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Estimation and Hypothesis Testing in LAV Regression with Autocorrelated Errors: 
Is Correction for Autocorrelation Helpful? 

 
Terry E. Dielman 

Texas Christian University 
Fort Worth, TX 

 
 
Using the Prais-Winsten correction and adding a lagged variable provides improved estimates (smaller 
MSE) in least absolute value (LAV) regression when moderate to high levels of autocorrelation are 
present. When comparing empirical levels of significance for hypothesis tests, adding a lagged variable 
outperforms other approaches but has a relative high empirical level of significance. 
 
Key words: Monte Carlo simulation, serial correlation, Cochrane-Orcutt, Prais-Winsten, lagged variable. 
 
 

Introduction 
Least absolute value (LAV) regression is one 
technique often suggested for robust regression 
(see Dielman, 2005 for a review of LAV 
research). LAV estimates are less strongly 
affected by extreme observations compared to 
their least squares counterparts. The use of 
regression to model time-series data often results 
in the violation of the assumption of independent 
disturbances. The Prais-Winsten (PW) and 
Cochrane-Orcutt (CO) methods are two 
procedures used for correcting for 
autocorrelation in time-series regression models: 
Both methods transform the data using a 
differencing transformation to remove 
autocorrelation. LAV estimation applied to the 
transformed observations yields estimators that 
are asymptotically more efficient than LAV 
applied to the original data. The two methods are 
essentially equivalent except for the treatment of 
the first observation in the data set. The CO 
method omits the first observation; the PW 
method transforms and retains the observation. 
Asymptotically, no difference exists in the 
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efficiency of estimators produced by the two 
methods. In previous studies of small sample 
behavior, however, the PW procedure has been 
found to produce more efficient estimates; using 
the CO procedure results in estimators that can 
be much less efficient in small samples.  

Koenker and Bassett (1982) suggested 
the WALD, likelihood ratio (LR), and Lagrange 
multiplier (LM) tests for coefficient significance 
when using LAV estimation. Stangenhaus 
(1987), Dielman and Pfaffenberger (1990, 
1992), Dielman and Rose (1996), and Koenker 
(1987) have studied inference for regression 
using LAV estimation when disturbances are 
independent but not necessarily normal. 

Some research has considered LAV 
estimation when errors are not independent. 
Dielman and Rose (1994a, 1995b) examined the 
accuracy of estimation for model coefficients 
using LAV regression with autocorrelation 
correction, and Dielman and Rose (1994b) 
considered the accuracy of forecasts from LAV 
estimated regressions with autocorrelation 
correction. Dielman and Rose (1997) examined 
both estimation and inference in autocorrelated 
models.  

A simulation study was conducted to 
address questions of estimation and inference in 
the presence of serial correlation. The PW and 
CO corrections for autocorrelation are 
considered and compared to the performance of 
a model with a lagged dependent variable added. 
Estimation accuracy after correction for 
autocorrelation is compared using mean square 
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estimation error. The performance of hypothesis 
tests for the slope coefficient is assessed using 
observed significance levels, and alternative 
estimators of the scale parameter used in the test 
procedures are considered. In addition, 
performance in small samples is considered due 
to the practical importance of smaller sample 
sizes - particularly for applications in business 
and economics - and the inability to rely upon 
asymptotic results under such circumstances.  
 

Methodology 
A simple regression model is considered: 
 

yt = β0 + β1 xt + εt, 
with 

εt =ρεt-1 + ηt      
(1) 

 
for t = 1, 2, ..., T. In (1), yt and xt are the tth 
observations on the dependent and explanatory 
variables, respectively, and εt is a random 
disturbance for the tth observation and may be 
subject to autocorrelation. The ηt represents 
disturbance components that are assumed to be 
independent and identically distributed, although 
not necessarily normal. The parameters β0 and β1 
are unknown and must be estimated. The 
parameter ρ is the autocorrelation coefficient, 
with |ρ|<1. 
 

Using matrix notation, the model can be 
written as: 
 

εXβY +=                          (2) 
 
where 
 

T
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(3) 
 

Two well-known procedures employed 
to correct for autocorrelation are the Prais-

Winsten (1954) and Cochrane-Orcutt (1949) 
procedures. Both transform the data using the 
autocorrelation coefficient, ρ, after which the 
transformed data are used in estimation. The 
procedures differ in their treatment of the first 
observation, (x1, y1). The PW transformation 
matrix is: 
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(4) 
 
Pre-multiplying the model in (2) by MPW yields 
 

εMXβMYM PWPWPW +=          (5) 

or 

ηβXY ** +=                   (6) 
 
where Y* contains the transformed dependent 
variable values and X* is the matrix of 
transformed independent variable values, thus: 
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In (6), η is the vector of serially uncorrelated ηt 
errors. 

