routines for Testing 

In each of the following routines s is 
defined as shown above and dfE = Σ(Ni − 1). 
One method of evaluating V for a group of k 
means is with an F test (Pillai, 1955; Seber, 
1984, p. 564) defined by 
 

cV
F

b(s - V)
= , 

 
where c = dfE – p + s, and b = max(p, k − 1). To 
test at level α requires critical value, CV = F1−α 

(sb, sc). This method is designated here as VPB. 
Two, more accurate F tests for V are 

available (Muller, 1998). Method 1 is 
 

F = 
df2

df1

 
V

d -  V
,                   (4) 

 
where df1 = p(k − 1), 
 

df2 = 
[p(k -1) + 2]dfE (dfE + k - 1- p)

dfE (k + p) + (k + 1)(k - 2)
, 

 
and 

d = 
p(k -1) + df2

df2 + k -1
. 

 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as VM1. 

For Method 2 (Muller, 1988) the F test 
is 

F = 
df2

df1

V

s -  V
,                   (5) 

where 
 

E E E

E E E

1 s(df +s-p)(df +k+1)(df +k-2)
2

s(df +k-1) df (df +k-1-p)
K

 
= − 

 
 
df1 = p(k − 1)K, c = dfE – p + s, and df2 = scK. 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as VM2. 

One method of evaluating W for a group 
of k mean vectors is with an F test (Rao, 1951; 
Seber, 1984, p. 41) defined by 
 

F = 
1- U

U
 
df2

df1

,                     (6) 

where 
2 2

2 2

p (k-1) -4
,

p +(k-1) -5
t =  
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( )Edf –  –  2
 

2

p k
f

+
=  

 
p(k-1)-2

2
g = , 

 
df1 = p(k − 1), 

 
df2 = ft − g, 

and 
U = W1/t. 

 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as WLR. It can 
be shown that (6) provides an exact F test for p 
= 1, 2 or k = 2, 3 (Seber, 1984, pp. 40-41). 

One method of evaluating T for a group 
of k mean vectors is with an F test (McKeon, 
1974; Seber, 1984, p. 39) defined by 
 

T

c
F =                             (7) 

where 

E E

E E

(df +k-p-2)(df -1)

(df -p-3)(df -p)
B = , 

 
a+2

4
B-1

b = + , 

and 

E

a(b-2)

b(df -p-1)
c = . 

 
To test at level α requires CV = F1−α (a, b). This 
method is designated here as THL. 

Routines for computing p values for 
Roy’s R are either quite complex or rather crude. 
The versions used by statistical packages are not 
very accurate. For example, SAS prints a 
footnote on output warning that the 
corresponding F ratio for R is an upper bound. 
Consequently, the p value is a lower bound. 
Therefore, a p value of .04 would only tell the 
user that the exact p value is no less than .04. It 
would be more helpful to know that the exact p 
value was no greater than some value. Tables of 
critical values for R are available (Harris, 2001, 
pp. 518-531; Sever, 1984, pp. 593-598). 

Routines described by Harris (2001) were used 
to determine p values and critical values in the 
present study; the method is designated here as 
GCR. 

Pairwise testing on a discriminant 
function can be performed as described by 
Harris (2001, p. 222). The F test for the 
difference between a given pair of means on the 
discriminant function is compared to a critical 
value, FCRIT. The value of FCRIT is found from 
dfE(θCRIT)/(1 – θCRIT) where θCRIT is the critical 
value for R. 
 
Noncentrality 

In the non-null case, the p x p matrix Φ 
can be defined as 
 

1

( – )( – )’,
k

i
i

n
=

Φ = i iμ μ μ μ          (8) 

 
where μ is the grand mean vector of the 
population. 

Take the p x p matrix Γ as 
 

1,−Γ = ΦΣ  
 
where Σ is the population covariance matrix. 
The p eigenvalues of Γ are γ1, …, γp. The 
noncentrality parameter, δ2, is 
 

2

1
.

p
ii=

δ = γ                     (10) 

 
Populations vary along a continuum from a 
concentrated structure where γ1 is the only 
nonzero eigenvalue of Γ to a diffuse structure 
where s eigenvalues of Γ are nonzero. When the 
usual MANOVA assumptions are satisfied the 
most powerful tests of the four listed above for 
evaluating a concentrated structure would be R. 
For the diffuse structure the most powerful of 
the four tests would be V (Olson, 1974). 
 
Robustness 

Investigations of various testing 
procedures have shown marked differences in 
robustness (Olson, 1974). All test procedures in 
MANOVA have reduced control of Type I and 
Type II errors in the presence assumption 
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failure. The most extreme problems occur for R 
and the least for V. 
 
