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Type I Error Rates of the Two-Sample Pseudo-Median Procedure 
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The performance of the pseudo-median based procedure is examined in terms of controlling Type I error 
for a two independent groups test. The procedure is a modification of the one-sample Wilcoxon statistic 
using the pseudo-median of differences between group values as the central measure of location. The 
proposed procedure was shown to have good control of Type I error rates under the study conditions 
regardless of distribution type. 
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Introduction 
Testing the equality of central tendency 
parameters between two independent samples by 
controlling Type I error is a common statistical 
problem. If an underlying distribution is 
normally distributed with equal population 
variances, the most suitable test statistic to use is 
the Student’s t-test. Student’s t, however, is 
sensitive to non-normal data and heterogeneity 
of variances. Under these situations, Welch’s 
approximate test (Welch, 1938) usually offers 
the best practical solution, but this statistic does 
not adequately control Type I error probabilities 
under non-normal distributions. 

To surmount the problem of non-
normality, researchers typically seek 
nonparametric test alternatives, such as the 
Mann-Whitney-Wilcoxon, which is believed to 
be effective against violations of normality. 
Although ranking methods are often useful when 
samples are obtained from heavy-tailed 
distributions, they are influenced by unequal 
variances 
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similar to parametric tests (Pratt, 1964; 
Zimmerman & Zumbo, 1992). Further, 
nonparametric methods are more appropriate for 
non-normal symmetric data. Many attempts 
have been made to deal with asymmetric 
distributions. In this study, a method to handle 
the problem of asymmetric data, as well as 
heterogeneity of variances, is suggested. The 
method is known as the pseudo-median 
procedure, where the pseudo-median of 
differences between group values are employed 
as the central measure of location with the one-
sample nonparametric Wilcoxon procedure in a 
two group setting. The pseudo-median of a 
distribution F is defined to be the median of the 
distribution (Z1 + Z2)/2, where Z1 and Z2 are all 
possible differences between two observations 
from each group. Z1 and Z2 are independent and 
have the same distribution as F (Hoyland, 1965; 
Hollander & Wolfe, 1999). 

The pseudo-median is a location 
parameter. The estimation of this parameter is 
accomplished using the Hodges-Lehmann 
estimator. According to Hollander and Wolfe 

(1999), the Hodges-Lehmann estimator ( )θ̂  is a 

consistent estimator of the pseudo-median, 
which in general may differ from the median. 
However, when F is symmetric, the median and 
pseudo-median coincide. The pseudo-median is 
selected as the central measure of location 
because it is convenient and the asymptotic 
properties of the pseudo-median are the same as 
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median. In this study, the performance of the 
pseudo-medians procedure in terms of Type I 
error was measured via Monte Carlo simulation. 
Because the sampling distribution of this 
pseudo-median procedure is intractable, the 
bootstrap method was used to arrive at the 
significant values. 
 

Methodology 
This study addresses both symmetric and 
asymmetric distribution and the methods applied 
to the two types of distributions are very 

different. Let ( )
11 11 12 1,  , ..., nX X X X=  and 

( )
22 21 22 2,  , ..., nX X X X=  be samples from 

distributions 1F  and 2F  respectively. The 
pseudo-median is defined as: 
 

( ) ( )' '1 2 1 2

ˆ Median
2

Median
2

′ ′+ 
=  

 
 − + −
 =   
 

ij i j

i j i j

D D
d

X X X X    (1) 

 
where 'i i≠  and 'j j≠ . When 1F  and 2F  are 

symmetric, d  can be defined as the difference 
between the centers of symmetry. Hence, the 
hypothesis is given as: 
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Let 1 2-ij i jD X X= , 11,2,...,i n= , 

21,2,...,j n=  and 1 2N n n= . The statistic is a 
one-sample Wilcoxon statistic based on the 

ijND ’s. Let ijR  denote the rank of ijD . The 

indicator function and the statistic are expressed 
as: 
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The modification of the Wilcoxon 

procedure is performed by adding the pseudo-
median value to the second sample to form a 

new sample, 2
ˆX d+ . The aligned difference, 

based on the location-aligned samples, becomes:  
 