The CO transformation matrix is the 
(T−1) × 1 matrix obtained by removing the first 
row of the MPW transformation matrix. The use 
of the CO transformation means that (T−1) 
observations, rather than T, are used to estimate 
the model. In the CO transformation, the first 
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observation is omitted, whereas it is transformed 
and included in the estimation in the PW 
transformation. Asymptotically, the loss of this 
single observation is of minimal concern. 
However, for small samples, omitting the first 
observation may result in an estimator inferior to 
that obtained when the first observation is 
retained and transformed as shown in Maeshiro 
(1979), Park and Mitchell (1980) and Dielman 
and Pfaffenberger (1984) for least squares and in 
Dielman and Rose (1994a) for LAV. The two 
methods described are referred to as LAVPW 
and LAVCO when combined with LAV 
estimation. 

In practice, the value of ρ will be 
unknown. In this case it must be estimated from 
sample data. The estimator of ρ is as follows: 
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when PW correction is used, and 
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when CO correction is used, where tε̂  

represents LAV residuals from the uncorrected 
LAV regression. These are the estimators 
suggested by Park and Mitchell (1980) when 
using least squares estimation and are also 
typical of those that have been used in the LAV 
context. 

An alternative approach suggested by 
Mizon (1995) is to include a lagged dependent 
variable as an explanatory variable and view this 
as part of the data generating process (DGP). No 
other testing for autocorrelation or correction for 
autocorrelation would be used. The model 
suggested can be written 
 

yt = β0 + β1 xt + β2 yt-1 + ηt,             (11) 
for t = 2, ..., T (note that t = 1 is not used due to 
the inclusion of the lagged variable). In (11), yt 

and xt are the tth observations on the dependent 
and explanatory variables, respectively. The ηt 
represents disturbance components, which are 
assumed to be independent and identically 
distributed, although not necessarily normal. The 
parameters β0, β1 and β2 are unknown and must 
be estimated; however, in this application it is β1 
that is of interest. This method is referred to as 
LAVLAG. 

Referring to the model in (2), Bassett 
and Koenker (1978) showed that the LAV 
coefficient estimator has an asymptotic 
distribution that converges to 

))( ,N( -12 XXβ ′λ  where 
T

2λ
 is the asymptotic 

variance of the sample median for a sample of 
size T from the disturbance distribution. The 
scale parameter, λ, is defined as λ = 1/[2 f(m)], 
where f(m) is the probability density function 
(pdf) of the disturbance distribution evaluated at 
the median. These same results are obtained 
when X is replaced by X* for the model in (6) 
(Weiss, 1990). 

The test considered in this study is the 
basic test for slope coefficient significance, i.e., 
H0: β1 = 0.  

Three test statistics were examined: the 
WALD, the Likelihood Ratio (LR) and the 
Lagrange Multiplier (LM). The WALD, LR and 
LM statistics each have, asymptotically, a Chi-
square distribution with k2 degrees of freedom. 
(See Koenker and Bassett (1982) for further 
details on these test statistics.) The small sample 
properties of the test statistics are analytically 
intractable. Examination of the empirical level 
of significance of the test statistics in small 
samples was performed using a simulation. 

Both the WALD and LR test statistics 
require the estimation of the scale parameter λ, 
whereas the LM test statistic does not. One 
often-suggested estimator for λ can be computed 
as follows: 
 

2/
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where the e(.) are ordered residuals from the 
LAV-fitted model, and T ′ = T − r where r is the 
number of zero residuals. A value of α = 0.05 is 
typically suggested. This estimator is referred to 
as the SECI estimator. McKean and Schrader 
(1984) used Monte Carlo simulation to compare 
several methods of studentizing the sample 
median in which the SECI performed well and 
the value of α = 0.05 produced the best results. 

Sheather (1987) summarized the results 
of a Monte Carlo simulation to compare the 
SECI estimator and several other estimators for 
λ, including some that do not extend easily to 
the regression application. The conclusion was 
that the SECI estimator provides a good, quick 
point estimate of the standard error. Dielman 
and Pfaffenberger (1992) and Dielman and Rose 
(1996) also noted that this estimator performs 
reasonably well when used to compute the LR 
test statistic. 

