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The development and application of a permutation test for compound symmetry is described. In a 
simulation study the permutation test appears to be a level-α test and is robust to non-normality. However, 
it exhibits poor power, particularly for small samples. 
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Introduction 
Determining the underlying covariance or 
correlation structure of a data set can be 
challenging. The classical parametric method of 
testing for some hypothesized covariance 
structure involves using a likelihood ratio 
statistic that converges in distribution to a Chi-
square random variable (Wilks, 1946). One 
common covariance structure, in which all of the 
variances are equal and all of the covariances are 
equal, is compound symmetry. One of the 
requirements of the likelihood ratio test (LRT) 
for compound symmetry is that the data be 
sampled from a multivariate normal population. 
Because the LRT is not robust to departures 
from normality (Huynh & Mandeville, 1979; 
Keselman, et al., 1980)a nonparametric test for 
compound symmetry would be very useful. In 
particular, permutation tests (PTs) have minimal 
to no distributional  
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assumptions, do not require random samples and 
allow any combination of sample size and 
number of variables:  
 
Existing Tests for Compound Symmetry 

Wilks (1946) was the first to develop a 
test for compound symmetry. This is a test of 

0H : CS=Σ Σ , where 
 

( )2 1 ;CS p p p′ = σ − ρ + ρ Σ I 1 1          (1) 

 
σ2 is the common variance; ρ is the common 
pairwise correlation; Ip is the p×p identity 
matrix; and 1p is a p×1 unit vector. The classical 
approach to testing for compound symmetry 
involves the use of a LRT. Let xi, i=1, …, n be 
p-component vectors distributed according to 
Np(μ, Σ). The LRT criterion for this test is given 
by 
 

( ) ( ) ( )( )

2

2
12

ˆ
,

1 1 1

n

np ps r p r−
λ =

 − + −  

Σ
 

 
where Σ̂  is the maximum likelihood estimator 
(MLE) of Σ under aH : CS≠Σ Σ  and s and r are 
the MLEs of σ and ρ, respectively, under H0. 

Wilks (1946) determined the exact 
distribution of λ2/n for p = 2 and 3; however, the 
derivation of the exact distribution for larger 
values of p is too complex to be of practical use. 
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Therefore, the asymptotic distribution is most 
commonly used. Specifically, 2logλ nn−  is 
asymptotically distributed as a Chi-square 
random variable with 1

2 ( 1) 2p p + −  degrees of 

freedom. As with other LRTs, this is a good 
approximation when n is considerably larger 
than p, but is poor when n is close to p. 
Therefore, the corrected LRT (CLRT) derived 
by Box (1950) is preferred. Box showed that 

2( 1) log nn C λ− −  is asymptotically distributed 
as a Chi-square random variable with 
1
2 ( 1) 2p p + −  degrees of freedom where 

 

( ) ( )
( )( )( )

2

2

1 2 3
1 .

6 1 1 4

p p p
C

n p p p
+ −

= −
− − + −

 

 
The LRT for compound symmetry is 

actually just an extension of an earlier test of 
2σ=Σ I  developed by Mauchly (1940). 

Consequently, the LRT for compound symmetry 
suffers from the same limitations as Mauchly’s 
test. Specifically, it is not a level-α  test (Boik, 
1975; Cornell, et al., 1992), is not robust to non-
normality (Huynh & Mandeville, 1979; 
Keselman, et al., 1980), and requires n p> . The 
CLRT alleviates the problems with the type I 
error rate (except when n is close to p). It is not, 
however, robust to non-normality, and also 
requires n p> . 

Wilks’ (1946) work was subsequently 
extended. Lee, Krishnaiah and Chang (1976) 
determined that the Chi-square approximation 
for the distribution of the likelihood ratio 
statistic for compound symmetry is adequate for 
so-called practical purposes, and Votaw (1948) 
developed a test for compound symmetry in 
subsets of variates. Still other authors have 
explored similar tests for the structure of 
correlation rather than covariance matrices 
(Aitkin, 1969; Aitkin, Nelson & Reinfurt, 1968).  