( )1 2
ˆ ˆˆ .= − + = −ij i j ijD X X d D d          (5) 

 

Let ˆ
ijR  denote the rank of ˆ

ijD . The indicator 

function and the aligned statistic are expressed 
as: 
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Because the second sample was 

realigned with the estimate d, it is necessary to 
find the pseudo sampling distribution for the 
estimate W. Use of a bootstrap procedure is 
proposed in order to construct the hypothesis 
test. Separately bootstrap ni observations from 

1X  group and nj observations from 2
ˆX d+  

group to obtain bootstrap samples, *
1X  and *

2X . 
The bootstrap difference becomes 

* * *
1 2ij i jD X X= −  where *

ijR  denotes the rank of 
*
ijD . The indicator function and the bootstrap 

statistic can be defined as: 
 

*

* *
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The steps to obtain the p value using the 
bootstrap method for symmetric distribution are 
as follows: 
 
1. Calculate W  from 1X  and 2X . 
 
2. Calculate d̂  from 1X  and 2X . 
 
3. Add d̂  to 2X  to form a new sample, 

2
ˆX d+ . 

 
4. Calculate Ŵ  from 1X  and the new sample 

in step 3. 
 
5. Generate bootstrap samples by randomly 

sampling with replacement in  observations 

from the 1X  group, and jn  observations 

from the new sample in step 3 yielding *
1X  

and 
2

*X . 

 
6. Calculate *W  from the bootstrap samples, 

*
1X  and 

2

*X . 

 

7. Find ( )* ˆW W− . 

 
8. Repeat Steps 5 - 7 B  times. 
 

9. Compare the value of ( )* ˆW W−  with 

( )( )0|W E W H− . 

 

Let ( ) ( )( )*
0

ˆ |U W W W E W H= − > −  and 

( ) ( )( )*
0

ˆ |L W W W E W H= − < − . 

 

10. Calculate the p value as ( )2
min # ,# .× L U

B
 

 
For asymmetric distributions, the 

difference between the centers of symmetry 
between the two groups cannot be assumed to be 
zero; therefore, to ensure the setting for the null 
condition, a constant a  must be determined and 
added to the members of the second sample. The 
value of a  is obtained via simulation. For 

example, let 1X  and 2X  be two skewed 
distributions where the standard deviations need 
not be the same. Let ( )1 11 12,Y Y Y=  and 

( )2 21 22,Y Y Y=  represent the new generated 

samples of size two, which have the same 
distribution with 1X  and 2X , respectively. 

Compute ia  as follows:  
 

( ) ( )11 21 12 22

2

 − + − 
=  

 
i

Y Y Y Y
a median      (10) 

 
Repeat the process of generating new samples of 
size two 9,999 times and repeat the computation 
of ia  to obtain 1 2 10,000, ,...,a a a . Therefore, the 

median of 1 2 10,000, ,...,a a a  is the value of a . 

For asymmetric distributions, the steps 
to obtain the p value using a bootstrap method 
are the same except for one small alteration in 
step 1. In this step, a constant a  is introduced to 
the members of the second sample (X2) to form 
a new sample, 2X new . Steps 2-10 proceed as 

noted, with the one difference that 2X  has 

become 2X new .  
To study the robustness of this 

procedure, four variables were manipulated to 
create conditions known to highlight the 
strengths and weaknesses of the test for the 
equality of location parameters. The variables 
are (1) types of distributions, (2) degree of 
variance inequality, (3) balanced/unbalanced 
sample sizes, and (4) pairings of unequal group 
variance and sample sizes. In this study, 
empirical Type 1 error rates were collected and 
later compared under various study conditions.  

