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Robust Inference for Regression with Spatially Correlated Errors 
 

Juchi Ou Jeffrey M. Albert 
Case Western Reserve University, 

Cleveland, OH 
 

 
A robust variance estimator for a regression model with spatially correlated errors is proposed using the 
estimated empirical covariogram. Simulations studies show unbiasedness and robustness for the OLS but 
not for the GLS estimates. The new robust variance estimation method is applied to hospital quality data. 
 
Key words: Ordinary least squares, generalized least squares, robust variance estimation, hospital quality, 

semivariogram. 
 
 

Introduction 
In observational studies, an objective of interest 
is to compare the mean response of exposed and 
unexposed units. Commonly, the effect of an 
exposure or treatment on an outcome is 
evaluated via conventional linear regression 
models that assume independence of errors. For 
geographical data, observations and 
corresponding errors may be spatially correlated 
rather than independent. One unbiased estimator 
of an exposure effect in a linear regression 
model is the ordinary least squares estimator 
(OLS). This estimator is known to be the best 
linear unbiased estimator (BLUE) when the 
errors are independent with a constant variance. 
However, when errors are correlated, this 
estimator may be inefficient. Furthermore, its 
standard variance estimator may be biased. To 
improve precision for correlated data, methods 
that take into account the correlation structure, 
such as maximum likelihood (ML) estimation 
and generalized least squares (GLS) are of 
interest for evaluating an exposure effect. 
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A number of researchers have studied 

regression models with serially or spatially 
correlated errors. For example, Lee & Lund 
(2004) provided expressions for the OLS 
variances for autocorrelated errors and proposed 
confidence intervals based on their derived 
variance. The empirical coverage probabilities 
of their confidence intervals were close to the 
95%target value when the sample size was large 
(at least 500). Athough Lee & Lund studied the 
variance for time series autocorrelation 
structures, their results require extension to 
regression models where errors are correlated in 
a space. 

Basu & Reinsel (1994) compared the 
OLS and GLS estimators when errors follow a 
spatial unilateral first-order autoregressive 
moving average model; they found that the 
difference between variances of the two 
estimators were small unless the spatial 
correlation was close to 1. They investigated 
autocorrelation models; however, regression 
model errors could follow other spatial 
structures, such as a spatial Gaussian or spatial 
exponential model. Mardia and Marshall (1984) 
developed ML estimators for regression 
parameters in the spatial context assuming the 
errors follow a spatial Gaussian distribution. 

A limitation of previous methods of 
inference for spatial data is that they rely on a 
correct specification of the covariance structure. 
When the covariance matrix is unknown, 
methods for variance estimation that are robust 
to covariance model misspecification are of 
interest. In the context of longitudinal data, a 
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well-known robust method to improve variance 
estimators for correlated data is the sandwich 
variance estimator (Diggle, et al., 2003). 
However, this estimator is not suitable for 
spatially correlated data that involve a single 
multivariate observation as opposed to multiple 
independent vectors. Furthermore, previous 
researches have given little attention to 
properties of estimators of the variance of effect 
estimates for spatially correlated errors. 

This article develops estimators for 
mean differences along with robust variance 
estimators in a regression model with spatially 
correlated errors. A new robust (sandwich) 
variance estimator for exposure effects is 
proposed using the empirical variogram for 
spatially correlated errors. Although this 
approach may be applied to the maximum 
likelihood estimate, the focus here is on the 
methods of ordinary and generalized least 
squares. The appeal of the latter is that is has 
computational advantages over ML estimation 
and retains equivalent asymptotic efficiency 
(Charnes, et al., 1976).  

The OLS and GLS estimators, along 
with the proposed versus standard variance 
estimators, are assessed via simulation studies. 
Simulation data were generated under either a 
spatial Gaussian or spatial exponential model, 
both of which are commonly used to analyze 
spatial data. As an applied example, data is 
analyzed to assess the effect of urban versus 
rural locations on the number of full-time 
equivalents (FTE) for registered nurses. 
Previous researchers investigating this question 
(Rosenblatt, et al., 2006; Jiang, et al., 2006) did 
not consider the spatial pattern of hospitals in 
assessing the difference in mean FTE. 
Therefore, the proposed methods are applied to 
consider the difference in mean FTE between 
urban and rural hospitals taking into account 
spatial correlations among hospitals. The data 
analyzed are from two databases: hospital 
financial reports from the Office of Statewide 
Health Planning and Development, and HCUP 
State Inpatient Databases (SID). 
 