In this study, four different options in 
constructing the estimator of λ were considered. 
as follows: 

1. SECI1: 1λ̂  uses z = 1.96 (the α = 0.05 value) 

and T′ = total number of observations (T). 
 

2. SECI2: 2λ̂  uses t0.025 with T degrees of 

freedom rather than the z value and T′ = 
total number of observations (T). 

 

3. SECI3: 3λ̂  uses z = 1.96 (the α = 0.05 

value) and T′ = T – r where r is the number 
of zero residuals. 

 

4. SECI4: 4λ̂  uses t0.025 with T – r degrees of 

freedom rather than the z value and T′  = T 
– r where r is the number of zero residuals. 

 
The notation W1, W2, W3 and W4 is 

used to indicate the WALD test using variance 
estimator 1, 2, 3 or 4, and L1, L2, L3 and L4 
indicate the LR test using variance estimator 1, 
2, 3 or 4. Most literature in this area 
recommends using the estimator SECI3. These 
options were considered in Dielman (2006) for 
models with independent errors and SECI1 and 
SECI2 were found to produce improved results 

over SECI3 in small samples. As noted, the LM 
test does not require the use of an estimate of λ. 

The model considered in this study is 
described in (1). The explanatory variable values 
were generated as follows: 
 
1. Autoregressive independent variable: xt = 

axt-1 + ut for t = 1, 2, ..., T with ut chosen 
from the N(0, 2) distribution. The values of 
a used were 0.0, 0.4 and 0.8 

 
2. Stochastic trend: xt = at+ ut for t = 1, 2, ..., T 

with the ut chosen from the N(0, 2) 
distribution. The values of a used were 0.4 
and 0.8. 

 
3. Linear time trend: xt = t for t = 1, 2, …., T 
 
 After being generated, the independent 
variable values are held fixed throughout the 
experiment. The disturbances, ηt, were chosen 
from one of the following disturbance 
distributions: 
 
1. Normal (0, 1); 

 
2. Laplace with mean 0 and variance 2; 
 
3. Contaminated normal with disturbances 

drawn from the standard normal distribution 
85% of the time, and a normal distribution 
with mean 0 and variance 25 the other 15% 
of the time; and 

 
4. Cauchy with median 0 and scale parameter 

1. 
 
Finally, after generating the ηt, the εt values are 

created as εt = ρεt-1 + ηt where 
2

0
0

1 ρ
ηε
−

=  and η0 

is an initial draw from the disturbance 
distribution. The values of ρ used were 0.0, 0.1, 
0.3, 0.5, 0.7 and 0.9. 

The disturbances were generated 
independently of the explanatory variables. All 
random numbers were generated using IMSL 
subroutines and the simulation was written in 
FORTRAN. 

The parameter β0 was set equal to zero 
(without loss of generality). To determine 
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empirical levels of significance, the parameter β1 
is set equal to zero, the test of H0: β1 = 0 is 
performed, and the number of rejections of the 
true hypothesis is recorded. 

The sample size used was T = 20. For 
each factor level combination in the 
experimental design, 10,000 Monte Carlo trials 
were used to evaluate estimates and assess levels 
of significance. (Each factor level combination 
is determined by the disturbance distribution, 
type of independent variable and the value of the 
autocorrelation coefficient for a total of 144 
factor level combinations). 
 

Results 
Estimation 

Table 1 shows mean square error (MSE) 
ratios for the estimates of the coefficient of the 
explanatory variable. The ratios are of the MSE 
of each estimation method to the MSE of the 
LAV estimator. MSE ratios less than one favor 
each of the estimator types over LAV; MSE 
ratios greater than one favor LAV. These are 
medians of the results over the four error 
distributions (Cauchy, Laplace, Contaminated 
Normal, Normal). Each of the six explanatory 
variable types is listed in a separate panel of the 
table. Panels A, B and C are for autoregressive 
explanatory variables with Lambda = 0.0, 0.4 
and 0.8 respectively. 

