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Comparison of Several Tests for Combining Several Independent Tests 
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Several tests for combining p-values from independent tests have been considered to address a particular 
common testing problem. A simulation study shows that Fisher’s (1932) Inverse Chi-square test is 
optimal based on a power comparison of several different tests. 
 
Key words: Omnibus test, omnibus hypothesis, p-value, Kolmogorov-Smirnov test, Tippett’s test, 

Wilkinson’s test, Inverse Chi-square test, Inverse normal test, Logit test. 
 
 

Introduction 
Tests for statistical significance of combined 
results were possibly the first statistical 
procedures developed for quantitative research 
synthesis. Combined test procedures were 
developed to combine the results of significance 
tests from different research studies. 

Combining data from similar studies, as 
opposed to data derived from a single study, is 
important in Statistics. This study is a review of 
so-called omnibus statistical methods for testing 
the statistical significance of combined results. 
The procedures are called omnibus or non-
parametric because they do not depend on the 
form of the underlying data, but only on the 
exact significance levels commonly called p-
values. A key point is that observed p-values 
derived from continuous test statistics have a 
uniform distribution under the null hypothesis 
regardless of the test statistics or distribution 
from which they arise. The non-parametric 
nature of combined significance tests gives great 
flexibility in applications. Such tests can be used 
to combine any independent tests of hypotheses, 
even though the individual tests examine 
somewhat different hypotheses. For example, 
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combined significance tests may be used to 
summarize the results of 10 studies each of 
which examined the effect of a treatment on a 
different outcome variable. Such a procedure 
would test whether the treatment produced a 
superior outcome on any of the dimensions 
investigated. These procedures can also be used 
in research synthesis to combine the results of 
studies that test the same conceptual hypothesis 
by different methods. 

Many statistical tests are available for 
testing the significance for combining results. 
This study examines the most widely used tests. 
Nine different tests were compared, these are: 
Kolmogorov-Smirnov, Tippett’s, Wilkinson’s 
(for r = 2, 3, 4, 5), Inverse Chi-square, Inverse 
normal and Logit test. The objective of this 
study was to perform a comprehensive 
comparison of the performance of these tests 
based on their powers. A simulation study was 
conducted and the powers of the tests were 
compared. It was found that Fisher’s (1932) 
Inverse Chi-square test was optimal based on the 
power comparison of the different tests. 
 
p-Value Calculation: Normal Distribution 

Let 1 2, ,..., nX X X  be a random sample 

from 2( , )N μ σ . Let X  be the sample mean 
and let u be the observed value of the sample 
mean. Let (.)Φ  be the distribution function of 
the standard normal distribution. 
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p-Value Calculation: Exponential Distribution 

Let 1 2, ,..., nX X X  be a random sample 

from EXP( μ ). Let X  be their sample mean. 
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The likelihood ratio test is given by: 
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where, Ω  is the parameter space. For large n,  
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Omnibus Hypotheses and Omnibus Tests 

Suppose n independent investigators 
have set about testing the validity of some null 
hypothesis: 
 

0 :H  The population mean is 0 ( )specifiedμ  

versus 

1 :H  The population mean 0μ μ<  

 
Each investigator will select a random sample 
from the population under focus, collect the 
relevant data, apply the appropriate test, and 
then report the p-value. The sample size could 
vary from investigator to investigator. The 
information provided by the investigators can be 
summarized as follows: 
 
 
 
 
 
 
 
 
 
 
The objective is to determine if the null 
hypothesis is universally true. If the null 
hypothesis is true overall then, theoretically, 

1 2, ,... np p p should be a random sample of size n 

from a uniform distribution over (0, 1). In order 
to test the merit of the hypothesis overall, a test 
statistic must be built that is a function of the 
data 1 2, ,... np p p . A multitude of tests have been 

proposed in this connection, but before 
presenting a plethora of tests, the above problem 
must be generalized. 

Investigator Sample Size p-Value 

1 1n  1p  

2 2n  2p  

… … … 

n nn  np  
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Assume m independent investigators, 
each investigating a hypothesis testing problem 
where 0iH  is the null hypothesis proposed by 

investigator i, and 1iH  is the alternative i = 1, 2, 

…, m. Each investigator collects data, tests 
his/her hypothesis and reports a p-value. This 
scenario can be summarized as follows: 
 
 
 
 
 
 
 
 
 
 

Postulating that the omnibus hypothesis, 

0 :H  0iH  is true for all i, versus the alternative 

1 :H  at least one 1iH  is true, the data to decide 

in this issue are 1 2, ,... .mp p p  Theoretically, 

each ip  has a uniform distribution over (0, 1) if 

0iH  is true. If the omnibus null hypothesis is 

true, 1 2, ,... mp p p  are independently, identically 

uniformly distributed over (0, 1). Now replace 
both the omnibus null and alternate hypotheses 
with the following equivalent hypotheses: 
 

0 1 2: , ,... mH p p p  is a random sample 

from a uniform distribution over (0, 1), 
versus 

1 1 2: , ,...  mH p p p  is a random sample 

from a distribution which is not a 
uniform distribution over (0, 1). 