Methodology 
Assume a linear regression model, standard 
(OLS and GLS) approaches for estimations of 
regression parameters and that the outcomes 

(Y(s)) and covariates (X(s)) at location s are 
linearly related. Also, the errors, e(s), for this 
linear regression model are allowed to be 
correlated, where s is an index for a spatial 
location. This model is as follows: 
 

Y(s) = X(s)b + e(s);  e(s) ~ N(0; S),      (1) 

 

where S represents the variance-covariance 

matrix for the error vector. The argument, (s), 
will be dropped for ease of notation.  

For correlated errors, two common 

estimators of regression parameters (b) are the 

ordinary least squares (OLS) and the generalized 
least squares (GLS) estimators. The OLS 
estimator of regression parameters is  
 

-1
olsβ̂ =(X'X) X'Y ;                     (2) 

 
and the corresponding naïve variance estimator 

for olsβ̂  is 

 
2 -1

ols
ˆ ˆVar(β )=σ (X'X) ,                 (3) 

 
where 2σ̂  is the sample variance of residuals. 
Another estimator of regression parameters is 
the GLS estimator, 
 

-1 -1 -1
glsβ̂ =(X'W X) X'W Y ,              (4) 

 
where W is the working matrix and it is equal to 
the estimated covariance matrix. The 
corresponding naïve variance estimator is 
 

-1 -1
gls

ˆVar(β )=(X'W X) .               (5) 

 
Both the OLS and the GLS point 

estimators are unbiased, but the variance of the 
GLS estimator is smaller than that of the OLS 
estimator (Bloomfield & Watson, 1975) when 
W-1 is equal to the true covariance matrix. In the 
conventional, so-called naïve or model-based, 
approach, the covariance structure for the OLS 
variance estimator is assumed to follow the 
independence model whereas that for the GLS 
variance estimator is assumed to be proportional 
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to the working weight matrix W. In the context 
of longitudinal data, Liang & Zeger (1986) 

showed that the point estimator for b via 

generalized estimating equations (GEE) is 
consistent even if the correlation matrix is 
misspecified. However, when the assumed 
covariance structure is different from the true 
covariance model, the naïve variance estimator 
is inconsistent. 
 
Robust Variance Estimator 

The model-based variance estimators 
described above may be inadequate when the 
spatial covariance structure is unknown with the 
possibility of being misspecified. In the case of 
longitudinal data, where there are multiple 
measurements for each subject, a robust 
(sandwich) variance estimator is available 
(Diggle, et al., 2003). The robust variance 
estimator for the generalized least squares 

estimator glsβ̂  is 

 
-1 -1 -1 -1 -1 -1

gls
ˆ ˆVar(β )=(X'W X) X'W VW X(X'W X) , 

(6) 
 

where V̂  is a block-diagonal matrix with non-

zero block 0V̂  which may be estimated via 

restricted maximum likelihood estimation 
(REML). Letting Yhij denote the jth measurement 
on the ith unit in the hth group, the sample mean 
for the measurement j in group h is 
 

hm

hj hij h
i=1h

1
μ̂ = Y ,h=1,...,g;i=1,...,m ;j=1,...,n

m  , 

(7) 
 
and the REML estimator is 

 

( )( )
hmg g

0 h hi h hi h
h=1 h=1 i=1

ˆ ˆ ˆV = m -g Y -μ Y -μ '
 
 
 
  , 

(8) 
 
where hi hi1 hinY =(Y ,...,Y )'  and 

h h1 hnˆ ˆ ˆμ =(μ ,...,μ )'.  For this estimator, no 

assumption exists regarding the structure of 
means and covariance matrix. 

In the case of longitudinal data where 
there are independent realizations of the 
correlated responses, sample estimates of the 
variance and covariance parameters are 
generally used to obtain the empirical estimate 
of V. For spatial data, there is only one 
(multivariate) observation and the above robust 
estimator would not be a good estimator. For 
this case, an empirical covariogram is used in 
place of the empirical variance-covariance 
matrix used for longitudinal data. 
 