Tests for compound symmetry based on 
spatial signs and ranks have been developed 
more recently. Marden (1999) introduced one 
such rank-based test utilizing the differences 
between the estimated variances and covariances 
under the alternative hypothesis and the 
estimated variances and covariances under the 
null hypothesis. Two subsequent studies 

extended this work. The first used a permutation 
testing procedure where the usual LRT statistic 
was computed for the spatial ranks (Gao & 
Marden, 2001). In the second, a Hotelling 2T -
type statistic was derived and shown to converge 
in distribution to a Chi-square random variable 
(Marden & Gao, 2002). The latter article also 
presents a similar test based on spatial signs. 
Marden & Gao performed a small simulation 
study ( 100n =  & 3p = ) for these tests and 
found both the rank and sign tests to be level-α 
tests when simulating data from spherically 
symmetric distributions. 

Other authors have considered tests for 
sphericity based on spatial signs and ranks 
(Hallin & Paindaveine, 2006; Sirkiä, Taskinen, 
Oja & Tyler, 2009). These tests can also be used 
to test for compound symmetry by first applying 
an appropriate data transformation. All of these 
rank and sign tests are superior to the LRT for 
compound symmetry in that they broaden the 
family of distributions to which a test for 
compound symmetry can be applied. They are 
also applicable in cases in which n p≤ . 
Unfortunately, these tests still have 
distributional assumptions: they require that data 
be sampled from a multivariate elliptical 
distribution. 
 

Methodology 
When the assumptions of parametric procedures 
are violated, PTs have been used as alternatives. 
Specifically, PTs reduce or eliminate 
distributional assumptions (Fisher, 1936; Good, 
2005) and allow the use of nearly any test 
statistic; they are also valid for any combination 
of n and p. As with any statistical procedure, 
however, PTs have limitations. The greatest of 
which is that they can be computationally 
intensive even for moderate sample sizes. With 
continued advances in technology, PTs have 
become more feasible for larger sample sizes; 
however, there still exists a limit at which the 
computing time required to examine all possible 
permutations of the data is prohibitive. In such 
cases, a random sample of permutations may be 
selected to compute an approximate p-value 
(Dwass, 1957). These tests are commonly 
known as Monte Carlo PTs (MCPT). 
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Given the benefits of PTs and the 
limitations of LRTs for testing for the structure 
of a covariance matrix, it is the purpose of this 
research to develop a PT for compound 
symmetry. Before describing this test, note that 
covariance matrices are invariant to changes in 
location. Therefore, it was assumed throughout 
this study that the variable means are equal. If 
the variable means are unequal, the raw data can 
be easily centered by calculating xi − µ or i −x x  
depending on whether μ is assumed known or 
unknown, respectively. 
 
Proposed PT Test for Compound Symmetry 

Let xi, i=1,…,n be identically 
distributed, p-variate vectors of observations on 
each of n subjects. The objective is to test 

0H : CS=Σ Σ  where Σ is the covariance matrix 

of the distribution of xi, and CSΣ  has the 
compound symmetry structure given in (1). 
Good (2005) argues that the observations within 
each vector are exchangeable if either (i) the 
observations are independent, or (ii) they are 
normally distributed with equal covariances. The 
first of these conditions is a special case of 
compound symmetry, called sphericity, in which 
the variances are all equal and the covariances 
are all zero. In this case, the PT makes no 
distributional assumptions. The second set of 
conditions requires multivariate normality with 
equal covariances. Under the null hypothesis, 
the covariances are assumed equal and it appears 
from the simulation results presented herein that 
a weaker distributional assumption may be 
sufficient for practical purposes. Specifically, it 
appears that equivalent marginal distributions 
will suffice. 

Because covariance matrices are 
symmetric, one possible test statistic can be 
computed by summing the absolute differences 
between the elements on or above the diagonal 
of the covariance matrix obtained from the 
observed data and the elements on or above the 
diagonal of the hypothesized covariance matrix 
estimated from the observed data. In matrix 
notation: 
 

1
2 ( 1)p pD +
′= 1 ( )ˆvec ,obs CS−Σ Σ  

 

where obsΣ  is the covariance matrix obtained 
from the observed data;  
 

( )2ˆ 1CS p p ps r r ′ = − + Σ I 1 1 ; 

 
vec(M) is a vector of the elements on or above 

the diagonal of M; and 2s  and r  are the means 
of the sample variances and correlations, 
respectively. This test statistic is computed for 
each possible permutation of the data and the 
proportion of test statistic values greater than or 
equal to the one obtained from the original data 
is the p-value. Note that D can also be used to 
test for a specific common variance and/or 
correlation by substituting the specified value 

for 2s  and/or r , respectively, rather than 
estimating these values as described previously. 
 

