
Journal of Modern Applied Statistical
Methods

Volume 10 | Issue 2 Article 10

11-1-2011

Error Analysis on the Generalized Negative
Binomial Distribution
Felix Famoye
Central Michigan University, felix.famoye@cmich.edu

Oluwakemi Aremu
University of Lagos, chemmy413@yahoo.com

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Famoye, Felix and Aremu, Oluwakemi (2011) "Error Analysis on the Generalized Negative Binomial Distribution," Journal of Modern
Applied Statistical Methods: Vol. 10 : Iss. 2 , Article 10.
DOI: 10.22237/jmasm/1320120540

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss2/10?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
November 2011, Vol. 10, No. 2, 505-512                                                                                                                 1538 – 9472/11/$95.00 

505 
 

Error Analysis on the Generalized Negative Binomial Distribution 
 

Felix Famoye Oluwakemi Aremu 
Central Michigan University, 

Mt. Pleasant, MI 
University of Lagos, 

Akoka-Yaba, Lagos, Nigeria 
 

 
The generalized negative binomial distribution characterized by three parameters, has been used to fit 
data from various fields of study. The distribution can model data for which the variance is larger or 
smaller than the mean, however, it becomes truncated under certain conditions. This truncation error is 
investigated via a detailed error analysis that determines the parameter space when the model can be used 
in place of the truncated generalized negative binomial distribution. The fitting of a generalized negative 
binomial distribution to a data set of absenteeism among shift-workers in a steel industry is re-analyzed. 
 
Key words: Truncation error, dispersion, maximum likelihood estimates. 
 
 

Introduction 
A generalized negative binomial distribution 
(GNBD) was defined and studied by Jain and 
Consul (1971). The probability mass function of 
the GNBD is given by 
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and zero otherwise, where 0 < θ < 1, m > 0 and 
β = 0 or 0 < β < 1/θ and k is the largest positive 
integer for which m + 1 + (β – 1)k > 0 when β < 
0 or 0 < β < 1. The GNBD in (1.1) reduces to 
the binomial distribution when β = 0 and m is an 
integer, and to the negative binomial distribution 
when β = 1. For the non-truncated GNBD, the 
mean and variance are 
 

/ (1 )mμ θ θβ= −  
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and 

2 3(1 ) / (1 )mσ θ θ θβ= − − .       (1.2) 
 
The moments in (1.2) exist when θβ < 1. 

Famoye and Consul (1993) defined and 
studied the truncated GNBD. The advantage of 
the truncated GNBD is that the distribution is 
defined for all values of β. However, the 
truncated GNBD is more difficult to estimate 
than the ordinary GNBD. The major difficulty is 
in finding suitable initial estimates for the model 
parameters. 

All the estimation methods suggested by 
Famoye and Consul (1993) involve iterative 
procedure like the Newton-Raphson method. 
Because no estimation technique can be done 
without iteration, it is difficult to determine an 
initial estimate for the iteration. One way to 
obtain an initial estimate is to use the moment 
estimate of the non-truncated GNBD as the 
initial estimate; however, the moment estimates 
of non-truncated GNBD may not provide 
satisfactory initial estimates. 

Famoye (1997) discussed parameter 
estimation for the GNBD. The asymptotic 
relative efficiencies of the estimators were 
compared. The method of first two moments and 
proportion of zeros (MOZE) has good efficiency 
when compared to the maximum likelihood 
estimates. From the simulation results, the 
MOZE method performed very well when both 
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bias and variance of the estimators were 
considered. 

Nelson (1975) noted that the GNBD as 
first defined by Jain and Consul (1971) is 
truncated on the right hand side when β < 0. 
Also, the distribution gets truncated when 0 < β 
< 1. Nelson (1975) remarking on GNBD stated 
that “A rigorous error analysis has not been 
performed, but it appears that for n > 3β− , the 

error resulting from having negative value of β 
should be tolerable for most applications” (p. 
136). The parameter n was replaced with m in 
(1.1), and to the best of our knowledge, no such 
error analysis has been conducted for the 
GNBD. One motivation for this study is to 
examine the error analysis for the GNBD when 
β < 0 and when 0 < β < 1. 

Due to the truncation described above, 
the sum of the probabilities in (1.1) may differ 
from unity. The difference between 1 and the 
sum of the probabilities (ΣPx) is the truncation 
error. The percentage truncation error is 
computed as 100(1 – ΣPx). Some illustrative 
examples for k ≤  3 are presented in Table 1. For 
two classes only, the truncation leads to only 
two probabilities P0 and P1, and the sum of the 
two probabilities could be very small or very 
large as shown in Table 1. As the values of θ 
decrease, the truncation error decreases. In 
general, the sum of the non-negative 
probabilities is much closer to 1 for small values 
of θ. As m increases, the value of k increases 
and, as the value of k increases, the truncation 
error decreases. 