Variogram 

Assume the spatial process to be 
second-order stationary and isotropic, where 
stationarity means that absolute coordinates are 
unimportant and isotropic means that the spatial 
correlations are the same in different directions 
(i.e., north-south versus west-east). For a spatial 

process Y(s): s Î DÌ R2, one common tool to 

measure spatial correlations is the 
semivariogram for geostatistical data. The 
semivariogram ( i j i jγ*(s , s ) γ(s -s )=γ(h)≡ ) is 

defined as a function of the distance (h) of two 
locations i j(s , s ) , 

 

i i

1
γ(h)= Var[Y(s )-Y(s +h)]

2
.          (9) 

 
If the spatial process (Y(s)) is second-order 
stationary, the semivariogram can be expressed 
in terms of the covariance function, C(h) , and 
 

γ(h)=C(0)-C(h) .                   (10) 
 
There are two important components for a 
semivariogram: the sill and the spatial range. 
The sill is defined as the asymptote of the 
variogram function, and the range is the distance 
at which the sill is reached. 

Two commonly used variogram models 
are the spatial Gaussian and the spatial 
exponential models. Their covariance functions 
are as follows: 
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1. Gaussian model:
2 2

gC (h)=σ exp{-(h/α) }
, and 

 

2. Exponential model:
2

xC (h)=σ exp{-(h/α)} , 
 

where a and s2 represent the spatial range and 

the sill, respectively, and h is the distance 
between two locations. The semivariograms for 
these two models are shown in Figure 1. As the 
distance increases, the semivariogram increases. 

The parameters q º (a, s2) for a variogram 

model ( γ(h,θ) ) may be estimated by iteratively 
reweighted least squares (IWLS) to minimize 
the following expression, 
 

2ˆ|N(h)|(γ(h)-γ(h,θ)) ,             (11) 

 
where N(h) is the number of distinct pairs of 
locations at distance h and γ̂(h)  is an estimate of 
the semivariogram. 

To avoid a parametric assumption 
regarding the spatial model, the moment-based 
empirical semivariogram could be used to 
estimate the semivariogram. The empirical 
(Matheron) semivariogram ( γ̂ ) for two observed 

measurements ( i jY(s ),Y(s ) ) with distance h 

between two different locations ( i js ,s ) is 

 

2
i j

N(h)

1
γ̂(h)= (Y(s )-Y(s ))

2|N(h)| ,       (12) 

 
where |N(h)| is the number of  measurement 
pairs with distance h. The corresponding 
empirical covariogram estimator for the 
covariance function, C(h) is as follows 
 

i j
N(h)

1
Ĉ(h)= (Y(s )-Y)(Y(s )-Y)

|N(h)|
 , 

(13) 
 
where Y  is the average of all Y(s). In this study, 
the empirical covariogram estimator is used to 
estimate the variance-covariance matrix. 
 
 
 

Simulation Study 
Data Generation  

Using a 10x10 grid, two different 
covariance structures for the errors in Model 1 
were studied: spatial Gaussian and spatial 
exponential. In general, the sill for a covariance 
structure varies from 0.01 to over 100. 
Therefore, the sill for both covariance structures 
was set to 9 in this study. The spatial ranges 
were set to 2, 5 or 10 in order to compare weak, 
modified and strong correlations between 
locations on a 10x10 grid. A binary covariate 
(X, with values 0 and 1) was generated from the 
binomial distribution with probability of X = 1 
equal to 0.5 and the outcome (Y) was generated 
from the linear model  
 

Y = 2X + e,                       (14) 

 
that is, the outcome was linearly related with the 
binary covariate with slope 2. 
 
Estimator of the Exposure/Treatment  

Two point estimators for the 
exposure/treatment effect were studied, namely, 
OLS (ordinary least squares) and GLS 
(generalized least squares) estimators. In 
addition, the working matrix of the GLS 
estimator was estimated based on either 
independence (OLS residuals), spatial Gaussian 
or spatial exponential. 
 