 
Several tests have been developed to test the 
validity of the above modified hypotheses. 
 
Test 1: Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (KS) test was 
originally proposed in the 1930’s by 
Kolmogorov (1933) and Smirnov (1939). The 
KS test is only appropriate for testing data 
against a continuous distribution. The KS test 
statistic is defined as follows: 

0 1

ˆ ( ) ,
p

D Sup F p p
< <

= −  

 

where F̂  is the empirical distribution function 
of the data 1 2, ,... mp p p . The exact distribution 

of D  under 0H  has been worked out and a 

table of critical values is available. 
 
Test 2: Tippett’s Test 

The first test of the significance of 
combined results was proposed by Tippett 
(1931), who noted that, if 1 2, ,... mp p p  are 

independent p-values from continuous test 
statistics, then each has a uniform distribution 
under 0H . The test procedure is as follows: 

Reject 0H  if 1/
(1) 1 (1 ) ,mp α< − −  where (1)p  = 

minimum of 1 2, ,... mp p p . The p-value of the 

test is = (1)1 (1 )mp− − . 

 
Test 3: Wilkinson’s Test 

Wilkinson (1951) provided a 
generalization of Tippett’s procedure that uses 
not just the smallest but the rth smallest p-value, 

( )rp , as a test statistic, where 

(1) (2) ( )... mp p p≤ ≤ ≤  are the ordered p-values 

(order statistics) obtained from 1 2, ,... mp p p . 

The test procedure is given as follows: Reject 

0H  if ( ) ,r rp p α< , where ,rp α  is a critical value 

for ( )rp , or use a critical number ,rm α  of p-

values that are smaller than a fixed level α . 
Wilkinson described his procedure in terms of 
the number of significant p-values, that is, those 
that are smaller than α . He provided tables of 
the probability of obtaining m or more 
significant results at the α = 0.05 and α = 0.01 
levels (that is, m or more p-values less than 0.05 
or 0.01) for m < 25. Nomographs extending 
Wilkinson’s tables to m = 100 for α  = 0.05 and 
to m = 500 for α  = 0.01 are given in Sakoda, 
Cohen and Beall (1954). Because ( )rp  has a 

beta distribution with parameters r and n-r+1, 
tables of the incomplete beta function can be 
used to obtain critical values of ( )rp  directly. 

Investigator 
Null 

Hypothesis 
Alternative 
Hypothesis 

p-value 

1 01H  11H  1p  

2 02H  12H  2p  

… … … … 

m 0mH  1mH  mp  
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Test 4: The Inverse Chi-Square Test 
One of the most widely used 

combination procedures is from Fisher (1932). 
Given m independent studies and p-values 

1 2, ,... mp p p , Fisher’s procedure uses the 

product 1 2... mp p p to combine p-values. He used 

a connection between the uniform distribution 
and the Chi-square distribution – namely, that if 
u has a uniform distribution, then 2ln u−  has a 
Chi-square distribution with 2 degrees of 
freedom. Consequently, when 0iH  is true, 

2 ln ip−  has a Chi-square distribution with 2 

degrees of freedom, therefore, 

1 2
1

2 ln( ... ) 2 ln
m

n i
i

p p p p
=

− = −  also has a Chi-

square distribution with 2m degrees of freedom. 
Due to this fact, no special tables are needed for 
the Fisher method. The test procedure becomes, 

reject 0H  if 
1

2 ln ,
m

i
i

T p c
=

= − ≥  where the 

critical value c is obtained from the upper tail of 
the chi-square distribution with 2m degrees of 
freedom. 
 
