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Probabilistic Inferences for the Sample Pearson Product Moment Correlation 
 

Jeffrey R. Harring John A. Wasko 
University of Maryland, 

College Park, MD 
 

 
Fisher’s correlation transformation is commonly used to draw inferences regarding the reliability of tests 
comprised of dichotomous or polytomous items. It is illustrated theoretically and empirically that 
omitting test length and difficulty results in inflated Type I error. An empirically unbiased correction is 
introduced within the transformation that is applicable under any test conditions. 
 
Key words: Correlation coefficients, measurement, test characteristics, reliability, parallel forms, test 

equivalency. 
 
 

Introduction 
It has been well-established that the sample 
correlation coefficient, r, is a biased estimator of 
the population correlation coefficient, ρ , for 
normal populations, and this bias can be as much 
as 0.05 in absolute value under realistic research 
conditions (Zimmerman, Zumbo & Williams, 
2003). This difference may not be vital if the 
research question is to simply ascertain whether 
a non-zero correlation exists. However, if the 
focus is on a precise estimate of the magnitude 
of a non-zero correlation in test and 
measurement procedures, then this discrepancy 
may be of concern. The Pearson product 
moment correlation is still commonly used as an 
index of reliability, exampled with parallel test 
forms (Coleman, 2001), test-retest conditions 
(Robinson-Kuropius, 2005), and inter-rater 
consistency (Lebreton, 2007). In such cases, 
calculations use a total score comprised of 
dichotomous or polytomous items (Kline, 2005). 
With increasing frequency, practitioners 
working in these contexts recognize sample 
estimates are insufficient and, therefore, are 
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correctly utilizing the Fisher transformation to 
provide accompanying probabilistic inferences 
(Fouladi, 2002).  

The motivation for this study centers on 
the failure of Fisher’s transformation to 
incorporate either test length or test difficulty 
into confidence interval calculations. Without 
correction, test statistics and confidence 
intervals from utilizing the Fisher transformation 
become increasingly imprecise ultimately 
resulting in inflated Type I error. To date, 
research has neither demonstrated the 
inefficiencies of utilizing this method, nor 
further advocated a test statistic inclusive of test 
properties upon which to draw more accurate 
inferences about the population. In this article, 
an empirical demonstration of systemic errors 
between the empirical distribution and the Fisher 
transformation is presented which can be traced 
to test properties of length and difficulty. Based 
on the results, a correction factor inclusive of 
test properties is introduced and examined using 
a Monte Carlo simulation study to explore the 
performance of the corrected statistic to the 
existing Fisher transformation.  
 

Methodology 
Pearson Correlation 

The Pearson’s correlation coefficient is 
a measure of the strength of the linear relation 
between two continuous variables and is defined 
as 
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where x and y are vectors of scores of size 
n, ( , )Cov x y  represents the population 

covariance and  and σ σx y are population 

standard deviations. Invariably researchers 
report a point estimate for reliability using the 
form 
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where sxy, sx and sy are sample statistics 
corresponding to the population quantities in (1). 
For test-retest reliability let, 
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represent the total scores of n respondents 
administered the same test on different 
occasions. For parallel forms, let 
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represent the total scores of n respondents 
administered different tests on different 
occasions. By letting A and B represent two 
raters scoring the same test for n respondents 
would constitute inter-rater reliability. Particular 
to test-retest and parallel forms, it is assumed 
that no learning has occurred as a result of the 
first exam or in the interim prior to 
administration of the second exam. 
 
Central Limit Theorem Application 

The Pearson’s correlation coefficient 
assumes total scores to be normally distributed; 
this is made possible by the central limit 
theorem (CLT) (see Hogg & Craig, 1995 for a 
full description). Reviewing its application, if 

1 2, ,.... Ji i i  represent the scores for a test of J 

items, independent and identically distributed 
from any distribution, then their sum 

2 2
1 2 0.... ~ ( , )Ji i i T N J Jμ σ+ + + =  

 
is approximately normal for sufficiently large 
values of J. Although sufficiently large is not a 
quantifiable number, this requirement is 
important given the need for a bivariate normal 
distribution upon which correlation inferences 
are predicated (Quereshi, 1971). A rule of thumb 
of J exceeding 30 items has been suggested. Not 
to be overlooked are the other requirements for 
use of the CLT. First is the requirement of 
independence. Conditional independence is 
assumed, where the likelihood a respondent 
answers an item correctly or incorrectly is 
independent of their response to any other test 
item. Second is the concept of identically 
distributed, where the collection of J items 
should all be dichotomously scored, [0,1]i = , or 

polytomously scored [0,1,...., ]i R= . 
Even if the total score is well 

approximated by a normal distribution, the total 
score random variable is still discrete. In such 
cases, when making probabilistic inferences 
with a continuous distribution with discrete data, 
a continuity correction is often applied (Devore, 
2000). Recall that Pearson’s correlation is 
designed for continuous random variable pairs 
that follow a bivariate normal distribution. 
Without a sufficient number of J items, the total 
score distributions depart from univariate 
normality.  