Variance Estimator of the Treatment Effect  

The naïve variance estimators as well as 
the sandwich variance estimators were 
evaluated. For the sandwich variance estimator, 
the variance-covariance matrix could be the 

spatial Gaussian ( )gĈ , spatial exponential ( )xĈ  

or the spatial empirical covariance structure 

( )Ĉ .  The variance estimators for the OLS point 

estimator are as follows: independence, 
2 -1σ̂ (X'X) ; empirical, -1 -1ˆ(X'X) X'CX(X'X) ; 

Gaussian, -1 -1
g

ˆ(X'X) X'C X(X'X) ; and 

Exponential: -1 -1
x

ˆ(X'X) X'C X(X'X) . 
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Figure 1: Semivariogram Models 
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Where Ĉ , gĈ  and xĈ  represent the spatial 

empirical covariance, the estimated spatial 
Gaussian covariance and the estimated spatial 
exponential covariance matrices. The variance 
estimators for the GLS point estimator are naïve, 

-1 -1(X'W X) , and empirical, 
-1 -1 -1 -1 -1 -1ˆ(X'W X) X'W CW X(X'W X) , where W-1 

would be either the spatial Gaussian or the 
spatial exponential covariance matrix, and Ĉ  is 
the empirical covariance matrix. 

The bias and MSE of the OLS and GLS 
point estimators of the regression coefficient 
were computed. The bias and MSE for 1,000 
replications are obtained as 
 

Bias = i

1 ˆ(β -2)
1000 ,                (15) 

 

MSE = 2
i

1 ˆ(β -2)
1000 .              (16) 

 
In addition, the relative bias for each estimator   

(θ̂ , that is, β̂  or ˆV̂(β) ) was calculated. This 
relative bias is defined as 
 

RB =
ˆ-θ θ
θ

.                           (17) 

 
Results 

Spatial Gaussian Errors Data: OLS  
The bias of the ordinary least squares 

estimator (OLS) and its corresponding variance 
estimator, in the case where the errors are 
spatially correlated over a 10 * 10 grid, are 
shown in Table 1. When the covariance matrix 
for errors is spatial Gaussian distributed, the bias 
of the OLS estimator is smaller (closer to 0.01) 
for all examined spatial ranges. The 
corresponding MSE decreases as the spatial 
range increases. Among the four variance 
estimators, the estimator using the independence 
covariance structure has the largest difference 
from the true variance for each spatial range. As 
the strength of spatial correlation (that is, the 
range) increases, the bias of the independence 
variance estimator increases. Both the empirical 
and the Gaussian variance estimators 
underestimate the variance. In addition, the 

empirical estimated variance is closer to the true 
value than the two estimators based on incorrect 
covariance models (independence and 
exponential) and has similar bias to the estimator 
using the correct covariance model (Gaussian), 
over varying range values. 
 
Spatial Gaussian Errors Data: GLS 

Working weight matrices for the GLS 
estimator based on the Gaussian and the 
exponential spatial covariance models were 
considered. The results for the Gaussian and 
exponential working matrices are shown in 
Table 2. For the Gaussian working matrix, the 
bias of the estimated effect is small for the each 
strength of the spatial correlations. The bias for 
the Gaussian working matrix is reduced at least 
80% from the OLS estimators. The bias of the 
naïve estimated variance is smaller than that of 
the empirical estimator when the true working 
matrix (Gaussian model) was fit. However, as 
the spatial correlation increases, the relative bias 
of the naïve and empirical variance become 
more similar. When the exponential working 
matrix is used for the spatial Gaussian errors 
data, the biases of the GLS estimated effect are 
also small, and the bias is reduced at least 46.4% 
from the OLS estimators. In this case, the naïve 
and empirical variance estimators both have 
large biases which are similar in magnitude. 
 
Spatial Exponential Errors Data: OLS 

A second simulation involved the 
generation of spatial exponential errors. The bias 
and MSE for the ordinary least squares 
estimators (OLS) and its corresponding variance 
estimators are shown in Table3. The bias of the 
estimated effect is smaller than 0.005 for all 
examined spatial ranges. The independence 
estimator overestimates the variance of the 
effect for all examined spatial ranges and the 
spatial empirical estimator slightly 
underestimates the variance. The spatial 
empirical estimated variance is closer to the true 
value than the other estimated variances. The 
exponential variance estimator for the OLS 
estimator, though it uses the correct covariance 
model, underestimates the variance for all 
examined spatial ranges. The Gaussian variance 
estimator overestimates the variance when the 
spatial range is larger than 5. 
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Spatial Exponential Errors Data: GLS  
For the spatial exponential errors data, 

two working weight matrices for the generalized 
least squares (GLS) estimator are considered: 
the spatial Gaussian and the spatial exponential 
covariance models. The results for the GLS 
effect estimators are shown in Table 4. For both 
Gaussian and exponential working matrices, the 
biases of estimated effects are smaller than 1% 
for all examined spatial ranges. When data are 
spatial exponential correlated across a study 
space (spatial range at 10), the biases of the GLS 
effect estimators are smaller than that of the 
OLS estimator. The bias reduction is 37.1% for 
a strongly spatial correlation. For the spatial 
exponential   errors   data,   the   relative   bias 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

decreases as the spatial range increases. When 
the spatial correlation (spatial range) increases, 
the MSE decreases. 