Other parameter sets can be used to 
illustrate the same phenomena. When β < 1 
many of the cases shown in Table 1 satisfy the 
condition m > –3β, however, these values 
produce the sums of probabilities that are not 
close to 1. The statement that the error may be 
tolerable when m > –3β does not seem to hold; 
more conditions than this are required. This 
study seeks to determine these other conditions 
such that the error will be tolerable or negligible. 
For example, in row 7 for k = 1, the sum of the 
probabilities is more than 3 on the account that 
the P(X = 1) leads to 1 – θ being raised to a 
negative power (see Table 1). 
 
 

Review of the GNBD Dispersion Property 
The GNBD model in (1.1) is over-

dispersed (the variance is larger than the mean) 

when 2(2 1) /θ β β< − , under-dispersed (the 
variance is smaller than the mean) when 

2(2 1) /θ β β> −  and equi-dispersed (the 
variance is equal to the mean) when 

2(2 1) /θ β β= − . These conditions differ from 
those given by Jain and Consul (1971), which 
involve the square root of 1 – θ. When β ≥  1, it 
is known that θβ < 1 for the existence of the 
moments, therefore the condition for over-
dispersion is always satisfied; hence, the GNBD 
is over-dispersed when β ≥  1. The GNBD 
model is under-dispersed whenever β ≤  0.5. 
When 0.5 < β < 1, the GNBD is over-dispersed 

for all values of θ satisfying 20 (2 1)θ β β −< < −  

and under-dispersed for values of θ satisfying 
2(2 1) 1β β θ−− < < . These results for the GNBD 

model can be summarized as follows: 
 

• It is over-dispersed (i) when β ≥  1 and (ii) 

when 0.5 < β < 1 and 20 (2 1)θ β β −< < − . 
 
• It is under-dispersed (i) when β ≤  0.5 and 

(ii) when 0.5 < β < 1 and 
2(2 1) 1β β θ−− < < . 

 

• It is equi-dispersed when 2(2 1) .θ β β −= −  
 

• The GNBD dispersion is independent of 
the parameter m. 

 
Figure 1 shows the dispersion regions for the 
GNBD model: All points above the line 

2(2 1) /θ β β= −  represent the region where the 
GNBD model is over-dispersed, all points below 
the line represent the region where the model is 
under-dispersed, and all points on the line are 
where the GNBD model is equi-dispersed. 
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Table 1: Sum of Probabilities for Some GNBD Parameter Sets 
 