This condition is further exacerbated in 
extremely easy or difficult shorter tests resulting 
in highly skewed total scores; although this 
becomes less of an issue as test length increases, 
test difficulty affects the rate of asymptotic 
convergence to a normal distribution. Further, 
the total score variable is not continuous, it is 
discrete. With all statistics, when underpinning 
assumptions are violated, the accuracy of the 
results becomes increasingly questionable. Such 
inaccuracies are often commensurate with 
inflated Type I error rates. It is within this 
framework that the need for an item-type 
correction encompassing test length and 
difficulty and a continuity correction may be 
advocated. 
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Fisher Transformation 
With 

 

1 1 2 2( , ),( , ),....,( , ) ~ ( , ),n nx y x y x y N μ Σ   
 
following a bivariate normal distribution, define 
a random variable Z as 
 

1 1
ln

2 1

rZ
r
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approximated by the following normal 
distribution characterized by its mean and 
variance 
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~ ln ,  
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Being normally distributed, these relations can 
be used in the traditional construction of 
confidence intervals and hypothesis tests. The 
transformation of the r random variable is called 
the Fisher transformation; the immediate 
discussion centers on confidence intervals, 
presentation of appropriate hypothesis tests are 
provided later.  

A 2-sided (1 )%α−  confidence interval 

for the true correlation, ρ , is obtained via the 
following steps: 
 
1. Determine the (1 )%α−  confidence interval 

for Z such that  
 

( )(1 )% ,L UCI Z Zα− =  

where 

( )11
23
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α−= + Φ
−  

and 

( )11
1 .23
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2. Create a (1 )%α−  confidence interval for ρ  

by transforming these Z confidence limits 
back onto the correlation scale 
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α
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Empirical Demonstration of Theoretical 
Findings 

To illustrate the need to account for the 
number of test items for asymptotic convergence 
to a normal distribution, two empirical 
experiments are conducted. Conditions for the 
first simulation are a test length of J = 25 items, 
a population correlation of ρ  = 0.8, 
administered to n = 100 respondents, where each 
item is an independent dichotomous response 
with a p-value of 0.60.  

Conditions for the second simulation are 
J = 35, ρ = 0.7, n = 100, and a p-value of 0.70. 
For each simulation, responses for J items for 
respondent i (i = 1, 2, …, n) were created 
according to a particular p-value representing a 
test. A second set of responses, representing a 
second test, were created such that each item 
was correlated with its first test equivalent 
according to a particular ρ . The item scores 
were totaled for each test for each respondent, 
resulting in a paired set of total scores of length 
n. A correlation estimate was calculated and 
retained for this set of total scores and, using the 
Fisher transform, two-sided 90% and 95% 
confidence intervals were calculated. Knowing 
the true ρ , each interval was evaluated to 
determine if it encompassed the true value, 
successes were noted. This was repeated for 
10,000 trials for each experimental condition, 
the percentage of these successes estimates the 
coverage probability. Success percentages below 
the (1 )%α−  specification indicates an inflated 
Type I error (the probability of rejecting a 
correct null hypothesis).  

For each simulation, every sample 
correlation value was transformed to a Z random 
variable. A histogram of the sampling 
distribution is overlaid with the Fisher 
transform. Sampling distributions for 3rd and 4th 
moment statistics are provided on each plot 
including coverage probabilities. 

Clearly, a snapshot exploring just two 
experimental    conditions    does    not    provide  
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Figure 1: Empirical Z-Scaled Histogram with Fisher Transform Overlay 
10,000 trials, 0.8ρ = , n =100, test length J = 25, p-value = 0.6 
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Figure 2: Empirical Z-Scaled Histogram with Fisher Transform Overlay 

10,000 trials, 0.7ρ = , n =100, test length J = 35, p-value = 0.7 
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irrefutable evidence; but results highlight areas 
requiring further exploration. 
 
1. The transformation of the sample correlation 

remains well characterized by a normal 
distribution. 