Follow-Up Tests 

Roy’s R has been found to be more 
useful than V, W, or T for finding specific 
differences between groups (Bird & Hadzi-
Pavlovic, 1983). In order to improve the 
robustness and interpretability of significant 
group differences, Bird and Hadzi-Pavlovic, 
(1983) proposed limiting the testing of group 
contrasts in two ways. First, they proposed the 
examination of group differences on single 
dependent variables, sums of dependent 
variables, differences between dependent 
variables, or combinations of these. That is, 
complex weightings of dependent variables used 
to form discriminant functions were avoided. 

The second restriction was a limitation 
of the contrasts on group means to be tested. A 
moderate restriction on contrasts allows only 
one subset of means to be compared to another 
subset. With k = 4 there would be only 25 
possible contrasts (6 pairwise, 3 pairs versus 
another pair, 12 pairs versus a single & 4 triples 
versus a single). With p = 2 dependent variables 
there would be four variables for testing (2 
dependent variables, one sum, & one 
difference). That would allow only 100 contrasts 
to be tested. For p = 6 the total number of 
contrasts to be tested would be 9,100. 

A strong restriction on the permissible 
contrasts for k = 4 would allow the 25 contrasts 
about the 4 groups to be applied only to each 
dependent variable. With p = 2, there would be 
only 50 tests performed. With p = 6 there would 
be 150. Bird and Hadzi-Pavlovic, (1983) 
reported considerable improvement in Type I 
error control under assumption failure with both 
moderate and strong restrictions. A univariate, 
Bonferroni- Scheffé (B-S) approach was also 
considered by testing contrasts on each 
dependent variable using the Scheffé (1953) 
procedure at level α/p. They also suggest the 
possibility of a so-called protected R test in 
which R is applied to testing contrasts only after 
a significant overall test such as V. 

In an attempt to increase power, 
Sheehan-Holt (1998) considered a partially 
restricted condition. Sheehan-Holt placed no 
restriction on the variable thus allowing the 

testing of group contrasts on any discriminant 
function. For k = 4, the 25 contrasts would be 
tested on the first discriminant function. If the 
first discriminant function were limited to 
pairwise testing there would be only six tests of 
group differences on the discriminant function 
for k = 4. 
 
A Monte Carlo Study 

The present restriction on group 
contrasts to be tested is limited to pairwise 
testing. For k = 4, the six contrasts constitute 
fewer group contrasts than any considered by 
Bird and Hadzi-Pavlovic, (1983) or Sheehan-
Holt (1998). However, the present investigation 
applies those group contrasts to all significant 
discriminant functions.  

Seven procedures were used to test the 
full null hypothesis: VPB, VM1, VM2, THL, 
WLR, GCR, and the Bonferroni-Scheffé (B-S). 
The first five procedures follow a significant 
overall test with pairwise testing based on R. 
These five methods are examples of a protected 
R test. The GCR procedure also applies pairwise 
testing as an unprotected R test. 

Conditions investigated included k = 4, 
common group sizes N of 10, 15 and 20, and p = 
4. The population covariance matrix was varied 
to produce either uncorrelated variates (Σ = Ι) or 
Σ with all variables correlated by a common 
correlation ρ of either 0.71 or −0.2. For non-null 
conditions δ2 was varied over a range of several 
values to produce power values in the 
neighborhood of 0.50. 
 
Covariance Heterogeneity 

Following Bird and Hadzi-Pavlovic 
(1983) and Olson (1974), heterogeneity was 
introduced by multiplying all variates in Group 1 
by a constant chosen to produce a value of the 
coefficient of variation, C, (Box, 1954). If the 
variances in Group 1 are all initially set at σ2 = 1 
and a value d is the multiplicative value, C2 can 
be calculated as 
 

2 2 2 2
4

1

1
( ) ,

k

i
i

C
k =

= − σ σ
σ

          (11) 

 
where σi

2 = d for i = 1 and 1 for i ≠ 1, and 
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σ 2 =
σ i

2

i=1

k


k

. 

 
Bird and Hadzi-Pavlovic (1983) used C 

= 0.4 as moderate covariance heterogeneity and 
C = 0.8 as substantial covariance heterogeneity. 
Thus, C2 values would be .16 for moderate and 
0.64 for substantial covariance heterogeneity. 
However, Olson (1974) investigated values as 
high as C2 = 2.4. The present investigation 
examined values as high as C2 = 2.0. Olson’s 
(1974) results seem to suggest that error rates 
approach an upper limit for very high values of 
C2. 
 