The number of groups and sample sizes 
were fixed. This study covered only the two 
groups case with total sample size of 40N = . 
This value was later divided into two groups 
forming the balanced and unbalanced design. 
For the balanced design, the value is equally 
divided into 1 2 20n n= = , and for the 
unbalanced design the groups were divided into 

1 15n =  and 2 25n = . To investigate the 
distribution types, this study focused on (1) 
heavy tailed symmetric non-normal distribution, 
and (2) heavy tailed asymmetric distribution. 
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The normal distribution was used as the basis for 
comparison. The symmetric non-normal 
distribution was generated from a g-and-h 
distribution (Hoaglin, 1985); specifically, g = 0 
and h = 0.225 with skewness ( )1γ  = 0 and 

kurtosis ( )2γ  = 154.84 was chosen for 

investigation. The Chi-square with three degrees 
of freedom ( 1 1.63γ =  and 2 4γ =  ) was selected 
to represent the asymmetric distribution.  

The pseudo-random normal variates 
were generated using the SAS generator 
RANDGEN function (SAS Institute, 1999); this 
involved the (RANDGEN(Y, ‘NORMAL’)) 
function to generate normal variates with means 
equals to zero and standard deviation equals to 
one. To generate data from the g-and-h 
distribution, standard unit normal variables 

( )ijZ  were converted to the h random variates 

via 
2

exp .
2

 
=   

 

ij
ij ij

hZ
Y Z                   (11) 

 
For the Chi-square distribution, data were 
generated using the (RANDGEN(Y, 
‘CHISQUARE’, 3)) function. 

Apart from the types of distribution, two 
other manipulated variables were the degrees of 
variance inequality and pairings of variances and 
group sizes. The nature of pairings of variances 
and sample sizes affect Type I error rates 
(Keselman, et al., 1998; Keselman, Othman, 
Wilcox & Fradette, 2004; Othman, et al., 2004). 
The variances were manipulated in the following 
manner: In the case of equal variances, both 
group variances were set at 1; for the unequal 
case, the variances were set at 1 and 36.  

For positive pairings, the group with the 
largest number of observations was paired with 
the group having largest variance, and the group 
with the smallest number of observations was 
paired with the group having smallest variance. 
For the negative pairings, the group with largest 
number of observations was paired with the 
group having the smallest variance, and the 
group with smallest number of observations was 
paired with the group having the largest 
variance. This condition was included in the 
investigation because the direction 

(positive/negative) of the pairings has been 
shown to exert some effect on the results. 
Positive pairings typically produce conservative 
results and negative pairings tend to produce 
liberal results (Keselman, Wilcox, Othman & 
Fradette, 2002; Cribbie & Keselman, 2003; 
Othman, et al., 2004; Syed Yahaya, Othman & 
Keselman, 2004, 2006). Therefore, both positive 
and negative pairings were evaluated.  

The operating characteristics of the 
procedures investigated in this study could be 
described as extreme because they substantially 
depart from homogeneity and normality. These 
conditions were used because it is reasonable to 
assume that, if a procedure works under the most 
extreme conditions, it will probably also work 
under most conditions likely to be encountered 
by researchers.  

The simulation program was written in 
SAS/IML (SAS Institute, 1999). For each 
condition examined, 5,000 data sets were 
generated and within each data set, 599 
bootstrap samples were obtained. The level of 
significance was set at α = 0.05. 
 

Results 
To evaluate whether the test is robust 
(insensitive to assumption violations) under each 
particular condition, the Bradley criterion of 
robustness (Bradley, 1978) was employed. 
According to this criterion, for the five percent 
nominal level used in this study, a test is 
considered robust if its empirical Type I error 
rate is within [0.025, 0.075]. Correspondingly, a 
test is considered to be non-robust if, for a 
particular condition, its Type I error rate is not 
contained in this criterion. This criterion was 
chosen because it provides a reasonable standard 
for judging robustness. The empirical Type I 
error rates for the pseudo-median procedure 
(PM), t-test and Mann-Whitney-Wilcoxon 
(MWW) across all distributions are displayed in 
Table 1. 