 
2. There was inflated Type I error in both 

cases, albeit to different degrees. From these 
two simulations, it is difficult to tell if the 
results are due exclusively to sampling error, 
the coarseness of measurement, or a more 
systemic problem commensurate with the 
CLT requirements previously noted. 
Operating under the assumption the results 
are indicative of a systemic problem, then: 
 
a. It would appear that higher levels of 

skewness and negative kurtosis in the 
sampling distribution comparatively 
increased the Type I error. A negative 
kurtosis is indicative of a platykurtic 
distribution with larger tails. This 
finding is commensurate with the 
requirement for a sufficient number of J 
items under the CLT to subscribe to a 
normal distribution. Accordingly, 
insufficient numbers of J items are more 
likely to demonstrate skewness and 
kurtotic properties in the sampling 
distribution.  
 

b. In the case of very small negative 
kurtosis and skewness, there remains a 
slight inflation in Type I error. Again, 
assuming this is a systemic condition 
above and beyond sampling error, this 
would coincide with need for a 
continuity correction. 
 

c. There is not enough information, 
however, demonstrating systemic 
coverage probability error to suggest a 
parametric form for a correction or 
adjustment which would result in a more 
accurate test statistic. 

 
To better evaluate the viability of 

systemic inflated Type I errors, as well as to 
explore a functional parametric form as a 
remedy, a broader, multi-factor simulation study 

was carried out. Retaining the finding that the Z 
transform of the sample correlation is reasonably 
represented by a normal distribution, the 
estimate of the μ  parameter is retained. If these 
occurrences prove to be systemic, they can be 
mitigated by developing a correction to the σ  
parameter specified as part of the Fisher 
transformation. 
 
Study Design 

This multi-factor empirical study was 
designed to jointly assesses the performance of 
the Fisher transformation and explore a viable 
parametric form for a correction. As a result of 
the theoretical analysis, it was expected that the 
sampling statistic would be consistently 
negatively biased. Such a bias corresponds to an 
increased Type I error rate, thus substantiating 
the need for a continuity correction. Further, it 
was additionally expected that the bias would be 
exacerbated by some function of J items as J 
decreased; this would substantiate the need for 
an item-type correction. Subsequent steps in 
developing a correction would only be necessary 
if these expectations are observed. 

Using the same factors previously noted, 
a wide-ranging series of experimental conditions 
for each factor was used. Table 1 displays the 
conditions under which independent 
dichotomous responses were generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Simulation Study Experimental Conditions 
and Corresponding Levels 

Conditions Levels 

n = number of respondents 
in the sample 

4 levels 
(25, 50, 100, 200) 

J = number of items on the 
test 

4 levels 
(10, 20, 40, 60) 

p = probability of getting 
the item correct 

3 levels 
(0.50, 0.65, 0.80) 

ρ  = correlation between 
two tests 

3 levels 
(0.60, 0.75, 0.90) 
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The result is 4 4 3 3 144× × × =  different 
experimental conditions using the same 
simulation process previously described. Again, 
10,000 trials were conducted per condition. 

As opposed to assessing probability 
coverage and overall sampling distribution 
characteristics, the differences between the 
sampling distribution and the Fisher 
transformation at various percentiles were 
investigated. This change was adopted for two 
reasons. First, the hypothesis that the Fisher 
transformation is inaccurate necessitates 
anchoring the empirical sampling distribution as 
the correct distribution. Second, assessment of 
differences at various percentiles under various 
treatment conditions facilitates development of a 
functional form for a correction. These 
percentiles are analogous to the most common 
Type I error controls in confidence interval 
construction and hypothesis testing, both 1-sided 
and 2-sided. To evaluate the distributional 
differences, for each set of 10,000 trials, sample 
correlation values were numerically ordered 
where 

10000321

1000021

...

,...,

rrrr
rrrri

≤≤≤
=

 

 
and the following values were retained 
 

( ) ( ) ( ) ( )100 9900 250 9750 500 9500 1000 9000, , , , , , ,r r r r r r r r  

 
These are the empirical analogs to Type 

I error values, α , of 0.01, 0.025, 0.05, and 0.10 
respectively. For each treatment condition, 
knowing ρ  and n, corresponding r interval 
bounds from the Fisher transformation process 
were calculated corresponding to the particular 
α. Error was computed as 
 

,% ,empirical FisherError r r α= −  

 
A plot of the error for all treatment conditions is 
provided in Figure 3. The pattern of errors, with 
(1 )α−  yielding positive errors and α  negative 
errors indicates an underestimation of variance 
at smaller test lengths. Recognition of a pattern 
also provides sufficient empirical evidence of a 
systemic problem beyond sampling error. 