Results 
Type I Error 

One-thousand simulations were run 
using R version 2.10.1 (R, 2009) for various 
combinations of n (=5, 10, 25, 50, 100) and p 
(=3, 5, 10, 20). Due to the extremely large 
number of permutations required to carry out the 
PTs for any reasonable values of n and p, 
MCPTs were used in the simulations. For each 
simulation, a p-variate data set was generated 
and the MCPT, CLRT and sign test for 
sphericity (SIGN) were performed. The sign test 
for sphericity is available in the SpatialNP 
package for R (Sirkiä, Nordhausen & Oja, 
2009). 

One-thousand random permutations of 
the centered data were sampled for each MCPT. 
In practice, a much larger sample of 
permutations would be used for individual tests 
(usually 10,000 permutations); however, for a 
simulation study of this size, such a large 
number proved to be prohibitive. Therefore, 
1,000 permutations were sampled for each 
MCPT based on the suggestions of Jöckel 
(1986) and Manly (1997). For the CLRT and 
SIGN test, the asymptotic Chi-square 
distributions were used to determine 
approximate 5% critical values. 

Four different multivariate distributions 
(normal, uniform, double exponential and two-
parameter exponential) were investigated. For 
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the multivariate normal distribution, data were 
generated in R using the mvrnorm function 
within the MASS add-on package (Venables & 
Ripley, 2002). For the multivariate uniform 
distribution data were generated using a 
procedure described in Falk (1999), and for the 
multivariate double exponential and two-
parameter exponential distributions a procedure 
described in Vale and Maurelli (1983) was used. 

The simulated type I error rates for the 
tests of compound symmetry are displayed in 
Figure 1. Simulations were run for n = 5, 10, 15, 
25, 50, 100, 3p = , 2σ 9= , and ρ 0.6= . For 
normally distributed data, the three tests are 
comparable with respect to the simulated type I 
error rates, with the CLRT and SIGN test 
appearing to be slightly conservative, 
particularly for small samples. The MCPT 
appears to be fairly robust to non-normality, 
especially when the underlying distribution is 
symmetric (normal, uniform, double 
exponential); however, in the case of the two-
parameter exponential data, the MCPT appears 
to be too liberal with respect to the simulated 
type I error rates, especially for small samples. 
The CLRT appears to be too conservative for 
uniform data and much too liberal for double 
exponential and two-parameter exponential data, 
in the latter case achieving a simulated type I 
error rate as high as 0.352 for 100n = .  

These results are consistent with those 
of Huynh and Mandeville (1979) who performed 
a simulation study of Mauchly’s (1940) test of 
sphericity and found that for light-tailed 
distributions the LRTs were conservative and for 
heavy-tailed distributions, the type I error rates 
exceeded the nominal rate. The SIGN test 
performs very well with respect to the simulated 
type I error rates for double exponential data; 
however, the simulated type I error rates are 
extremely high for uniform (as high as 1.000 for 

50n = ) and two-parameter exponential data (as 
high as 0.604 for 100n = ). This is undoubtedly 
due to the assumption of the SIGN test that the 
data be sampled from a multivariate elliptical 
distribution. 

One disadvantage of the LRTs is that 
they do not exist when p n≥ ; due to this, type I 
error rates tend to inflate as p approaches n. 
Figure 2 displays the simulated type I error rates 

for 25n = , 3,5,10, 20p = , 2σ 9= , and ρ 0.6= . 
From these results it is clear that the CLRT is 
not a level-α test, even for normally distributed 
data, when p is close to n; and the SIGN test 
suffers from the same problems as in Figure 1 
for non-elliptical data. Consequently, the MCPT 
is the best choice, with respect to the simulated 
type I error rates of the three tests for uniform 
and two-parameter exponential data, even 
though the MCPT is too liberal in the latter case. 
 