Nonnormality 

Previous studies have given little 
consideration to failure of the normality 
assumption. Some degree of kurtosis has been 
investigated showing relative little effect. 
However, the degree of kurtosis is not clear. For 
example, the fourth moment calibration was not 
reported. 

Micceri (1989) reported many 
distributions that were clearly nonnormal. 
However, the data sets reported by Micceri are 
not as extreme as those used in many studies 
evaluating statistical robustness. Among skewed 
distributions, Micceri identified the most 
extreme distributions as being typified by the 
exponential distribution with standardized third 

and fourth moments as ( β1  = 2.0, β2 = 9.0). 
Among symmetric, platykurtic distributions 
Micceri represented the shape as typical of the 

uniform distribution ( β1  = 0.0, β2 = 1.8). 
Among symmetric, leptokurtic distributions 
Micceri identified the shape as double 

exponential ( β1  = 0.0, β2 = 6.0). 
To investigate the effects of distribution 

shape, four shapes were considered: the normal, 
uniform, exponential, and double exponential. 
The three nonnormal shapes represent the most 
extreme conditions reported by Micceri (1989). 
The uniform distribution was easily produced 
directly from the generated random numbers. 
The double exponential was approximated as a t 
distribution with df = 6. This t distribution has 
the same third and fourth moments as the double 

exponential distribution. The exponential 
distribution was approximated by Johnson’s 
(1949) SB method as described by Tadikamalla 

(1980) with β1  = 2.0 and β2 = 9. 
Each simulated experiment was 

replicated 10,000 times. Significant differences 
in Type I error rates can be identified as 
deviating from an expected interval about the 
nominal rejection rates. For rejection rates 
between 0.0 and 1.0 the standard error (SE) 
depends on the value of the rate. If x is the 
proportion of replications exceeding a critical 
value, the SE is [x(1 – x)/10000]1/2. For x = 0.5 
the SE would be a maximum and have a value, 
SE = .000025  = 0.005 so a 50% rejection rate 
would be included in a 2SE interval from 0.49 to 
0.51 in approximately 95% of the simulations. 
An x of 0.05 would have SE = .00000475  = 
0.002179 and a 2SE interval from 0.045641 to 
0.054358. Thus rates even as small as 5% will 
usually be estimated to differ from the correct 
value by no more than about 0.0044. 

Even after Type I error rates are 
identified as significantly different from nominal 
levels and not due to chance, an additional 
question arises. How much deviation from the 
nominal level is acceptable to a given 
researcher? Bradley (1978) has suggested that a 
real error rate that differs from the intended 
nominal rate, α, by no more than 0.1α is 
negligibly non-robust. Thus, a rate of α = 0.05 
should not exceed 0.055 to be negligibly non-
robust. Bradley (1978) also suggested that rates 
above 1.5 α (0.075 for α = 0.05), should never 
be accepted as robust. All researchers must 
make their own decisions but an upper limit of 
0.075 for the 0.05-level test seems a useful 
guideline. 

Power rates require a different approach. 
To compare power rate for two statistical 
procedures requires that they have the same, or 
in some sense equivalent, control of Type I 
errors. If one procedure has true Type I error 
rates that never exceed the nominal level and a 
second procedure has true Type I error rates that 
never exceed one half the nominal level then 
both are limiting the Type I error rate to no more 
than the nominal level: Power rates can be 
expected to be higher for the first procedure but 
that may not always be the case. 
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Any uniformly, higher power rate for 
one of two such procedures justifies identifying 
it as more powerful. Higher power rates in 
specific conditions may guide a researcher to 
select a procedure based on conditions of the 
investigation. If power rates are uniformly 
higher but small then other factors such as ease 
of application may be considered. Einot and 
Gabriel (1975) used such an argument in the 
univariate case to support a slightly less 
powerful procedure. Power advantages less than 
0.1 might be ignored, but advantages above 0.2 
might be designated as substantial and override 
other considerations. Again, all researchers must 
make their own decisions. 

McNemar’s (1947) test of correlated 
proportions was used to test the significance of 
the difference between proportions as power 
rates in the non-null conditions. For greater 
efficiency the procedures were placed in order 
with consecutive procedures tested for power 
differences. The order is VPB, VM1, VM2, 
THL, WLR, GCR, and B-S. 
 