Although this plot shows a pattern, it is does not 
provide definitive relationships purely as a 
function of test length, failing to address test 
difficulty. 

Basic statistic textbooks indicate that 
binomial distributions approximate well to a 
normal distribution as its expected value, np, 
exceeds some heuristic value. Using that 
principle, consider the expected total score or 
total correct as the independent variable. The 
expected total score is a function encompassing 
both test length, J, and test difficulty, p-value. 
For dichotomous tests, 
 

1

,
1
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J

o i
i

N

o i
i
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T
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=
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For polytomous scored items, each item must 
follow the same scale, r = 0, 1, 2, …, R. 
 

,
1E( )

N

o i
i

o

T
T

NR
==


 

 
A reduced number of treatment conditions using 
the expected total score as the independent 
variable are displayed in the error plot in Figure 
4. Evidently, there is distinctive pattern as the 
expected total score decreases. This pattern is 
similar across all treatment conditions. Figure 5 
shows another set of treatment conditions 
illustrating similar findings. 

Dotted lines in Figure 5 indicate bias as 
a result of failure to implement a continuity 
correction. This correction remains constant 
regardless of the E(To) value. Additionally, there 
is a systemic increase in error as the expected 
total number of correct items decreases. This 
decaying relationship asymptotes to the 
continuity correction value as E(To) increases. 
These empirical results reinforce the theoretical 
findings noted when data deviate from required 
conditions in applying the CLT. Because these 
graphs are presented as a separate set of  
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Figure 3: Error versus Test Length across All Treatment Conditions 
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Figure 4: Error versus Expected Total Score across a Reduced Number of 
Experimental Conditions 
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Figure 5: Error versus Expected Total Score Indicating Parametric Corrections 
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snapshots, there is a third relation observed 
which cannot be easily illustrated. Although 
each plot consistently exhibits a decaying 
relationship as E(To) increased, the amount and 
rate of decay differed conditioned upon the p-
value or test difficulty treatment conditions. 
Higher p-values exhibited greater errors at lower 
E(To) values and took slightly longer to 
converge to the continuity correction. These 
findings are consistent with previous CLT 
discussions. 
 
Proposed Correction 

Though illustrating the need for a 
correction when applying Fisher’s 
transformation inclusive of test properties is 
informative, its value is only realized with a 
corresponding remedy. Thus, the distributional 
properties of the Fisher transformation with 
independence of its first two moments are 
maintained. The item-type correction and 
continuity correction are independent 
corrections and can be treated as such in a 
specified solution. The impact of the p-value on 
the rate of change only affects the item-type 
correction. Accordingly, Fisher’s transform is 
retained as 

 
1 1

ln
2 1

rZ
r

+ =  − 
 

 
but, as opposed to utilizing the form 

1

3
Z n

σ =
−

, a corrected form is derived as  
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where a, b, and c are undetermined constants. 
The a term is associated with the p-value’s 
effect on the amount and rate of decay 
associated with E(To). The b term is associated 
with the general rate of decay as the item-type or 
E(To) correction. The c term is associated with 

the continuity correction. Note that the overall 
correction 
 
limit

2
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is commensurate with the error plots previously 
presented. More specifically, the term  
 

( )
( )

ln ( ) 1

ln ( )
o

o

bE T
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represents the decaying relation associated with 
E(To). Because these relations change as a 
function of the p-value, the following is 
introduced within the logarithm 
 

2

1

1 ( .5)a pval+ −
 

 
Figure 8 displays the correction factor shown for 
differing p-values. 

Although the effect on the rate of decay 
is symmetrical around 0.50, the overall 
correction is not due to the effect of the p-value 
in the E(To) calculation. Figure 9 illustrates this 
lack of symmetry for 3 different tests lengths 
under a range of average p-values. 

Other parametric representations may 
also be available for the correction. This choice 
appeared reasonable and parsimonious based on 
the observations of the errors between the 
empirical distributions and an uncorrected Fisher 
transform. Values for these constants were 
determined via an iterative process minimizing 
the total squared error across all treatment 
conditions of the form. 
 