k 
Parameters Probabilities 

ΣPx θ β m P0 P1 P2 P3 

1 

.95 –2 4.0 0.0000 0.1900   0.1900 

.50 –2 4.0 0.0625 1.0000   1.0625 

.05 –2 4.0 0.8145 0.1900   1.0045 

.95 –.5 1.6 0.0083 1.1265   1.1348 

.50 –.5 1.6 0.3299 0.7464   1.0763 

.05 –.5 1.6 0.9212 0.0796   1.0008 

.95 –.1 0.5 0.2236 2.8662   3.0898 

.50 –.1 0.5 0.7071 0.3789   1.0860 

.05 –.1 0.5 0.9747 0.0258   1.0005 

.95 .1 0.5 0.2236 1.5744   1.7980 

.50 .1 0.5 0.7071 0.3299   1.0370 

.05 .1 0.5 0.9747 0.0255   1.0002 

2 

.95 –2 7.0 0.0000 0.0000 0.3159  0.3159 

.50 –2 7.0 0.0078 0.2188 0.8750  1.1016 

.05 –2 7.0 0.6983 0.2851 0.0166  1.0000 

.95 –.5 2.6 0.0004 0.0915 2.3332  2.4251 

.50 –.5 2.6 0.1649 0.6065 0.2573  1.0287 

.05 –.5 2.6 0.8751 0.1229 0.0020  1.0000 

.95 –.1 1.5 0.0112 0.4299 1.6533  2.0944 

.50 –.1 1.5 0.3535 0.5684 0.0914  1.0133 

.05 –.1 1.5 0.9259 0.0735 0.0006  1.0000 

.95 .4 0.5 0.2236 0.6409 0.5571  1.4156 

.50 .4 0.5 0.7071 0.2679 0.0305  1.0055 

.05 .4 0.5 0.9747 0.0251 0.0002  1.0000 

3 

.95 –.5 3.6 0.0000 0.0063 0.4307 0.8388 1.2758 

.50 –.5 3.6 0.0825 0.4199 0.4750 0.0154 0.9928 

.05 –.5 3.6 0.8314 0.1616 0.0070 0.0000 1.0000 

.95 –.1 2.5 0.0006 0.0358 0.5970 0.9419 1.5753 

.50 –.1 2.5 0.1768 0.4737 0.3300 0.0218 1.0023 

.05 –.1 2.5 0.8796 0.1163 0.0040 0.0000 0.9999 

.95 .6 0.5 0.2236 0.3520 0.3880 0.2269 1.1905 

.50 .6 0.5 0.7071 0.2332 0.0639 0.0066 1.0008 

.05 .6 0.5 0.9747 0.0249 0.0004 0.0000 1.0000 
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Error Analysis of the GNBD 

Re-writing the GNBD in (1.1), 
1
1(1 ) [ ( )] / !x m x x x

x iP m m x i xβθ θ β+ − −
== − Π + − . 

When β < 0 or 0 < β < 1, it is required that m + 
βx – x +1 ≥  0. If this condition is not satisfied, 
then Px is set to 0 as shown in (1.1). Thus, the 
largest x value can be obtained from 0 ≤  m + 1 
+ (β – 1)x   (1 – β)x ≤  m+1   x ≤  (m + 
1)/(1 – β) because 1 – β > 0. The largest x value, 
k, is given by the integer part of (m + 1)/(1 – β). 
Through computation, a detailed error analysis 
can be conducted on the GNBD model when β < 
0 and 0 < β < 1. This analysis considers the 
values of m and θ in the parameter space of the 
model and the values of β when the truncation 
occurs; the values of m > 0, 0 < θ < 1, β < 0 and 
0 < β < 1. Observe that θβ is always less than 1 
when truncation occurs. In the analysis, the 
values of ( )P X x=  are computed for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x = 0, 1, 2, …, k, where k is such that 

( 1) / (1 )k m β≤ + − , and where β < 0 or 0 < β 
< 1. In addition to these probabilities, the mean 
and variance of the truncated model are 
computed using the formulas * /x xxP Pμ = Σ Σ  

and 2 2 2
* */ ( )x xx P Pσ μ= Σ Σ − . After obtaining 

these values, percentage truncation errors in the 
sum of probabilities, the means and the 
variances are calculated using the formulas 
100(1 – xPΣ ), 100(1 – * /μ μ ), and 100(1 – 

2 2
* /σ σ ), respectively. 

In fitting the GNBD to an observed data 
set, the three parameters θ, β, and m must be 
estimated. In order to have at least 1 degree of 
freedom for the Chi-square goodness-of-fit test, 
at least five non-zero probability classes are 
needed. Thus, it is necessary that the smallest 
value of x be 4; therefore, in all analyses, the 
smallest x value is required to be 4. The 

Figure 1: Dispersion Region for the GNBD 
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percentage error of truncation will be said to be 
tolerable or negligible if it is below 0.5%; in 
other words, the difference between 1 and the 
sum of all non-negative probabilities is below 
0.005. This value was used by Consul and 
Shoukri (1985) in their error analysis for the 
generalized Poisson distribution. In view of this, 
the error analysis for k ≥  4 was conducted. 

The maximum truncation error for the 
different values of m, θ, and β are provided in 
Table 2. Because at least five non-zero 
probability classes are needed, the different 
errors for cases where x is at least 4 are 
examined. In the error analysis the values of θ = 
0.01(0.01)0.99, β = (–2.0)(0.01)(–0.01) and m = 
0.1(0.1)(15.0) are considered. 

Table 2 shows the ranges for the 
parameters that produce the maximum 
percentage error in the sum of the non-zero 
probabilities and specific parameter values at 
which the maximum truncation error occurs. The 
corresponding percentage errors in means and 
variances are also reported. For example, when 0 
< θ ≤  0.71, 0.01 ≤  β ≤  0.99 and 0.1 ≤  m ≤  
0.5, the maximum truncation error with at least 5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

non-zero probability classes is –0.4799. When 0 
< β < 1, the percentage error in the means and 
percentage error in variances decrease as m 
increases. As m values increase, the range of θ 
values decreases in order to have a maximum 
truncation error of less than 0.5%. As the 
number of non-zero probability classes 
increases, the truncation error decreases. 