Test 5: The Inverse Normal Test 

Another procedure for combining p-
values is the inverse normal method proposed 
independently by Stouffer, et al. (1949) and by 
Liptak (1958). This procedure involves 
transforming each p-value to the corresponding 
normal score and then averaging. More 
specifically, defining iZ  by ( )i ip Z= Φ , 

where ( )xΦ  is the standard normal cumulative 

distribution function. When 0H  is true, the 

statistic  
 

1 2

1 1 1
1 2
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( ) ( ) ... ( )

m
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Z Z ZZ
m
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+ + +=

Φ + Φ + + Φ=
 

 
has the standard normal distribution. Thus, 0H  

is rejected whenever Z  exceeds the appropriate 
critical value of the standard normal distribution. 

Test 6: The Logit Test 
The method of combining m 

independent p-values, 1 2, ,... mp p p , suggested 

by George (1977) and investigated by 
Mudholkar and George (1979) transforms each 

p-value into a logit, ln( )
1

p
p−

, and then 

combine the logits via the statistic 
 

1

1

ln ... ln
1 1

m

m

ppL
p p

= + +
− −

. 

 
The exact distribution of L is not simple, but 
when 0H  is true, Mudholkar and George (1979) 

showed that the distribution of L (except for a 
constant) can be closely approximated by 
Student’s t-distribution with 5m+4 degrees of 
freedom. Therefore, the test procedure is reject 

0H  if * (0.3)(5 4)

(5 2)

mL L c
m m

+= >
+

 where the 

critical value c is obtained from the t-distribution 
with 5m+4 degrees of freedom. (Note that the 

term 0.3 is more accurately given by 
2

3

π
.) For 

large values of m, * 0.55
.L L

m
 
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 
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Methodology 

Monte Carlo Simulation 
A Monte Carlo simulation study was 

conducted to compare the performance of the 
omnibus test statistics described on the basis of 
estimated powers when the underlying data 
distributions are normal and exponential. The 
sample sizes used were 10 and100. The omnibus 
hypotheses are: 
 

0

1

: 5

: 5

H
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H

μ

μ

=

≠
 

 
The maintenance of significance levels was 
checked for each of the nine tests (for Test 3, r = 
2, 3, 4, 5 were used), under each sample size and 
population mean, and for two distributions: 
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normal and exponential. Empirical error rates for 
each case were estimated by first simulating 
10,000 different samples with specified sample 
size and population mean ( 0μ ) from a 

population with a specified distribution.  
The test of interest was performed on 

each sample and it was determined if the null 
hypothesis was rejected at the 5% significance 
level. The empirical error rates for that test were 
then computed as the proportion of times the 
null hypothesis was rejected at each significance 
level. A test was considered acceptable at the 
5% significance level if the error rates were 
between 0.044 and 0.056. The range represents a 
99% confidence interval for the stated 
significance level. 
 

Results 
Tables 1-4 display the estimated powers of each 
test statistic investigated at the 0.05significance 
level; Figures 1-4 show the power curves. 
 

Conclusion 
Of the nine test statistics considered, the Inverse 
Chi-square test gives the highest power in 
almost every simulation, regardless of the 
number of populations, sample size or parameter 
values. The second highest power observed was 
with the Inverse Normal test. The minimum p 
test almost always gave the lowest power. In 
general, the Inverse Chi-Square proved superior 
by performing consistently in simulations for a 
wide range of cases. 
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Table 1: Normal Distribution n = 10, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 0.9712 0.8352 0.9467 0.9705 0.9730 0.9709 0.9926 0.9901 0.9827 