( )
4 4 3 4 8 2

,%,, *,
1 1 1 1 1

empirical ijkl n Fisher ijkl n
n l k j i

Total Error r r
= = = = =

= −
(3) 

 
where i corresponds to the values of α, j 
represents the test length, k denotes the p-values  
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Figure 8: Z Standard Deviation Correction versus Number of Correct Items for Various p-values 
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Figure 9: Z Standard Deviation Correction versus p-values for Various Test Lengths 
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for each test item, l represents the true 
correlation between items on each test, and n 
denotes the number of examinees. An 
evolutionary solver add-in to Excel from 
Frontline systems was utilized searching within 
a range of acceptable values. This particular 
solver is well suited to handle this nonlinear, 
mixed integer optimization problem. The 
resulting minimized error solution takes the 
form of 
 

*
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2

1
ln * 2.25 ( ) 1

1 40( .5) 1
.005

1 3
ln * 2.25 ( )
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Z
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Results 
Correct Assessment 

Although the strategy in advocating a 
parametric correction is valid, it suffers from 
two flaws. First, the constants selected were 
optimized based on a set of 144 treatment 
conditions. As a means of cross-validation, this 
correction should be assessed under a different 
set of treatment conditions. Second, and more 
importantly, is the aspect of coverage 
probability. Reduced distributional errors 
resulting from an adjusted standard deviation in 
the Z transform does not necessarily correspond 
to a definitive improvement in coverage 
probability. 

By utilizing aspects of both previous 
simulations, both flaws are addressed and a 
more thorough assessment of the proposed 
correction is provided. Using the same factors, 
consider next a broader series of treatments for 
each factor. Independent dichotomous responses 
were generated under the following conditions 
enumerated in Table 2. 

The result is 5 4 4 3 240× × × =  different 
treatment conditions using the same process. 
Using both the Fisher transform and the 
proposed correction, two-sided 90%, 95%, and 
99% confidence intervals were calculated from 
the sample correlation value used in this study. 
Knowing the true ρ  for each trial an assessment 

was made as to whether this value was within 
the Fisher and the corrected interval, noting 
successes. This was repeated for 10,000 trials for 
each simulation resulting in an estimate of the 
coverage probability. Success percentages below 
the (1 )%α−  specification indicate an inflated 
Type I error. 

As formal statistical assessments of 
these coverage probabilities, performance in 
terms of bias and mean square error across all 
conditions was considered. Bias is defined as 

)ˆ(),ˆ( θθθθ −= EBias , where θ  is the 
specified confidence interval, 99%, 95% or 90%, 

and θ̂  represents the proportion of intervals 
containing the true population correlation value 
separately for the Fisher transformation and the 
proposed correction.  

Mean square error (MSE) is determined 

by: 2)ˆ( BiasVMSE += θ  where )ˆ(θV  is the 
variance of the estimates determined across the 
set of the treatment conditions. 

Graphical summaries in Figures 10a, 
10b, and 10c are presented as boxplots of 
coverage probability results from the conditions 
over each of the 3 test related parameters 
associated in calculating the proposed formula: 
sample size of respondents (n), expected number 
of items correct (E(To)), and an average test p-
value, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Simulation Study Experimental Conditions 
and Corresponding Levels 

Conditions Levels 

n = number of respondents 
in the sample 

5 levels 
(25, 50, 100, 200, 400) 

J = number of items on 
the test 

4 levels 
(10, 20, 40, 80) 

p = probability of getting 
the item correct 

3 levels 
(0.50, 0.60, 0.70, 0.80) 

ρ = correlation between 
two tests 

3 levels 
(0.65, 0.75, 0.85) 
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Summary results are shown in Table 3, 
with bias and mean squared error values 
provided across all conditions. The results 
showed improvement over the uncorrected 
Fisher transformation with 10 times less bias and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a total reduction of error exceeding 500% across 
all conditions. These improvements are also 
consistent with each of the 28 cross-classified 
results, outperforming the Fisher transform with 
smaller bias and mean square error. 
 

Figure 10a: Side-by-Side Boxplots of Coverage Probability Error Comparison 
at α = 0.01 Over Expected Correct Items across All Conditions 
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Figure 10b: Side-by-Side Boxplots of Coverage Probability Error Comparison 
at α = 0.05 over average p-value across All Conditions 
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Table 3: Bias and MSE for Fisher’s Transformation and the Proposed Correction for All 
Experimental Conditions 

 