Results 
Type I Error Rates 

Table 1 presents the Type I error rates 
for seven procedures with k = 4, equal N of 10, 
three values of ρ, four population distributions, 
and C2 = 1.6. The overall maximum error rates 
are in bold print. Those are also the maximum 
error rates for the same conditions when C2 has 
values 0.0, 0.8, and 1.2. Clearly, with C2 values 
as high as 1.6, the error rates are well above the 
Bradley upper limit of 0.075. None of the 
procedures is robust by this criterion for that 
value of C2. 

The maximum error rates in Table 1 all 
occur for populations with an exponential 
distribution. This suggests that differences in 
skewness are more important than differences in 
kurtosis. Only differences in kurtosis were 
investigated in the previous studies (Bird & 
Hadzi-Pavlovic, 1983; Olson, 1974; Sheehan-
Holt, 1998). 

Table 2 presents summaries for N values 
of 10, 15 and 20 including the maximum rates 
for the results shown in Table 1. In every case 
the maximum error rate was found for the 
exponential population but could be for any one 
of the three values of ρ. 

As shown in Table 2 (a) with N = 10, 
the C2 = 0.0 condition shows all seven 
procedures to have a maximum Type I error rate 
below the nominal 0.05 level even when the 
maximum is taken over three values of ρ and 
four population distributions. When C2 rises to 
0.8, only VPB, the original testing formula for 
the V statistic is below the nominal level. 
However, VM1 and VM2 have maximum rates 
almost identical to the nominal level. Also, 
THL, WLR, and GCR satisfy the 0.075 limit to 
robustness. The Bonferroni-Scheffé is not robust 
for C2 ≥ 0.8. 

If the C2 = 0.64 definition of substantial 
covariance heterogeneity is accepted as 
suggested by Bird and Hadzi-Pavlovic (1983), 
the VPB combination of testing V and pairwise 
testing with R is robust for that condition. The 
same conclusion is probably justified for VM1 
and VM2. 

In all parts of Table 2 the Bonferroni-
Scheffé, B-S, procedure has a simple, almost 
linear relationship between error rates and C2. 
The greater the covariance heterogeneity the 
higher is the Type I error rate. The situation is 
quite different for the other six, multivariate 
procedures. Table 2 (b) presents results for N = 
15. Even for C2 = 2.0 the first five procedures 
have no more than negligible non-robustness 
(i.e. ≤ 0.055). GCR does exceed that limit but 
only for the most extreme case and is always 
robust (i.e. ≤ 0.075). 

Table 2 (c) presents results for N = 20. 
All six multivariate procedures are conservative 
(i.e. rates ≤ 0.05). Even GCR is conservative and 
the protection of another procedure may not be 
needed. The greater control of Type I errors for 
all multivariate procedures as shown in Table 
2(c) suggests that protected tests are not needed 
for sample sizes this large. The maximum Type I 
error rate for GCR is 0.0369 occurs for C2 = 0.8. 
 
Power Rates 

For N = 10 the five protected procedures 
(VPB, VM1, VM2, THL, WLR) provide varying 
control of Type I errors for C2 vales from 0.0 to 
about 0.8. The B-S procedure provides poor 
control in the same conditions of C2. However, 
B-S represents a useful alternative provided it 
can be equated in Type I error control. Repeated 
testing  of  these  six  procedures  (VPB,  VM1, 
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VM2, THL, WLR, B-S) showed that each would 
limit the Type I error rate to a maximum .05 in 
the conditions of Table 2(a) provided they were 
applied at the nominal rates of 0.0115, 0.0093, 
0.0095, 0.0016, 0.0036 and 0.0024, respectively. 

Any-pair power is defined as the 
probability of detecting one or more true 
differences between pairs of population means. 
Table 3 presents the any-pair power rates for the 
six procedures applied to the first discriminant 
function   for    data    from   four    population  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
distributions, k = 4, N = 10 and a diffuse 
noncentrality structure. 

The most powerful procedure in all 
conditions is VM1 testing V with Muller’s 
Method 1. McNemar’s test showed each 
procedure to be significantly different from the 
one to the right provided the difference was at 
least 0.0006 or more. However, many 
differences are quite small. The power 
advantage of VM1 over the other protected R 
procedures can be seen in Table 3 to be modest. 
The power advantage of VM1 over VPB and  

Table 1: Type I Error Rates for Seven Pairwise Testing Procedures for k = 4, N = 10, α = .05, C2 = 1.6 and a 
True, Full-Null Hypothesis 

 