When 0 < β < 1 and k ≥  4, the GNBD 
can be used in general when 0 < θ ≤  0.57 for 
any value of m > 0. If m < 1, the range of θ 
values increases to 0 < θ ≤  0.65. When β < 0 
and k ≥  4, the GNBD can be used in general 
when 0 < θ ≤  0.36 for m ≥  4. When –1 < β < 0 
and k ≥  4, the range of θ values increases to 0 < 
θ ≤  0.46 for 4 ≤  m ≤  10. 
 
Application to the Absenteeism Numbers among 
Shift-Workers 

Gupta and Ong (2004) defined a new 
generalization of the negative binomial 
distribution by mixing the mean of the Poisson 
distribution with that of a generalized gamma 
distribution. The probability mass function of 
their generalized negative binomial distribution,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Maximum Percentage Error and Corresponding Percentage Errors in Means and Variances 
(k = 5) 

 

Range of Parameter Values 
% Error (θ, β, m) 

Percentage Errors 

θ β m Means Variances 

[.01, .71] [.01, .99] [0.1, 0.5] –0.4799 (0.71, 0.63, 0.5) –3.2261 –13.8517 

[.01, .65] [.01, .99] [0.1, 1.0] –0.4761 (0.66, 0.53, 1.0) –1.8264 –8.1959 

[.01, .61] [.01, .99] [0.1, 2.0] –0.4547 (0.61, 0.32, 2.0) –0.9883 –4.8586 

[.01, .57] [.01, .99] [0.1, 5.0] –0.4536 (0.57, 0.01, 3.5) –0.6274 –3.4805 

[.01, .57] [.01, .99] [3.6, 5.0] –0.4440 (0.57, 0.01, 3.6) –0.5878 –3.1860 

[.01, .57] [.01, .99] [5.0, 15] –0.0947 (0.57, 0.01, 5.5) –0.1105 –0.8318 

[.01, .54] [–.99, –.01] [4.0, 5.0] –0.4656 (0.54, –0.3, 5.0) –0.4952 –3.0429 

[.01, .46] [–.99, –.01] [5.0, 10] 0.4329 (0.46, –0.99, 7.0) 0.4981 4.1317 

[.01, .39] [–2.0, –.01] [4.0, 10] 0.4397 (0.39, –1.66, 10) 0.4597 3.9250 

[.01, .36] [–2.0, –.01] [10, 15] 0.4543 (0.36,–2.0,11.6) 0.4400 3.5627 
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characterized by four parameters, is in terms of 
the confluent hypergeometric function of the 
second kind. This new distribution is fitted to a 
data set on absenteeism among shift-workers in 
a steel industry. The data comes from Arbous 
and Sichel (1954). Gupta and Ong (2004) also 
fitted the data to the GNBD in (1.1) and 
obtained the following maximum likelihood 

estimates (MLE): θ̂  = 0.00010775, β̂  = 

5978.5288 and m̂  = 29337.08391. They 
remarked that, because the parameter θ is small 
and both β and m are large, the fit by the GNBD 
corresponds to the fit by the generalized Poisson 
distribution. These large values of β and m and 
the small value of θ piqued our curiosity to re-
analyze the data. 

Famoye (1997) stated that the MOZE 
estimators are better than the moment estimators 
and they have good efficiency when compared 
to the MLE. In view of this, the moment 
estimates and the MOZE estimates of the GNBD 
in (1.1) were computed. The moment estimates 
of θ, β and m are respectively 0.9443, 0.9582, 
and 0.9058. The corresponding results for the 

MOZE method are θ  = 0.4590, β  = 1.5323 

and m  = 5.8071.  
Using the moment estimates as the 

initial for MLE and the Newton-Raphson 
method in SAS PROC NLMIXED, the ML 
estimates for the parameters did not reach 
acceptable convergence. After reaching 
convergence, the SAS warning that at least one 
of the gradients is more than 1.0e–3 (i.e. 0.001) 
was noted. In this analysis, two of the gradients 
were over 0.001 and the greater value is 0.0072. 
However, when the initial estimates are taken to 
be the MOZE estimates, there was proper 
convergence to the MLE (see Table 3). The 
maximum gradient was 1.141e–8. The MLEs in 
Table 3 are very far from the values given by 
Gupta and Ong (2004). Gupta and Ong did not 
report what they took as the initial estimates in 
finding the MLE. It appears the initial estimates 
might have caused their estimates to be too 
small or too large. 