Description 
Fisher Transformation Proposed Model 

Bias MSE Bias MSE 

Overall -0.936 2.285 -0.095 0.443 

By Sample Size 

25 -0.887 2.168 -0.060 0.447 

50 -0.929 2.267 -0.089 0.451 

100 -0.937 2.261 -0.098 0.435 

200 -0.965 2.422 -0.120 0.469 

400 -0.960 2.348 -0.107 0.422 

By p-value 

0.50 -0.658 1.206 -0.214 0.432 

0.60 -0.739 1.403 -0.223 0.379 

0.70 -0.916 2.060 -0.051 0.352 

0.80 -1.431 4.494 0.109 0.614 

By Alpha 

0.01 -0.423 0.396 -0.096 0.061 

0.05 -1.105 2.471 -0.195 0.427 

0.10 -1.279 3.999 0.007 0.844 

By 0( )E T  

5 -1.535 3.605 -0.574 1.123 

6 -1.730 4.358 -0.587 1.012 

7 -2.116 6.464 -0.082 0.905 

8 -3.115 13.403 0.667 1.714 

10 -0.703 1.018 -0.276 0.495 

12 -0.779 0.963 -0.285 0.327 

14 -0.915 1.332 -0.110 0.323 

16 -1.612 3.766 -0.151 0.530 

20 -0.294 0.148 -0.066 0.060 

24 -0.314 0.228 -0.052 0.110 

28 -0.420 0.353 -0.030 0.129 

32 -0.696 0.702 -0.087 0.154 

40 -0.098 0.077 0.060 0.072 

48 -0.133 0.086 0.033 0.083 

56 -0.214 0.164 0.006 0.091 

64 -0.300 0.164 0.006 0.091 
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Though the proposed correction is 
empirically unbiased, it cannot be theoretically 
demonstrated as an unbiased estimator. Given 
the variety of treatment conditions examined, a 
theoretical proof becomes difficult without many 
simplifying assumptions. Some additional 
comments regarding a theoretical assessment 
include:  
 
1. Although the need for correction based on 

the expected total number of items correct 
and the average p-value of the testing 
instrument has been theoretically and 
empirically demonstrated, a proper 
parametric form to implement such 
correction into probability coverage is not 
clear. As noted previously, there are other 
parametric forms which may be considered. 
Also, recall that the assumption of normality 
upon transform is still operating, which 
becomes more tenuous in low number of test 
items and extreme p-values. Other 
distributional forms can be considered upon 
which one would make probabilistic 
inferences. Finally, regarding parametric 
forms and distributions, this discussion is 
predicated that there exists a common 
distribution characterized by respondents 
and test conditions which results in an 
unbiased, consistent estimator controlling 
Type I error. 

 
2. Due to confidence the Fisher transformation 

is incomplete without inclusion of summary 
test information in its calculations, the 
empirical distribution of the sample 
correlation values were treated as the true 
distribution. This was also necessary to 
assess systemic errors in the development of 
a functional parametric form for a 
correction. This reference empirical 
distribution has sampling error, which has 
been minimized given the large number of 
trials. 

 
3. Estimates via a complex evolutionary search 

method were obtained from the Frontline 
Premium Solver add-in for the Excel Solver. 
Determining a so-called best set of 
parameter estimates for a complex nonlinear 
optimization required parameter constraints 

and other considerations in order to achieve 
convergence.  

 
Based on these findings, when reporting sample 
Pearson product moment correlations for 
dichotomous and polytomously scored items, the 
adjustment in (4) is recommended; it is well 
characterized by a normal distribution. These 
corrections provide robust results due to 
violations in the application of the central limit 
theorem. It further provides a researcher 
inclusion of summary test information into any 
inferential statistics. Unfortunately, because of 
the transformation process, simple reporting of 
the standard error is uninformative. As such, 
presented below are two examples which should 
be used as the proper mechanism for reporting 
sample correlation properties. 
 
Applications: Parallel Test Forms 

Forms A and B of a particular test are 
each administered to 70 respondents from the 
same population. Each test consists of 25 items 
and both test are polytomously scored on a scale 
of [0, 1, …, 4]. The average score for form A 
was 41 and 45 for form B. The sample 
correlation was r = 0.82, and it is desired to 
report a 95% confidence interval for the 
population correlation. Z is computed with 
accompanying standard deviation: 
 

1 1 1 1 .82
ln ln 1.157

2 1 2 1 .82

rZ
r

+ +   = = =   − −     
 

1 1
.1222

3 70 3
z n

σ = = =
− −

 

 
Next, the proposed correction is 

determined, which takes the form 
 

2

2

1
ln 2.25 10.75 1

1 40(0.43 .5)
.005 1.016

1
ln 2.25 10.75

1 40(0.43 .5)

   
⋅ ⋅ +   + −    + =   ⋅ ⋅  + −  

 
where  

41 45
( ) 10.75

(2)(4)oE T += =
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and 
41 45

.5* 0.43,
100 100

pval  = + = 
 

 

 
therefore the estimate for the standard deviation 
of the transformation becomes: 
 