For simulated data with exponential 
errors, the naïve (based on the correct working 
covariance matrix) and empirical variance 
estimates have positive biases for all examined 
spatial ranges. The bias of the naïve estimated 
variance is smaller than that of the empirical 
estimated variance. For all examined spatial 
correlations, the MSE of the GLS with incorrect 
(Gaussian) working matrix is larger than 
corresponding MSE of the GLS with correct 
(exponential) working matrix for the spatial 
exponential errors data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: OLS-Bias and Variance Estimator for Spatial Gaussian Errors for 1,000 Replications 

Range 
OLS-
Bias 

MSE 
  Variance   

TRUE Indep* Em* 
Gau* 

(correct) 
Ex* 

2 0.0069 0.339 0.354 0.334 0.343 0.346 0.342 

5 0.0108 0.136 0.146 0.222 0.146 0.132 0.142 

10 0.0103 0.033 0.033 0.096 0.031 0.030 0.060 
*indep: independent; Em: empirical; Gau: Gaussian; Ex: exponential 

 
Table 2: GLS Bias and Variance Estimator for Spatial Gaussian Errors for 1,000 Replications 

Range 

Gaussian Working Matrix (Correct) 

GLS-Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 0.00138 -80.00% 0.0091 0.0091 0.0256 4.4886 

5 0.00004 -99.60% 0.0020 0.0019 0.0019 0.9598 

10 0.00089 -91.40% 0.0004 0.0004 0.0007 0.0333 
 

Range 

Exponential Working Matrix (Incorrect) 

GLS-Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0037 -46.40% 0.0238 0.0238 0.0928 0.0982 

5 0.0005 -95.40% 0.0014 0.0014 0.0565 0.0314 

10 0.0003 -97.10% 0.0008 0.0008 0.0403 0.0121 
*RB: relative bias; True(sim): simulated variance; Em: empirical 
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Example 
Background  

A common cause of adult 
hospitalization is pneumonia. Several 
pneumonia inpatient management measures are 
provided by the Centers for Medicare & 
Medicaid Service. Among these quality 
measures, a blood culture prior to first antibiotic 
administration is recommended (Waterer & 
Wunderink, 2001; Metersky, et al., 2004). For 
care services in the hospitals, nurse staffing 
plays an important role. Kovner, et al. (2000, 
2002) found that lower nurse staffing levels 
resulted    in    significantly    higher    rates  of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pneumonia. Rosenblatt, et al. (2006) and Jiang, 
et al. (2006) showed that the full-time equivalent 
(FTE) for registered nurses were significantly 
different between rural and urban community 
health centers in the US. However, although 
these studies assumed the hospital outcomes to 
be independent, they did not take into account 
possible spatial correlations among hospitals. 
 
Data Source and Sample  

This research is interested in examining 
the association between the FTEs for registered 
nurses and hospital location (urban versus rural). 
In general, one FTE represents 2,080 work hours  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: OLS-Bias and Variance Estimator for Spatial Exponential Errors for 1,000 Replications 

Range OLS-Bias MSE 

Variance 

TRUE Indep* Em* Gau* 
Ex* 

(correct) 

2 0.0026 0.277 0.307 0.317 0.302 0.301 0.300 

5 0.0041 0.171 0.185 0.223 0.185 0.187 0.177 

10 0.0035 0.099 0.106 0.143 0.106 0.110 0.104 
*indep: independent; Em: empirical; Gau: Gaussian; Ex: exponential 

 
Table 4: GLS Bias and Variance Estimator for Spatial Exponential Errors for 1,000 Replications 

Range 

Gaussian Working Matrix (Incorrect) 

Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0037 42.30% 0.135 0.135 0.147 0.187 