4.1 0.9171 0.7380 0.8915 0.9241 0.9286 0.9259 0.9735 0.9657 0.9441 

4.2 0.8108 0.6101 0.7879 0.8354 0.8443 0.8328 0.9225 0.9025 0.8556 

4.3 0.6635 0.4830 0.6530 0.6973 0.7105 0.6910 0.8096 0.7796 0.7009 

4.4 0.4901 0.3691 0.4919 0.5300 0.5412 0.5190 0.6511 0.6060 0.5119 

4.5 0.3308 0.2643 0.3514 0.3738 0.3705 0.3607 0.4632 0.4254 0.3351 

4.6 0.2051 0.1830 0.2253 0.2384 0.2351 0.2226 0.2982 0.2658 0.1891 

4.7 0.1275 0.1158 0.1315 0.1418 0.1395 0.1296 0.1614 0.1488 0.1000 

4.8 0.0817 0.0816 0.0853 0.0845 0.0844 0.0852 0.0946 0.0871 0.0658 

4.9 0.0622 0.0578 0.0568 0.0589 0.0595 0.0552 0.0601 0.0586 0.0492 

5.0 0.0529 0.0501 0.0509 0.0505 0.0517 0.0525 0.0492 0.0483 0.0472 

5.1 0.0610 0.0576 0.0575 0.0580 0.0587 0.0573 0.0629 0.0595 0.0533 

5.2 0.0835 0.0785 0.0822 0.0839 0.0856 0.0821 0.0913 0.0848 0.0622 

5.3 0.1168 0.1194 0.1399 0.1410 0.1360 0.1263 0.1667 0.1460 0.0999 

5.4 0.1975 0.1750 0.2214 0.2306 0.2301 0.2168 0.2887 0.2618 0.1860 

5.5 0.3328 0.2599 0.3433 0.3743 0.3767 0.3598 0.4649 0.4187 0.3308 

5.6 0.4853 0.3651 0.4985 0.5387 0.5352 0.5186 0.6506 0.6089 0.5176 

5.7 0.6747 0.4825 0.6502 0.7005 0.7130 0.6946 0.8148 0.7789 0.7044 

5.8 0.8079 0.6088 0.7831 0.8307 0.8363 0.8272 0.9166 0.8963 0.8484 

5.9 0.9159 0.7273 0.8864 0.9264 0.9261 0.9197 0.9726 0.9631 0.9404 

6.0 0.9688 0.8351 0.9518 0.9733 0.9746 0.9707 0.9935 0.9918 0.9832 
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Table 2: Normal Distribution n = 100, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 1.0000 0.9947 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4.1 1.0000 0.9713 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4.2 1.0000 0.8992 0.9969 0.9995 0.9998 1.0000 1.0000 1.0000 1.0000 

4.3 1.0000 0.7659 0.9681 0.9936 0.9983 0.9995 1.0000 1.0000 1.0000 

4.4 0.9995 0.5823 0.8658 0.9480 0.9782 0.9888 1.0000 0.9999 0.9997 

4.5 0.9811 0.4042 0.6596 0.7916 0.8662 0.9098 0.9978 0.9934 0.9876 

4.6 0.7915 0.2547 0.4307 0.5320 0.6075 0.6601 0.9298 0.8763 0.8212 

4.7 0.4084 0.1572 0.2358 0.2899 0.3263 0.3569 0.6109 0.5204 0.4148 

4.8 0.1627 0.0980 0.1179 0.1351 0.1495 0.1519 0.2440 0.2052 0.1353 

4.9 0.0834 0.0633 0.0687 0.0705 0.0683 0.0699 0.0795 0.0729 0.0522 

5.0 0.0765 0.0475 0.0477 0.0466 0.0508 0.0539 0.0524 0.0511 0.0498 

5.1 0.0864 0.0658 0.0668 0.0684 0.0684 0.0717 0.0848 0.0765 0.0545 

5.2 0.1587 0.0997 0.1178 0.1314 0.1456 0.1548 0.2423 0.2063 0.1364 

5.3 0.4102 0.1619 0.2367 0.2925 0.3360 0.3651 0.6093 0.5189 0.4105 

5.4 0.8004 0.2626 0.4307 0.5503 0.6245 0.6747 0.9314 0.8825 0.8274 

5.5 0.9805 0.4072 0.6626 0.7906 0.8600 0.8998 0.9975 0.9931 0.9872 

5.6 0.9997 0.5881 0.8672 0.9507 0.9768 0.9875 1.0000 1.0000 0.9999 

5.7 1.0000 0.7548 0.9661 0.9945 0.9991 0.9996 1.0000 1.0000 1.0000 

5.8 1.0000 0.8929 0.9957 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 

5.9 1.0000 0.9674 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

6.0 1.0000 0.9940 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Figure 1: Normal Distribution n = 10, nrep = 10,000, α = 0.05 
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Figure 2: Normal Distribution n = 100, nrep = 10,000, α = 0.05 
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Table 3: Exponential Distribution n = 10, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 0.8962 0.6269 0.8249 0.8834 0.9039 0.8990 0.9560 0.9503 0.9141 