* 0.1222*1.016 0.1242.Zσ = =  
 
Because Z follows a normal distribution, a 
traditional 95% confidence interval for Z can be 
computed as follows 
 

( )* 11 1
ln .1242* 22 1

1.157 .1242( 1.96) .9136

L
rZ
r

α−+ = + Φ − 
= + − =  

 

( )* 11 1
ln .12441* 1 22 1

1.157 .12441(1.96) 1.40

U
rZ
r

α−+ = + Φ − − 
= + =

 

 
which can be back transformed into intervals for 
the population correlation 
 

**

* *

(1 )%

exp(2 ) 1exp(2 ) 1
    ,

exp(2 ) 1 exp(2 ) 1

exp(2*.9136) 1 exp(2*1.40) 1
    ,

exp(2*.9136) 1 exp(2*1.40) 1

    (0.723, 0.886).

UL

L U

CI for

ZZ
Z Z

α ρ− =

 −−=  + + 
 − −=  + + 

=

 

 
The uncorrected confidence interval is 
(1 )% (0.725, 0.885)CI forα ρ− = . The 
reporting should include both the sample 
correlation estimate and the corresponding 
interval values. 
 
Applications: Inter-rater Reliability 

Suppose two graders score an exam 
consisting of 20 dichotomous items 
administered to 125 respondents. The average 
score for each grader was 17 and the sample 
correlation was r = 0.77. Test the hypothesis the 
population correlation between the two graders 
exceeds the minimally desired reliability value 
of at least 0.70 at significance level of 0.05.  

Using a similar process to determine the 
standard deviation for the proposed correction, 
the Fisher transformation of the standard 
deviation is 

1 1
.0905

125 3 125 3
zσ = = =

− −
. 

 
The corrected standard deviation is 
 

2

2

1
ln 2.25 16.5 1

1 40(0.85 .5)
.005 1.08

1
ln 2.25 16.5

1 40(0.85 .5)

   
⋅ ⋅ +   + −    + =   ⋅ ⋅  + −  

 
where 
 

( ) 16.5oE T =  
and 

17
.85

20
pval  = = 

 
. 

 
Therefore, the estimate for the corrected 
standard deviation of the transformation 
becomes 

* .0905*1.08 .0978Zσ = =  
 
and Z* is determined via 
 

*

11 1 1
ln ln

2 1 2 1

.0978
1 1 .77 1 1 .70

ln ln
2 1 .77 2 1 .70

.0978
1.0203 .8673

1.564.
.0978

o

o

r
r

Z

ρ
ρ

 ++  −   − −   =

+ +   −   − −   =

−= =

 

 
Because  

*
,1

1.564 1.644
critZ Z α−≤

≤
 

 
the null hypothesis Ho is retained. It appears 
these graders do not meet the minimally 
acceptable inter-rater reliability. Corrective 
actions, such as additional grader training, 
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would be required in such cases. However, the 
hypothesis test without the correction results in  
 

*
,1

1.691 1.644.
critZ Z α−≥

≥
 

 
In contrast to the results using the correction, the 
null hypothesis would be incorrectly rejected. 
Multiple rater comparisons or multiple parallel 
forms may as well be addressed with this 
correction using a multiple comparison Type I 
error adjustment such as Bonferroni or Tukey.  

Because the proposed correction occurs 
within the Z transform (see Figures 8 and 9), it is 
difficult to interpret its impact in the original 
correlation scale. The width of a correlation 
confidence interval is not only a function of r, α, 
and n, but this study has demonstrated E(To) and 
the average p-value as well. To better 
understand the effects of this correction in the 
desired scale, the following 3D plots show the 
difference in CI widths between the Fisher 
transformation and this correction, where the 
proposed correction always result in larger 
widths in order to maintain an accurate Type I 
error control. In each plot, r was 0.75 and α was 
0.05. The range of test items used coincides with 
test section lengths of the major standardized 
educational exams such as the SAT, GRE, 
LSAT, and MCAT. 
 

Conclusion 
The Fisher transformation is remarkably 
efficient, yet was not designed with an intended 
use of summed dichotomous or polytomous 
data. This correction accounts for departures 
from asymptotic convergence under the central 
limit theorem due to test length and average item 
difficulty. Further, this correction can be easily 
applied, providing substantially more accurate 
results over the Fisher transformation. This 
study also illustrates the coarseness of 
dichotomous measures has no effect on the 
coverage probability results of the true 
population correlation as this is accounted for in 
the correction and results from application of the 
central limit theorem. 