Power 

The power of the tests of compound 
symmetry to detect heteroscedasticity and serial 
correlation was studied. The MCPT, SIGN test 
and CLRT were all conducted for various 
combinations of n, p and distribution; however, 
because the SIGN test is not a level-α  test for 
uniform and two-parameter exponential data and 
the CLRT is not a level-α test for double 
exponential and two-parameter exponential data 
the power results for these cases are largely 
excluded in the following discussion, but are 
presented in Figures 3 and 4 for completeness. 

Figure 3 shows the simulated power of 
the test of compound symmetry versus 
heteroscedasticity. Specifically, multivariate 
data were generated from distributions with 
covariance matrices having diagonal elements 
given by 1, 1+d/(p-1), 1+2d/(p-1), …, 1+d and 
zero off diagonal elements, where d represents 
the difference between the first and last (or 
smallest and largest) diagonal elements. Figure 3 
displays the power results for n = 5, 10, 25, 50, 

3p = , 4d =  and ρ 0= . 
For normally distributed data the power 

of the CLRT is greater than that for the MCPT 
and SIGN test in most cases, but the MCPT 
performs fairly well, achieving a power of 0.983 
when 50n = . The true benefit of the MCPT is 
observed in the non-normal cases. For uniformly 
distributed data; the simulated power of the 
MCPT is greater than or equal to that of the 
CLRT except for 25n =  (0.941 for the MCPT 
and 0.943 for the CLRT). For double 
exponential data the simulated powers of the 
MCPT and SIGN test are very close with the 
MCPT slightly more powerful for small samples 
( 5,10, 25n = ) and the SIGN test slightly more 
powerful for large samples ( 50n = ). For two-  
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Figure 1: Simulated Type I Error Rates for the Test of Compound Symmetry ( 23, σ 9, ρ 0.6p = = = ) 
 

a. Normal 

 
b. Uniform 

 
* The type I error rates for this test are greater than 0.2 for all simulated values of n. 

Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  

*
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Figure 1 (continued): Simulated Type I Error Rates for the Test of Compound Symmetry ( 23, σ 9, ρ 0.6p = = = ) 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  
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Figure 2: Simulated Type I Error Rates for the Test of Compound Symmetry ( 225, σ 9, ρ 0.6n = = = ) 
 

a. Normal 

 
b. Uniform 

 
* The type I error rates for this test are greater than 0.2 for all simulated values of n. 

Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  

*
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Figure 2 (continued): Simulated Type I Error Rates for the Test of Compound Symmetry ( 225, σ 9, ρ 0.6n = = = ) 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  
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Figure 3: Simulated Power for the Test of Compound Symmetry vs. Heteroscedasticity ( =3, ρ 0, 4p d= = )* 
 

a. Normal 

 
 

b. Uniform 

 
*These are not level-α tests. 
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Figure 3 (continued): Simulated Power for the Test of Compound Symmetry vs. Heteroscedasticity ( =3, ρ 0, 4p d= = )* 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
*These are not level-α tests. 
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Figure 4: Simulated Power for Test of Compound Symmetry vs. Serial Correlation ( 25, 1, 0.6p = σ = ρ = )* 
 

a. Normal 

 
b. Uniform 

 
*These are not level-α tests. 



A PERMUTATION TEST FOR COMPOUND SYMMETRY 

458 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 (continued): Simulated Power for Test of Compound Symmetry vs. Serial Correlation ( 25, 1, 0.6p = σ = ρ = )* 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
*These are not level-α tests. 
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parameter exponential data, even though the 
MCPT is slightly liberal, it is the best choice of 
the three tests given that the CLRT and SIGN 
test have simulated type I error rates that are 
much too high; however the MCPT in this case 
is not very powerful, only achieving a simulated 
power of 0.624 for 50n = . 

Figure 4 displays the simulated power of 
the test of compound symmetry versus the serial 
correlation structure given by 
 

2 1

22

2

1 2 3

1

1

1

1

p

p

SC

p p p

−

−

− − −

 ρ ρ ρ
 ρ ρ ρσ  =
 − ρ
 
ρ ρ ρ  

Σ




    


 

 
where ( )2 2σ 1 ρ−  is the common variance of 

the p variables and ρ  is the correlation between 
successive observations of the variables. Figure 
4 displays the power results for n = 10, 25, 50, 
75, 5p = , 2 1σ = , and ρ 0.6= . 