For example, in Panel A the explanatory 
variable is autoregressive with Lambda = 0.0 
(that is, a normally distributed explanatory 
variable). The MSE ratio of LAVPW to LAV 
when Rho = 0.0 is 1.01. Thus, LAV is favored 
over LAVPW (barely) in this instance. 
However, little is lost by performing the 
correction for autocorrelation. For the 
autoregressive independent variable, this is true 
in all cases when Rho = 0.0. Although LAV is 
never unfavorable, there is often little or no 
difference, so the option to always correct for 
autocorrelation results in little loss in estimator 
efficiency. When the explanatory variable is 
autoregressive, there is little difference in 
whether the LAVPW or LAVCO correction is 
used. The LAVLAG alternative results in a 
larger loss in efficiency when Rho is small, for 
example the MSE ratio of LAVLAG to LAV is 
1.05. As Rho increases, the relative efficiency of 
LAVLAG to LAV increases, but not as quickly 

as LAVPW or LAVCO when Lambda is 0.0 or 
0.4. However, when Rho is large and Lambda is 
0.8, the LAVLAG alternative results in greater 
efficiency than LAV and, in fact, greater 
efficiency than the other alternatives. 

When the independent variable follows 
a stochastic trend (Panels D and E) it is also true 
that little is lost by performing the correction for 
autocorrelation. In this case, however, LAVPW 
is slightly better than LAVCO. The LAVLAG 
alternative shows a larger loss in efficiency 
when Rho is small than in the autoregressive 
case. For example the MSE ratio of LAVLAG to 
LAV is 1.16 for Lambda = 0.4 and 1.07 for 
Lambda = 0.8. As Rho increases, the relative 
efficiency of LAVLAG to LAV increases faster 
than LAVPW and the LAVLAG alternative 
soon provides greater efficiency than LAV and 
greater efficiency than the other alternatives. 

The results for the fixed trend are 
similar to those for the stochastic trend, except 
that the LAVCO method fails miserably once 
Rho reaches 0.5. The LAVLAG MSE ratio is 1.2 
when Rho is zero, but this approach recovers 
quickly and is more efficient than any of the 
other approaches when Rho is 0.3 or greater. 
The primary conclusion from examination of 
MSEs is to avoid the LAVCO correction. A 
secondary conclusion is that LAVLAG 
compares favorably to LAVPW. 
 
Hypothesis Testing 

Empirical significance levels of the test 
for coefficient significance were examined. Due 
to the poor estimation performance of the 
LAVCO method, that procedure is eliminated 
from consideration. All tests were performed 
using a nominal level of 0.05, thus, it is 
desirable to have the resulting empirical level 
close to this value. As a result, for purposes of 
this analysis a test is considered well-behaved if 
the empirical level is 0.06 or less.  

Table 2 shows the number of times each 
method had an empirical significance level of 
0.06 or less. Tests with larger numbers in Table 
2 are viewed as more reliable because they do 
not overly reject true null hypotheses. The LR2, 
W2, LR1, LR3 and LM tests (in that order) had 
the highest total incidences of empirical levels 
that were at or below 0.06 over all the 
experimental design points. 
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Table 1: MSE Ratios for the Estimates of the Coefficient of the Explanatory Variable 
 

Panel A: Autoregressive with Lambda = 0.0 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.91 0.77 0.61 0.46 
LAVCO 1.00 0.98 0.90 0.76 0.60 0.46 

LAVLAG 1.05 1.04 0.99 0.86 0.70 0.51 
 

Panel B: Autoregressive with Lambda = 0.4 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.02 0.97 0.92 0.81 0.67 0.48 
LAVCO 1.01 0.99 0.91 0.81 0.66 0.48 

LAVLAG 1.05 1.02 0.92 0.82 0.68 0.50 
 

Panel C: Autoregressive with Lambda = 0.8 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.93 0.80 0.65 0.48 
LAVCO 1.01 1.00 0.92 0.81 0.66 0.48 

LAVLAG 1.07 1.01 0.87 0.71 0.53 0.37 
 

Panel D: Stochastic Trend with Lambda = 0.4 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.00 1.01 0.96 0.86 0.76 0.83 
LAVCO 1.05 1.04 1.01 0.92 0.79 0.84 

LAVLAG 1.16 1.07 0.90 0.70 0.51 0.35 
 

Panel E: Stochastic Trend with Lambda = 0.8 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.93 0.80 0.65 0.48 
LAVCO 1.01 1.00 0.92 0.81 0.66 0.48 

LAVLAG 1.07 1.01 0.87 0.71 0.53 0.37 
 

Panel F: Linear Trend 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.01 0.99 0.94 0.88 0.88 
LAVCO 1.06 1.08 5.88 1351 1952 3455 