ρ Population VPB VM1 VM2 THL WLR GCR B-S 

0.00 

Normal .0240 .0242 .0241 .0256 .0253 .0262 .1046 

Uniform .0327 .0333 .0333 .0347 .0340 .0348 .1193 

Exponential .0788 .0814 .0810 .0893 .0875 .0921 .1827 

Double 
Exponential 

.0206 .0208 .0207 .0225 .0219 .0229 .0786 

0.71 

Normal .0279 .0284 .0284 .0300 .0296 .0311 .0844 

Uniform .0329 .0335 .0335 .0346 .0345 .0349 .0864 

Exponential .0792 .0814 .0814 .0904 .0886 .0927 .1142 

Double 
Exponential 

.0236 .0238 .0237 .0253 .0248 .0256 .0745 

−0.20 

Normal .0254 .0261 .0261 .0281 .0272 .0283 .1086 

Uniform .0295 .0297 .0297 .0309 .0304 .0313 .1199 

Exponential .0823 .0855 .0852 .0943 .0914 .0977 .1664 

Double 
Exponential 

.0198 .0203 .0203 .0220 .0215 .0228 .0892 

Notes: C2 = measure of variance heterogeneity, ρ = correlation, VPB = V tested by Pillai, (1955) formula, VM1 
= V tested by Muller (1988) Method 1, VM2 = V tested by Muller (1988) Method 2, THL = T tested by 
McKeon, (1974), WLR = W tested by Rao, (1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-
Scheffé. Pairwise testing of first six procedures done by ρ (see Harris, 2001, p. 222); Maximum value for each 
column in bold. 
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VM2 is always less than 0.01. The power 
advantage of VN1 over WLR is always less than 
0.06. The greatest power advantage of VM1 
over any protected R procedure is over THL but 
is always less than 0.15. 

The power advantage of VM1 over B-S 
can be quite large. For normal populations the 
maximum is 0.4744 (= 0.6712 − 0.1968). For the 
other distributions the maximum power 
advantages are 0.4750 (= 0.6559 − 0.1809) for 
uniform distributions, 0.4453 (= 0.7514 − 
0.3061) for exponential distributions, and 0.4652  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(= 0.7062 − 0.2410) for double exponential 
distributions. 

The maximum power advantages of 
VM1 over B-S for diffuse noncentrality 
structures and C2 = 0 (i.e. homogeneous 
covariances) are shown in Table 4(a) for each of 
the four population distributions and three 
values of ρ. The power advantages vary from 
0.4453 to 0.8896. 

The same conditions reported in Table 3 
were investigated for a diffuse noncentrality 
structure but C2 = 1.6. The maximum power 
advantages of VM1 over B-S for a diffuse  

Table 2: Maximum Over Three ρ values, and Four Populations for Type I Error Rates for Seven 
Pairwise Testing Procedures for k = 4, α = .05, C2 = measure of variance heterogeneity,  

and a True, Full-Null Hypothesis 
 

C2 VPB VM1 VM2 THL WLR GCR B-S 

(a) N = 10 

0.0 .0175 .0186 .0185 .0232 .0210 .0301 .0277 

0.8 .0473 .0508 .0505 .0639 .0588 .0735 .1008 

1.2 .0669 .0706 .0702 .0850 .0799 .0916 .1573 

1.6 .0823 .0855 .0852 .0943 .0914 .0977 .1827 

(b) N = 15 

0.0 .0172 .0179 .0178 .0208 .0196 .0265 .0241 

0.8 .0421 .0425 .0425 .0467 .0452 .0507 .0936 

1.2 .0509 .0511 .0510 .0542 .0532 .0565 .1427 

1.6 .0524 .0525 .0525 .0533 .0531 .0537 .1736 

2.0 .0534 .0534 .0534 .0534 .0534 .0535 .2053 

(c) N = 20 

0.0 .0201 .0208 .0207 .0228 .0216 .0292 .0237 

0.8 .0328 .0334 .0333 .0349 .0342 .0369 .0930 

1.2 .0325 .0327 .0327 .0332 .0331 .0336 .1285 

1.6 .0322 .0322 .0322 .0323 .0323 .0323 .1533 

2.0 .0297 .0297 .0297 .0297 .0297 .0297 .1882 

Notes: VPB = V tested by Pillai, (1955) formula, VM1 = V tested by Muller (1988) Method 1, VM2 = 
V tested by Muller (1988) Method 2, THL = T tested by McKeon, (1974), WLR = W tested by Rao, 
(1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-Scheffé; Maximum value for each 
column in bold. 



RAMSEY, RAMSEY, HACHIMINE-SEMPREBOM & ANDILORO 

411 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
noncentrality structures are shown in Table 4(b) 
for each of the four population distributions and 
three values of ρ. The power advantages vary for 
0.2238 to 0.7288. 