Figure 4 is very similar to Figure 3 for 
the CLRT and SIGN test, but the MCPT appears 
to be less powerful at detecting serial correlation 
than heteroscedasticity. However, it is difficult 
to make direct comparisons between these two 
situations because the degree to which the 
simulated alternatives depart from compound 
symmetry cannot be quantified. 
 
Application 

Consider a data set reported in Monks, 
et al. (2004). In this study, 15 Centre d’Etude du 
Polymorphisme Humain (CEPH) families were 
selected and the expression for 23,499 genes 
was measured in lymphoblastoid cell lines; of 
these, 762 genes were found to be expressed and 
heritable. Three of the genes (NM_001081, 
NM_002125, and V00522) are known to have a 
linkage to the same location on chromosome 6; 
consequently, interest lies in determining 
whether there is a compound symmetry 
covariance structure with respect to these three 
genes. Among the 15 families included in the 
CEPH study there were 47 grandparents. These 
grandparents were the oldest generation included 
in the study; therefore, it is assumed that no 

genetic material is shared among them. Only the 
47 grandparents were included in the analysis. 

It is common in genetic studies to 
standardize gene expression data; therefore, the 
covariance and correlation matrices are 
equivalent. The sample covariance matrix 
among these three genes is estimated to be 
 

1 0.823 0.896
ˆ 0.823 1 0.824

0.896 0.824 1

 
 =  
  

Σ , 

 
and the hypothesis to be tested is 0H : CS=Σ Σ  

vs. aH : CS≠Σ Σ . In all, ( )47 363! 3.74 10≈ ×  

permutations of the raw data are possible. 
Consequently, a random sample of 10,000 
permutations was selected for the MCPT. The p-
values for the three tests are 0.9904 for the 
MCPT, 0.3042 for the CLRT and 0.0664 for the 
SIGN test. In each case, the null hypothesis 
would not be rejected at the 0.05 level, but the 
three p-values are very different. According to 
the Shapiro-Wilk test of multivariate normality, 
there is evidence that these data are not from a 
multivariate normal population ( 0.00016p = ), 
violating the assumptions of the CLRT. Given 
that the structure of Σ̂  does not deviate much 
from compound symmetry, it may also be 
speculated that the data may not have a 
multivariate elliptical distribution which could 
explain the unusually low p-value for the SIGN 
test. 
 

Conclusion 
With somewhat recent advances in technology 
permutation tests are becoming more feasible 
and – consequently – more common; this article 
proposed such a test for the compound 
symmetry covariance structure. Our simulation 
study indicates that the MCPT is robust to non-
normality (more so when the data are 
symmetrically distributed), an issue with the 
CLRT, but is generally not as powerful as the 
CLRT when the data are normally distributed. 
The MCPT is also an improvement over the 
SIGN test in that the MCPT appears to be robust 
to non-elliptical distributions (again, more so 
when the data are symmetrically distributed).  
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One additional – and probably more 
common situation – that was not considered 
herein is the case of data sets in which the 
variables are not all equally distributed. Because 
the PT requires either independent observations 
or normally distributed observations with equal 
covariances for exchangeability, it is suspected 
that the PT would not perform well in this case, 
at least for extreme differences in distribution.  

This article presented only the PT for 
the compound symmetry structure. According to 
Good (2005) this particular test requires 
multivariate normality and equal covariances for 
the exchangeability of the data. Evidence 
presented shows that this test is robust to 
departures from normality, but the situation of 
unequal covariances has not been addressed. A 
data transformation such that a PT for the 
structure of any covariance matrix can be 
achieved by applying the PT for compound 
symmetry to the transformed data is currently 
under development.   

Another issue with the CLRT is that it 
does not exist for cases in which p n≥ . 
Although the PT exists in these cases, evidence 
exists to show that it is not a level-α  test. 
Consequently, alternative test statistics are being 
considered that will alleviate this problem. 
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