For those positing a unidimensional 
construct, the use of Pearson correlation can be 
easily extended to allow for items which load 

differently on the latent dimension. By 
weighting each item and making an adjustment 
to the total score, an omnibus reliability measure 
based on total score can be obtained. 

Throughout the study, a homogeneous 
p-value for each test item was used. Because 
most tests are comprised of items with varying 
p-values, the performance of this correction was 
examined under a wide range of p-value 
distributions. This robust analysis explored 
extreme deviations from the simulation 
conditions, using a highly kurtotic uniform 
distribution and bi-modal distributions with 
different expected average p-values. The results 
for this analysis are present in Appendix A and 
reaffirm the use of this correction under any 
conditions.  

Though the proposed correction is easily 
implemented with demonstrated efficiency 
across a wide range of test conditions, a 
nonparametric alternative is also available. 
Nonparametric bootstrap methods remain a 
viable option for researchers desiring confidence 
interval estimates; whereas such options might 
also produce robust results, they require both 
sufficient data and custom coding. 
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Appendix 
As a means of robust analysis, the proposed 
correction was explored under 4 different sets of 
varied p-values. Empirical treatments remained 
unchanged for sample size, population 
correlation, and test length. However, instead of 
a homogeneous p-value for each item on a test 
of length J, the following were considered: 
 
a. p-value = 0.50 per test item to a bimodal 

distribution of the following form 
 

)8.6(.
2

)4.2(.
2

−+− UnifJUnifJ
 

 
per test. P-values were redrawn from this 
distribution for each trial. The average p-
value is 0.50. 

 
b. p-value = .60 per item to a distribution of 

the form  
)9.3(. −Unif  

 
per test, redrawn for each trial. The average 
p-value is 0.60. 

 
c. p-value = 0.70 per item to a distribution of 

the form  
 

)95.75(.
2

)65.45(.
2

−+− UnifJUnifJ
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per test, redrawn for each trial. The average 
p-value is 0.70. 

 
d. p-value = 0.80 per item to a distribution of 

the form 
 

)95.65(. −Unif  
 

per test, redrawn for each trial. The average 
p-value is 0.80. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collective results are presented in the Table 4. 
Similar to this validation study, in bias and mean 
square error, overall and across each of 
treatment conditions, the proposed correction 
outperformed the Fisher transformation. Further, 
the Type I error of the Fisher transformation is 
comparatively higher compared with a test of 
items with homogeneous p-values. This 
reaffirms the suitability of this correction under 
any conditions, regardless of the p-value 
distribution underpinning the test items. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Robust Analysis for Extreme p-values; Bias and MSE for Fisher’s Transformation and the 
Proposed Model across All Experimental Conditions 

Description 
Fisher Transformation Proposed Model 
Bias MSE Bias MSE 

Overall -1.100 3.081 -0.229 0.698 
By Sample Size 

25 -1.020 2.615 -0.169 0.574 
50 -1.143 3.231 -0.260 0.727 
100 -1.078 3.031 -0.204 0.694 
200 -1.097 3.156 -0.220 0.678 
400 -1.164 3.423 -0.291 0.837 

By P-value 
0.50 -0.929 2.125 -0.461 0.837 
0.60 -0.896 2.007 -0.341 0.636 
0.70 -1.086 3.005 -0.191 0.612 
0.80 -1.490 5.217 0.078 0.718 

By Alpha 
0.01 -0.522 0.578 -0.166 0.114 
0.05 -1.253 3.284 -0.318 0.721 
0.10 -1.526 5.395 -0.202 1.266 

By 0( )E T  

5 -2.116 6.560 -1.087 2.448 
6 -2.027 6.026 -0.760 1.669 
7 -2.495 9.539 -0.371 1.786 
8 -3.451 16.079 0.493 1.816 

10 -1.037 1.530 -0.591 0.659 
12 -1.001 1.667 -0.480 0.722 
14 -1.163 2.013 -0.331 0.490 
16 -1.620 3.918 -0.182 0.744 
20 -0.422 0.379 -0.174 0.216 
24 -0.427 0.310 -0.163 0.122 
28 -0.508 0.428 -0.098 0.133 
32 -0.683 0.769 -0.073 0.239 
40 -0.140 0.063 0.008 0.052 
48 -0.131 0.058 0.040 0.058 
56 -0.178 0.095 0.035 0.077 
64 -0.244 0.172 0.074 0.116 
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