The same conditions reported in Table 3 
and Table 4(a) were investigated for a 
concentrated noncentrality structure where 
group differences existed only along a single 
dimension. The maximum power advantages of 
VM1 over B-S for a concentrated noncentrality 
structures are shown in Table 4(c) for each of 
the four population distributions and three 
values of ρ. The power advantages vary from 
−0.1454  to  0.5335.  Of course, the  negative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
advantage means that B-S has a power 
advantage over VM1 as high as 0.1454. This 
occurs only for ρ = 0.71 but for all four 
population distributions. 

The same conditions reported in Table 
4(b) were investigated for a concentrated 
noncentrality structure where group differences 
existed only along a single dimension. The 
maximum power advantages of VM1 over B-S 
for concentrated noncentrality structures are 
shown in Table 4(d) for each of the four 
population distributions and three values of ρ. 
The power advantages vary for −0.4019 to 
0.4827. Again the negative advantage means  

Table 3: Any-Pair Power of Five Procedures on the First Discriminant Function and B-S for N = 
10, α = .05, Four Distributions, A Diffuse Non-centrality Structure and Four Non-centrality Values 

and C2 = 0.0 
 

Population δ2 VPB VM1 VM2 THL WLR B-S 

Normal 

30.0 .6679 .6712 .6694 .5478 .6366 .1968 

24.3 .5233 .5303 .5260 .3909 .4797 .1277 

19.2 .3760 .3829 .3775 .2425 .3275 .0733 

14.7 .2537 .2610 .2558 .1436 .2072 .0453 

Uniform 

30.0 .6526 .6559 .6542 .5275 .6172 .1809 

24.3 .4983 .5038 .5008 .3678 .4558 .1150 

19.2 .3536 .3603 .3560 .2271 .3073 .0672 

14.7 .2277 .2354 .2308 .1256 .1886 .0388 

Exponential 

30.0 .7479 .7514 .7486 .6434 .7214 .3061 

24.3 .6000 .6048 .6026 .4697 .5588 .1907 

19.2 .4580 .4637 .4602 .3143 .4054 .1169 

14.7 .3117 .3196 .3151 .1820 .2612 .0575 

Double 
Exponential 

30.0 .7028 .7062 .7044 .5970 .6767 .2410 

24.3 .5592 .5650 .5615 .4249 .5141 .1561 

19.2 .4072 .4145 .4093 .2704 .3594 .0874 

14.7 .2728 .2788 .2755 .1627 .2314 .0503 

Notes: VPB = V tested by Pillai, (1955) formula, VM1 = V tested by Muller (1988) Method 1, 
VM2 = V tested by Muller (1988) Method 2, THL = T tested by McKeon, (1974), WLR = W tested 
by Rao, (1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-Scheffé; Maximum value for 
each row in bold. 
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that B-S has a power advantage over VM1 as 
high as 0.4019. This occurs only for ρ = 0.71 
and for all four population distributions. 

As shown in Table 2(b), all six 
multivariate procedures, VPB, VM1, VM2, 
THL, WLR, and GCR, showed good control of 
Type I errors for N = 15. In the most extreme 
conditions each of these procedures has a Type I 
error rate slightly above the nominal level. Even 
GCR, with no additional multivariate test, had a 
maximum rate of only 0.0565. Although that 
exceeds Bradley’s negligible nonrobustness 
limit of 0.055, it might be adequate for some 
researchers. The rates at which each of the seven 
procedures must be performed to limit the actual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type I error rate to the nominal 0.05 level are 
0.044, 0.044, 0.044, 0.044, 0.044, 0.044, 0.0005 
respectively for VPB, VM1, VM2, THL, WLR, 
GCR, and B-S. 

Table 5 presents the power advantages 
of GCR over B-S for N = 15 just as did Table 4 
for the power advantage of VM1 over B-S. In 
Table 5, the greater power for B-S over GCR for 
ρ = 0.71 with concentrated noncentrality 
structures occurs only for the heterogeneous 
covariance condition. 

The power advantage of GCR over B-S 
for ρ = 0.0 in Table 5(d) is less than 0.1 for all 
populations and becomes slightly negative for 
exponential distributions. 