5 -0.0042 2.40% 0.056 0.056 0.061 0.091 

10 -0.0032 -8.60% 0.029 0.029 0.030 0.050 
 

Range 

Exponential Working Matrix (Correct) 

Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0033 26.90% 0.130 0.130 0.146 0.187 

5 -0.0031 -24.40% 0.054 0.054 0.066 0.092 

10 -0.0022 -37.10% 0.027 0.027 0.034 0.050 
*RB: relative bias; True(sim): simulated variance; Em: empirical 
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within a year to a fulltime worker. Here, the 
outcome of interested was FTEs for registered 
nurse per occupied bed. Data for this outcome, 
available in hospitals financial reports, was 
provided by the Office for Statewide Health 
Planning and Development (OSHPD). The 
binary predictor, hospital location (urban/rural), 
was taken from the Healthcare Cost and 
Utilization Project (HCUP) California State 
Inpatient Database (SID); this predictor was 
denoted as location. In addition, the report for 
pneumonia quality measures of inpatient 
management was provided by the Centers for 
Medicare & Medicaid Service. Data was merged 
from these three sources restricting the sample to 
hospitals in the State of California in 2004. The 
resulting dataset included 186 hospitals that 
reported: the above pneumonia quality measure, 
the number of registered nurse FTEs per 
occupied bed and hospital location. 

The spatial correlation for each model 
variable was assessed via the test by Diblasi & 
Bowman (2001). The semivariograms of the 
response (FTE) and predictor (location) with 
their corresponding p-value of the spatial 
correlation test are shown in Figure 2. Both 
variables were spatially correlated across 
hospitals in California in 2004. 
 
OLS Result 

The effect of hospital location on the 
number of FTEs for registered nurses was 
estimated using the ordinary least squares 
(OLS). OLS estimates, the independence 
variance estimate,and three spatial variance 
estimates (empirical, spatial Gaussian, 
exponential structure) are shown in Table 5, 
along with standardized effect estimates 
(estimated effect divided by the square root of 
the estimated variance). The OLS estimated 
mean difference for FTE between urban and 
rural hospitals was 0.3018. The independence 
and spatial empirical variance estimates were 
close and both were less than 0.1. These two 
variance estimators both provided standardized 
effect estimates greater than 3.9. The spatial 
Gaussian and exponential variance estimates 
were larger, and their respective standardized 
estimates of 2.2 and 1.99, smaller than the other 
two estimates. Thus, all methods indicated an  

effect of the hospital locations on FTE with 
higher mean FTEs at the urban hospitals. The 
standardized effects based on the spatial 
Gaussian and spatial exponential estimated 
variances suggested marginal evidences; by 
contrast, the standardized effects based on 
independence and the empirical estimated 
indicated strong evidences of a location effect. 
The conclusions, based on California hospitals, 
are substantially the same as previous study 
results for United States health centers. 

The semivariograms of OLS residuals 
are shown in Figure 3. The line in the left figure 
is the fitted spatial Gaussian structure with 
estimated spatial range and sill equal to 0.43 and 
0.08. The line in the right figure is to the fitted 
spatial exponential structure with estimated 
range and sill equal to 0.50 and 0.11. Both 
theoretical semivariogram models (i.e., Gaussian 
and exponential) were close to empirical 
semivariogram when the distance was smaller 
than 2. However, these two models were far 
from empirical semivariogram when the distance 
was larger than 2. 
 
GLS Result 

For comparison, GLS estimators were 
considered under the same models as examined 
for the OLS estimators. Thus, estimated spatial 
Gaussian and exponential structures were used 
as the working weight matrices for GLS 
estimators. The results for the point and variance 
estimates are shown in Table 6. Compared to the 
OLS estimated effects, the two GLS estimated 
effects were larger. For each working weight 
matrix, both the naïve and the empirical variance 
estimates were less than 0.01. The empirical 
variance estimate was smaller than the naïve 
estimated variance for both the Gaussian and 
exponential working matrices. All three GLS 
standardized effect estimates were greater than 
3.5 and one of them was as high as 3.73. All 
GLS standardized effect estimates indicated 
strong evidences of an effect of location on FTE, 
with a higher mean FTE at urban hospitals. 
Thus, the conclusion based on the GLS 
estimators with either a spatial Gaussian or 
exponential working matrices, agree with that 
given above for the OLS estimators. 
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Figure 2: Semivariograms of Response and Predictor 
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Conclusion 
This article addresses the problem of estimating 
exposure (or treatment) effect in a regression 
models with spatially correlated errors. 
Considering both OLS and GLS estimators, a 
new robust variance estimator was presented 
based on the estimated semivariogram. In order 
to evaluate the OLS and GLS estimators or their 
corresponding variance estimators under spatial 
correlated errors, simulation studies were 
conducted. Two  different  spatial  correlation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

models were considered: spatial Gaussian and 
spatial exponential. 