With respect to the procedures, results 
show that all Type I error rates for the pseudo-
median procedure are robust under Bradley’s 
liberal criterion and are very close to the 
nominal level (0.05) regardless of distribution or 
conditions. The disparity between Type I error 
rates from balanced and unbalanced designs is 
minuscule and the rates are consistent across the 
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investigated conditions. The t-test also produces 
robust Type I error rates for all distributions and 
conditions, however, for the Chi square 
distribution, the Type I error rates inflate to a 
level above 0.065 when the variances are 
unequal and worsen under negative pairing. For 
the Mann-Whitney-Wilcoxon test, half of the 
Type I error rates are above the robustness 
criterion under unequal variances, especially 
negative pairing. The Type I error rates for 
MWW under the Chi-square distribution are too 
liberal and not robust except under the 
homogeneous variance condition.  

In terms of distributional shapes, the 
Chi-square distribution produced better 
empirical Type I error rates compared to the g-
and-h distribution in most conditions for the 
pseudo-median procedure. Higher values of 
Type I error rates from Chi-square distribution 
are apparent for the t-test and Mann-Whitney-
Wilcoxon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With respect to variance equality and inequality, 
results show a contradiction between symmetric 
and asymmetric distributions for both the 
pseudo-median and the t-test. For the g = 0, h = 
0.225 distributions, homogeneous variances 
produced greater Type I error rates compared to 
heterogeneous variances. For the Chi-square 
distribution, homogeneous variances produced 
smaller Type I error rates compared to 
heterogeneous variances. However, no specific 
pattern could be identified for the Mann-
Whitney-Wilcoxon test.  

With respect to the pairings of group 
sizes and variances, results show that the g-and-
h distribution produced liberal (> 0.05) Type I 
error rates for the pseudo-median procedure and 
conservative (< 0.05) results for the t-test. The 
Chi-square distribution for the pseudo-median 
procedure produced conservative Type I error 
rates for the positive pairing, and liberal results 
for the negative pairing. The t-test produced 
liberal results for both pairings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1: Empirical Type I Error Rates of Pseudo-Medians Procedure, t-test 
and Mann-Whitney- Wilcoxon* 

 

Method Distribution 

Group Sizes 

(20, 20) (15, 25) 

Variance 
(1:1) 

Variance 
(1:36) 

Variance 
(1:36) 

+ve pairing 

Variance 
(36:1) 

-ve pairing 

PM 
Normal 

g=0, h=0.225 
χ 2

3  

0.0552 
0.0588 
0.0454 

0.049 
0.0544 
0.0504 

0.0486 
0.0518 
0.0476 

0.0492 
0.0532 
0.055 

t-test 
Normal 

g=0, h=0.225 
χ 2

3  

0.054 
0.0522 
0.052 

0.052 
0.0458 
0.0696 

0.0492 
0.0448 
0.0654 

0.0514 
0.044 

0.0736 

MWW 
Normal 

g=0, h=0.225 
χ 2

3  

0.0516 
0.0516 
0.052 

0.0912 
0.0854 
0.2428 

0.0458 
0.0436 
0.1812 

0.1142 
0.108 

0.2398 

 

*Bolded entries indicate Type I error rates of the test exceeding the 0.075 criterion. 
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Conclusion 
The purpose of this study was to investigate how 
well the pseudo-medians procedure responded to 
the violations of assumptions compared to the 
traditional t-test and Mann-Whitney-Wilcoxon 
method. The procedure was tested the heavy-
tailed distributions, namely the g = 0 and h = 
0.225 and the Chi-square with three degrees of 
freedom. Results show that the Type I error rates 
for the pseudo-median procedure and the t-test 
are robust under Bradley’s criterion of 
robustness and close to the nominal value. The 
nature of the sample sizes - balanced or 
unbalanced - did not show much difference in 
the procedure’s ability to control Type I error 
rates.  

The pseudo-median procedure 
performed better than t-test, especially for a 
skewed distribution with unbalanced design and 
heterogeneous variances. This procedure also 
outperforms the popular Mann-Whitney-
Wilcoxon method in most conditions. The 
pseudo-median procedure was observed to have 
good control of Type I error rates, regardless of 
distributions under the study conditions. The 
pseudo-median procedure can thus be 
recommended as an alternative for testing the 
differences between two groups, particularly 
when assumptions of normality and variance 
homogeneity are not met. 
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