4.1 0.7830 0.5042 0.7091 0.7804 0.7964 0.7944 0.8823 0.8701 0.8064 

4.2 0.6375 0.3978 0.5681 0.6391 0.6609 0.6545 0.7619 0.7394 0.6505 

4.3 0.4689 0.3033 0.4425 0.4964 0.5089 0.5020 0.6033 0.5731 0.4712 

4.4 0.3293 0.2340 0.3229 0.3611 0.3698 0.3545 0.4451 0.4164 0.3164 

4.5 0.2167 0.1786 0.2253 0.2452 0.2496 0.2384 0.3017 0.2814 0.1962 

4.6 0.1366 0.1222 0.1479 0.1556 0.1548 0.1486 0.1811 0.1712 0.1133 

4.7 0.0940 0.0897 0.1039 0.1053 0.1014 0.1006 0.1185 0.1103 0.0742 

4.8 0.0716 0.0670 0.0686 0.0722 0.0685 0.0686 0.0743 0.0711 0.0577 

4.9 0.0636 0.0518 0.0578 0.0561 0.0558 0.0517 0.0553 0.0553 0.0510 

5.0 0.0572 0.0481 0.0524 0.0546 0.0526 0.0526 0.0557 0.0554 0.0511 

5.1 0.0599 0.0552 0.0589 0.0564 0.0536 0.0554 0.0562 0.0536 0.0493 

5.2 0.0713 0.0651 0.0669 0.0683 0.0774 0.0682 0.0749 0.0695 0.0581 

5.3 0.0904 0.0884 0.0953 0.0999 0.0953 0.0926 0.1123 0.1048 0.0746 

5.4 0.1275 0.1289 0.1474 0.1496 0.1422 0.1382 0.1748 0.1532 0.1086 

5.5 0.1754 0.1734 0.2067 0.2141 0.2069 0.1946 0.2586 0.2286 0.1647 

5.6 0.2369 0.2236 0.2801 0.2966 0.2804 0.2650 0.3588 0.3097 0.2339 

5.7 0.3293 0.2902 0.3807 0.3971 0.3825 0.3596 0.4907 0.4345 0.3528 

5.8 0.4445 0.3738 0.4886 0.5048 0.5007 0.4770 0.6202 0.5643 0.4774 

5.9 0.5556 0.4670 0.5907 0.6278 0.6209 0.5966 0.7407 0.6935 0.6100 

6.0 0.6666 0.5468 0.6933 0.7277 0.7274 0.6898 0.8314 0.7867 0.7243 
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Table 4: Exponential Distribution n = 100, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 1.0000 0.8712 0.9963 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 

4.1 1.0000 0.7470 0.9732 0.9968 0.9991 0.9998 1.0000 1.0000 1.0000 

4.2 1.0000 0.6055 0.9049 0.9717 0.9895 0.9962 1.0000 1.0000 1.0000 

4.3 0.9992 0.4563 0.7605 0.8903 0.9437 0.9691 1.0000 0.9999 0.9996 

4.4 0.9808 0.3351 0.5863 0.7254 0.8072 0.8605 0.9979 0.9938 0.9866 

4.5 0.8378 0.2387 0.3969 0.5073 0.5945 0.6458 0.9436 0.9056 0.8500 

4.6 0.5128 0.1590 0.2455 0.3097 0.3630 0.4033 0.7017 0.6235 0.5127 

4.7 0.2440 0.1077 0.1451 0.1740 0.1910 0.2106 0.3639 0.3086 0.2167 

4.8 0.1166 0.0728 0.0876 0.0952 0.1012 0.1078 0.1483 0.1276 0.0835 

4.9 0.0846 0.0565 0.0608 0.0578 0.0613 0.0613 0.0736 0.0725 0.0558 

5.0 0.0804 0.0487 0.0495 0.0475 0.0503 0.0527 0.0519 0.0506 0.0485 

5.1 0.0796 0.0534 0.0551 0.0619 0.0598 0.0624 0.0670 0.0649 0.0483 

5.2 0.1134 0.0820 0.0890 0.0908 0.0971 0.1043 0.1468 0.1276 0.0820 

5.3 0.2106 0.1198 0.1539 0.1738 0.1972 0.2111 0.3360 0.2789 0.1877 

5.4 0.4033 0.1845 0.2568 0.3201 0.3585 0.3834 0.6240 0.5311 0.4205 

5.5 0.6834 0.2675 0.4090 0.5053 0.5665 0.6185 0.8805 0.7972 0.7174 

5.6 0.9024 0.3724 0.5874 0.7071 0.7770 0.8231 0.9815 0.9551 0.9275 

5.7 0.9852 0.5028 0.7528 0.8647 0.9114 0.9397 0.9986 0.9956 0.9913 

5.8 0.9984 0.6325 0.8851 0.9519 0.9769 0.9869 1.0000 0.9998 0.9995 

5.9 0.9999 0.7602 0.9566 0.9879 0.9954 0.9985 1.0000 1.0000 1.0000 

6.0 1.0000 0.8643 0.9867 0.9981 0.9994 1.0000 1.0000 1.0000 1.0000 
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Figure 3: Exponential Distribution n = 10, nrep = 10,000, α = 0.05 
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