For spatial Gaussian and exponential 
simulated data, neither the OLS nor GLS 
estimators showed evidence of bias. When the 
spatial range increased, the true variance 
decreased. For the OLS estimator, the bias of the 
naïve (independence) estimated variance was 
smallest at spatial range 2 among three spatial 
ranges. The empirical estimated variance for the 
OLS estimator was closer to the true value than 
the other three estimated variances. For the GLS 
estimator, the naïve estimated variance was 
closer to the simulated variance than the 
empirical estimated variance. However, when 
the GLS estimator used an incorrect working 
matrix, the naïve estimated variance would be 
far from the simulated variance (e.g., GLS with 
an exponential working matrix for spatial 
Gaussian errors data). In addition, even when the 
correct working matrix is used, the estimated 
variance of the GLS estimate sometimes varied 
substantially from the true (simulation) value. 
Therefore, estimating exposure effects via 
ordinary least squares (OLS) with the empirical 
variance estimator is recommended when the 
data exhibit spatial patterns. 

The effect of hospital locations on FTE 
where both variables exhibited spatial patterns 
(based on their empirical semivariogram and 
spatial correlation test) across California in 2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: OLS Effect Estimate, Variance Estimates and Standardized Effect Estimates 
(STD)* 

 

 
Effect 

Variance 

 Indep** Empirical Gaussian Exponential 

Estimate 0.3018 0.0059 0.0044 0.0184 0.0231 

STD  3.9291 4.5498 2.2249 1.9857 

*STD: the effect estimate divided by the square root of the variance estimate;  
**Indep: independence covariance structure 

Table 6: GLS Effect Estimator 
and Its Estimated Variance (STD)* 

 

 
Working Matrix 

Gaussian Exponential 

Estimated 
Effect 

0.3255 0.3396 

Naïve 
Variance 

0.0081(3.62) 0.0089(3.60) 

Empirical 
Variance 

0.0076(3.73) 0.0085(3.68) 

*Standardized effect estimates are in parentheses 
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Figure 3: Semivariograms of OLS Residuals 
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was examined. The linear relationship between 
hospital location (urban/rural) and full-time-
equivalents (FTE) for registered nurse adjusted 
by the number of occupied beds was assessed 
via the OLS and the GLS estimators. From the 
semivariogram of the OLS errors, the OLS 
errors exhibited a spatial pattern. Therefore, the 
OLS estimated effect with corresponding 
empirical variance was preferred. Based on 
OLS, the estimated difference between urban 
and rural hospitals was 0.3 FTE. The empirical 
estimated variance for the OLS estimator was 
around 0.004 and the ratio of estimated effect to 
the square root of empirical variance was 4.55. 
This result, corroborating the previous findings, 
suggests that there is a significant difference in 
FTE for urban versus rural hospitals. 

The robust approach proposed could be 
used with the maximum likelihood estimates, 
though results are expected to be similar to GLS. 
A limitation of this study is that it assumed the 
spatial field to be stationary. For a non-
stationary field, semivariogram models are not 
valid as the semivariogram is not defined for 
non-stationary correlation structures. Another 
limitation is that the outcome was assumed to be 
continuous and normally distributed. For a 
categorical or other non-normally distributed 
outcome, the linear regression would not be 
suitable. It will be necessary to use the logistic 
regression or to do a Box-Cox transformation for 
such outcomes. In addition, for some extreme 
values, the Cressie-Hawkins robust estimator 
could be considered for the estimation of the 
semivariogram (Cressie & Hawkins, 1980) 
instead of the Matheron estimator. The empirical 
covariogram used is a biased estimator of the 
covariance function; therefore, the problem of 
the biased estimator of the covariogram will 
need to be solved in the future. 
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