Table 4: Any-Pair Power Advantage of VM1 Over B-S for k = 4, N = 10, a = .05, 
and C2 = 0.0 or 1.6 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0 

Normal .4744 .8748 .6418 

Uniform .4750 .8854 .6501 

Exponential .4453 .8696 .5997 

Double Exponential .4652 .8708 .6245 

(b) Diffuse Noncentrality Structure with C2 = 1.6 

Normal .2975 .7288 .6217 

Uniform .3809 .7311 .6258 

Exponential .2238 .6543 .5781 

Double Exponential. .2920 .7259 .5974 

(c) Concentrated Noncentrality Structure with C2 = 0 

Normal. .5133 -.1454 .8724 

Uniform .5335 -.1327 .8873 

Exponential .4579 -.1043 .8505 

Double Exponential .4780 -.1155 .8561 

(d) Concentrated Noncentrality Structure with C2 = 1.6 

Normal .0487 -.3668 .4170 

Uniform .0484 -.4019 .4827 

Exponential .3826 -.1549 .3070 

Double Exponential .0553 -.3369 .4756 
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Table 6 presents the power advantages 
of GCR over B-S for N = 20. The conservative 
Type I error rejection rate GCR implies that the 
procedure must be applied at a lenient rate of 
0.099 to limit the rate to 0.05. In contrast B-S 
must be applied at a rate of 0.0008. The power 
advantages of GCR over B-S in Table6 are 
similar to those of Table 5. 
 

Conclusion 
The present investigation extends the previous 
work of Bird and Hadzi-Pavlovic (1983) and 
Sheehan-Holt (1998) on follow-up tests for 
MANOVA to pairwise testing on the 
discriminant functions. As shown in Tables 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 2, Type I error rates can be quite high 
depending upon ρ (the correlation between 
dependent variables), the population 
distribution, sample size N, and especially the 
covariance heterogeneity, C2. 

For samples of size, N = 10, and only 
moderate covariance heterogeneity (i.e. C2 = 
0.8), Three protected tests, VPR, VM1, and 
VM2, provide good control of Type I errors 
even for realistic nonnormality. Even for slightly 
higher covariance heterogeneity (i.e. C2 = 1.2), 
these three protected R procedures are below 
Bradley’s (1978) 1.5 α limit for robustness. 

Power comparisons in the present 
investigation used adjusted alpha levels so that  

Table 5: Any-Pair Power Advantage of GCR Over B-S for k = 4, N = 15, α = .05, 
and C2 = 0.0 or 2.0 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0.0 

Normal .6516 .8984 .7528 

Uniform .6511 .8975 .7744 

Exponential .6030 .9049 .7346 

Double Exponential .6243 .9041 .7354 

(b) Diffuse Noncentrality Structure with C2 = 2.0 

Normal .4737 .8081 .5719 

Uniform .5399 .8219 .6010 

Exponential .3207 .7342 .4180 

Double Exponential. .4110 .8002 .5380 

(c) Concentrated Noncentrality Structure with C2 = 0.0 

Normal. .7970 .3290 .9241 

Uniform .8205 .3448 .9288 

Exponential .8159 .3556 .9187 

Double Exponential .7827 .3264 .9284 

(d) Concentrated Noncentrality Structure with C2 = 2.0 

Normal .0607 -.3958 .5498 

Uniform .0618 -.4434 .5415 

Exponential -.0304 -.1979 .3274 

Double Exponential .0584 -.3700 .5469 
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power could be compared when all methods 
provided the same control of Type I errors. 
Table 3 shows a clear advantage in power over 
all procedures for homogeneous covariance and 
diffuses noncentrality condition for VM1. 
However, the power advantage over VPB and 
VM2 is only modest. The power advantage of 
VM1 over the Bonferroni-Scheffé (B-S) is 
shown in Tables 3 and 4 to be as high as 0.8854 
but can be as low as −0.1454. On balance, the 
protected multivariate approach of VM1 is 
clearly superior to the univariate approach of B-
S. 

As shown in Table 2(b), a minimum 
sample size of about 15 is sufficient for GCR to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
provide adequate control of Type I errors even 
without the addition of the alternative protection 
of an additional multivariate test. Table 5 shows 
the power advantage of GCR over B-S to range 
from 0.9049 to −0.3958. As was true for Table 4 
results, the power advantage of B-S is almost 
exclusively in conditions where ρ = 0.71. A 
univariate-based follow-up is most powerful 
when dependent variables are highly, positively 
correlated. 