LAVLAG 1.20 1.10 0.92 0.73 0.56 0.45 
 

Notes: The ratios are of the MSE of each result to the MSE of the LAV estimator. MSE ratios 
less than one favor each of the estimator types over LAV; MSE ratios greater than one favor 
LAV. These are medians of the results over four error distributions. Each of the six 
explanatory variable types is listed in a separate panel of the table. 
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Considering estimation procedures, the 
LAVLAG procedure had the most instances 
overall, 668, at or below 0.06. Combinations of 
test and estimation procedure that have the 
largest number of empirical significance levels 
at or below 0.06 are (in order): LAVLAG/LR1, 
LAVLAG/LR3, LAVLAG/W1 and 
LAVLAG/LR2. Note that LAVPW does not 
perform particularly well. LAVPW is the 
autocorrelation correction procedure typically 
recommended in previous studies. Also, LR3 is 
the test used in many previous studies, but LR1 
or LR2 could be viewed as preferred in this 
study. This is consistent with the findings of 
Dielman (2006) in models without 
autocorrelation. 

Table 3 provides detail on specific 
empirical levels of significance for estimation 
method/test combinations for selected values of 
the autocorrelation coefficient, Rho (panels in 
the table correspond to Rho = 0.0, 0.1, 0.3, 0.5, 
0.7, 0.9). The values in the table represent the 
median percentage of rejections for estimation 
method/test combinations with median taken 
over the four error distributions and over the six 
explanatory variable types. In  the  first  panel of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the table, for example, empirical levels of 
significance for Rho = 0.0 are shown.  

The LAV method had empirical 
significance level of 0.06 or less for several of 
the tests: W2, LM, LR1, LR2, and LR3. The 
level for LAVPW was 0.06 or less for W2 and 
LR2. The LAVLAG method had level of 0.06 or 
less for W1, W3, LR1, LR2, LR3 and LR4.  

When autocorrelation is at a moderate 
level of 0.5, there are two combinations with 
empirical level of significance below 0.06: 
LAVLAG/LR1 and LAVLAG/LR3. All levels 
for LAV and LAVPW are above 0.06 and are 
similar for these two methods, even though 
LAVPW supposedly corrects for 
autocorrelation. 

When Rho is 0.9 (a high level of 
autocorrelation), there are no cases when the 
empirical level of significance is below 0.06. 
The closest values are 0.09 for LAVLAG/W1, 
LAVLAG/LR1 and LAVLAG/LR3. Note that 
the LAVPW method, one of the traditional 
corrections for autocorrelation, had very high 
empirical levels in a case when it might be 
expected to perform well. The levels are better 
than the uncorrected LAV, but still very high. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Number of Times Each Method Had Empirical Significance Level of 0.06 or Less 
 

Method 

Test 

Totals W1 W2 W3 W4 LM LR1 LR2 LR3 LR4 

LAV 21 85 17 9 67 56 84 46 24 409 

LAVPW 0 91 0 0 22 1 74 1 1 190 

LAVLAG 101 45 76 18 43 107 92 101 85 668 

Totals 122 221 93 27 132 164 250 148 110  
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Table 3: Empirical Levels of Significance (Proportion of Rejections) for Estimation Method/Test 
Combination for Selected Values of the Autocorrelation Coefficient, Rho 

 