Based on the MLE result for parameter 
β, the negative binomial distribution (NBD) 
should provide an adequate fit to the data. Table 
3 shows the fit by the GNBD and the NBD. 

Exact MLEs reported by Gupta and Ong (2004) 
for the NBD were not obtained in this study, 
however, estimates are not far from their results.  

Although Gupta and Ong (2004) found 
that their new GNBD provided an adequate fit to 
the data, the GNBD in (1.1) also provides an 

adequate fit. In this example, the MLEs of β ( β̂  
= 1.0824) is in the parameter region when the 
sum of the probabilities is 1. This parameter 
estimate for β is not significantly different from 
β = 1.0, for which the GNBD reduces to the 
NBD. The log-likelihood for both the GNBD 
and NBD are respectively equal to –793.91 and 
–794.00. This also shows that the NBD provides 
an adequate fit to the data. 
 

Conclusion 
When β < 0 or 0 < β < 1, the truncated GNBD 
can be used. However, due to estimation 
problems with the truncated GNBD, the non-
truncated GNBD should be considered if the 
truncation error is negligible. This study 
provides the region of the parameter space for 
which the truncation error is below 0.5%. It is 
important to ensure that the number of non-zero 
probability classes is at least five (that is, k ≥  4). 
By using the parameter region specified in Table 
2, it can be determined whether the estimated 
parameter values are in the region where the 
truncation error is negligible.  

Jain and Consul (1971) applied the non-
truncated GNBD to four data sets. The number 
of non-zero frequency classes and the parameter 
estimates given by Jain and Consul (1971) are 
provided in Table 4. In all data sets, the 
estimated values of β are between 0 and 1. For 
data sets 1, 2 and 3, the number of non-zero 
frequency classes is over 5 and the truncation 
error is expected to be negligible. In data set 4, 
there are exactly 5 non-zero frequency classes. 
However, in comparing the parameter estimates 
with the regions in Table 2, the maximum 
truncation error is –0.4547. Computed truncation 
errors for these data sets are: 0.0351%, 0.2616%, 
0.0053% and 0.0182% for data sets 1 through 4 
respectively. Thus, the truncation error is 
negligible for all data sets considered by Jain 
and Consul (1971). 
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Table 3: Absenteeism Numbers among Shift-Workers 
 

Count 
Observed 
Frequency 

NBD 
New GNB 

by GOa 
GNBD 
by JCb 

0 7 11.13 9.23 10.02 
1 16 15.74 16.18 15.70 
2 23 17.77 19.86 18.39 
3 20 18.36 21.06 19.20 
4 23 18.10 20.50 18.89 
5 24 17.32 18.78 17.94 
6 12 16.24 16.46 16.66 
7 13 15.01 14.02 15.22 
8 9 13.72 11.79 13.76 
9 9 12.43 9.95 12.33 

10 8 11.19 8.55 10.99 
11 10 10.01 7.54 9.74 
12 8 8.91 6.84 8.61 
13 7 7.90 6.33 7.58 
14 2 6.98 5.94 6.67 
15 12 6.14 5.61 5.85 
16 3 5.40 5.29 5.13 
17 5 4.73 4.97 4.49 
18 4 4.13 4.64 3.92 
19 2 3.61 4.28 3.43 
20 2 3.14 3.92 2.99 
21 5 2.73 3.55 2.61 
22 5 2.37 3.19 2.28 
23 2 2.06 2.84 1.99 
24 1 1.78 2.50 1.74 

25 – 48 16 11.10 14.13 11.87 

Total 248 248.00  248.00 

θ̂   0.8525 (0.0157)  0.7435 (0.3284) 

m̂   1.6792 (0.1775)  2.3580 (2.4079) 

β̂     1.0824 (0.3264) 

cChi-Square  15.97 8.27 13.27 

df  17 15 16 

p-value  0.5260 0.9125 0.6529 
aGupta and Ong (2004); bJain and Consul (1971); cAdjacent classes for Chi-square values were 
combined as in Gupta and Ong (2004) 
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Table 4: Parameter Estimates for Data Sets Analyzed by Jain and Consul (1971) 
 

Data Set 
Number of Non-Zero 

Frequency Classes 

Parameter Estimates 

θ  β  m  

1 
(in Table 1 of JCa) 

6 0.6013 0.8020 0.4006 

2 
(in Table 2 of JC) 

8 0.7806 0.8549 0.4886 

3 
(in Table 3 of JC) 

11 0.3531 0.0389 11.3188 

4 
(in Table 4 of JC) 

5 0.3171 0.5496 1.5884 

aJain and Consul (1971) 
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