Table 6 provides power advantages for 
GCR over B-S for N = 20. These rates range 
from 0.94 to −0.2174 and are similar to those in 
Table 5. Although B-S can be powerful even 
when applied at a reduced alpha level to control  

Table 6: Any-Pair Power Advantage of GCR Over B-S for k = 4, N = 20, α = 0.05 
and C2 = .0, 0.8 or 2.0 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0.0 

Normal .7159 .9364 .8048 

Uniform .7226 .9400 .8217 

Exponential .6883 .9343 .7683 

Double Exponential .7072 .9396 .7856 

(b) Diffuse Noncentrality Structure with C2 = 2.0 

Normal .5582 .8397 .6291 

Uniform .5946 .8569 .6584 

Exponential .4314 .7616 .5010 

Double Exponential. .5059 .8214 .6094 

(c) Concentrated Noncentrality Structure with C2 = 0.0 

Normal. .8386 .4161 .9649 

Uniform .8349 .4313 .9674 

Exponential .8159 .4446 .9517 

Double Exponential .8258 .4099 .9590 

(d) Concentrated Noncentrality Structure with C2 = 0.8 

Normal .3355 -.2174 .7411 

Uniform .333 -.2292 .7420 

Exponential .2579 -.0916 .6048 

Double Exponential .3461 -.1822 .7541 
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Type I errors, it would still not be practical in 
those conditions. Continually applying a test at 
different alpha levels is tedious and requires a 
large table of appropriate alpha levels. 

Discriminant functions are more 
difficult to interpret than are simple 
combinations of dependent variables. However, 
MANOVA may profitably be considered not 
just as combined dependent variables but rather 
a blending of several ANOVAs and factor 
analysis. A discriminant function can be 
considered an approximation to a latent variable. 
The correlation between each dependent variable 
and the discriminant function could be used to 
identify the latent variable just as is done in 
factor analysis using factor loadings. 

If a new statistical package is being 
developed, it might be desirable to replace the 
traditional VPB with VM1. However, the 
existing VPB reported by many statistical 
packages such as SAS and SPSS should provide 
adequate results in a protected R test for small N. 

Numerous additional conditions could 
be considered. Various patterns of correlations 
might have an effect. More powerful methods of 
pairwise testing then the Scheffé could be 
considered if one is willing to consider only 
pairwise testing. The higher rejection rates of 
such powerful pairwise tests are also likely to 
produce even higher Type I error rates. More 
extreme nonnormality than is considered there 
can be investigated. 
 
Example 

Baumann, Seifert-Kessell, and Jones 
(1992) report comparing three strategies for 
teaching reading comprehension to fourth-
graders. One strategy was Think-Aloud (TA). A 
second strategy was Direct Reading Activity 
(DRA). The third was Direct Reading and 
Thinking Activity (DRTA). The two dependent 
variables were Error Detection Task (Y1) and 
Degrees of Reading Power (Y2). There were 21 
students in each of the three groups. The means 
and standard deviations were: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Analysis in SAS produces: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dividing each eigenvector element by the square 
root of the sum of squared values for the 
eigenvector, convert each subjects’ dependent 
variable scores to a score on the first 
discriminant function. 
 
 

DRA 
Y1 Y2 

M = 6.6818 M = 42.0455 
SD = 2.7669 SD = 6.6151 

DRTA 
Y1 Y2 

M = 6.2273 M = 46.6364 
SD = 2.0915 SD = 7.6441 

TA 
Y1 Y2 

M = 7.7727 M = 43.4545 
SD = 3.9271 SD = 7.8603 

 Eigenvalues 
 λ θ 

Root 1 .165844 .142252 

Root 2 .019988 .019596 

 Eigenvectors 
 Y1 Y2 

Root 1 -.038037 .017307 

Root 2 .027758 .008466 

s = 2, m = −0.5, n = 30

 

Statistic Value P-Value 

Wilks’ Lambda 0.84093942 0.0286 

Pillai’s Trace 0.16184815 0.0284 

Hotelling-
Lawley Trace 

0.18583147 0.0290 

Roy’s Greatest 
Root 

0.16584380 0.0321 
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Group 3 (DRTA) is significantly higher 
than Group 1 (TA) on the first discriminant 
function at α = 0.05. The average, within-group 
correlation between Y1 and DF1 is −0.50. The 
average, within-group correlation between Y2 
and DF1 is 0.54. The two, dependent variables 
have about the same size relationship to DF1, 
however, Y1 is inversely related whereas Y2 is 
directly related to DF1. Y1 was measuring the 
number of errors to be detected so it is 
negatively related to Y2, reading power. DF1 is a 
composite measure of error detection and 
reading power. 

The three groups failed to differ 
significantly on either dependent variable even 
at α = 0.10. A significant B-S would require 
group differences on at least one dependent 
variable to be significant at the 0.025 level. 
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