Rho Method 

Test 

W1 W2 W3 W4 LM LR1 LR2 LR3 LR4 

0 

LAV 0.08 0.03 0.09 0.10 0.05 0.06 0.03 0.06 0.07 

LAVPW 0.10 0.05 0.12 0.13 0.08 0.10 0.06 0.10 0.11 

LAVLAG 0.05 0.07 0.06 0.08 0.12 0.05 0.05 0.05 0.06 
 

0.1 

LAV 0.09 0.04 0.10 0.12 0.07 0.07 0.04 0.08 0.09 

LAVPW 0.11 0.05 0.12 0.14 0.08 0.10 0.06 0.11 0.12 

LAVLAG 0.05 0.07 0.06 0.08 0.12 0.05 0.06 0.05 0.06 
 

0.3 

LAV 0.13 0.06 0.14 0.16 0.10 0.11 0.07 0.12 0.13 

LAVPW 0.14 0.06 0.15 0.17 0.09 0.12 0.08 0.13 0.14 

LAVLAG 0.06 0.07 0.06 0.08 0.13 0.05 0.06 0.06 0.07 
 

0.5 

LAV 0.17 0.10 0.19 0.21 0.15 0.17 0.12 0.17 0.19 

LAVPW 0.16 0.09 0.17 0.20 0.11 0.15 0.10 0.15 0.17 

LAVLAG 0.07 0.08 0.07 0.09 0.14 0.06 0.07 0.06 0.07 
 

0.7 

LAV 0.25 0.16 0.27 0.30 0.22 0.25 0.20 0.26 0.28 

LAVPW 0.19 0.11 0.20 0.23 0.13 0.18 0.13 0.19 0.20 

LAVLAG 0.08 0.09 0.08 0.10 0.15 0.07 0.08 0.08 0.09 
 

0.9 

LAV 0.35 0.26 0.37 0.40 0.32 0.37 0.31 0.38 0.40 

LAVPW 0.25 0.17 0.26 0.29 0.15 0.25 0.20 0.26 0.27 

LAVLAG 0.09 0.11 0.10 0.12 0.18 0.09 0.10 0.09 0.11 
 

Note: These are medians of the results over the four error distributions and over the six 
explanatory variable types. 
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Conclusion 
The following conclusions are derived from the 
simulation study. Regarding estimation: 
 
1. The LAVCO correction should be avoided 

due to possible extreme loss in efficiency. 
 
2. The option to always correct for 

autocorrelation using the LAVPW 
correction never results in much efficiency 
loss.  

 
3. Adding a lagged dependent variable rather 

than using the LAVPW correction is a 
viable option. The LAVLAG alternative 
typically results in a larger loss in efficiency 
than LAVPW when there is little 
autocorrelation, but an increase in efficiency 
when autocorrelation is more severe. 

 
For hypothesis testing, the LAVLAG 

method had empirical levels of significance that 
were acceptable more often than LAVPW so is 
preferred in this sense. Both LAVPW and 
LAVLAG provide better protection against type 
one errors than LAV. However, the empirical 
levels of both are still high in some cases.  

When estimating a regression with 
independent disturbances, Dielman and Rose 
(1995a, 2002) compared bootstrap tests to 
traditional tests in a LAV regression with 
independent errors and found that the bootstrap 
tests were generally competitive with LR tests 
that also perform well when disturbances are 
independent. It would be prudent to examine a 
bootstrap test in the context of autocorrelated 
errors as well; however, care must be taken in 
designing the bootstrap resampling process to 
preserve the autocorrelation structure. 
 

References 
Bassett, G., & Koenker, R. (1978). 

Asymptotic theory of least absolute error 
regressions. Journal of the American Statistical 
Association, 73, 618-622. 

Cochrane, D., & Orcutt, G. (1949). 
Application of least squares regression to 
relationships containing autocorrelated error 
terms. Journal of the American Statistical 
Association, 44, 32-61. 

Dielman, T. (2005). Least absolute 
value regression: Recent contributions. Journal 
of Statistical Computation and Simulation, 75, 
263-286.   

Dielman, T. (2006). Variance estimates 
and hypothesis tests in least absolute value 
regression. Journal of Statistical Computation 
and Simulation, 76, 103-114. 

Dielman, T., & Pfaffenberger, R. 
(1984). Small sample properties of estimators in 
the autocorrelated error model: A review and 
some additional simulations. Statistical 
Papers/Statistiche Hefte, 30, 163-183. 

Dielman, T., & Pfaffenberger, R. 
(1990). Tests of linear hypotheses in LAV 
regression. Communications in Statistics - 
Simulation and Computation, 19, 1179-1199. 

Dielman, T., & Pfaffenberger, R. 
(1992). A further comparison of tests of 
hypotheses in LAV regression, Computational 
Statistics and Data Analysis, 14, 375-384. 

Dielman, T., & Rose, E. (1994a). 
Estimation in least absolute value regression 
with autocorrelated errors. Journal of Statistical 
Computation and Simulation, 50, 29-43. 

Dielman, T., & Rose, E. (1994b). 
Forecasting in least absolute value regression 
with autocorrelated errors: a small-sample study. 
International Journal of Forecasting, 10, 539-
547. 

Dielman, T., & Rose, E. (1995a). A 
bootstrap approach to hypothesis testing in least 
absolute value regression. Computational 
Statistics and Data Analysis, 20, 119-130. 

Dielman, T., & Rose, E. (1995b). 
Estimation after pre-testing in least absolute 
value regression with autocorrelated errors. 
Journal of Business and Management, 2, 74-95. 

Dielman, T., & Rose, E. (1996). A note 
on hypothesis testing in LAV multiple 
regression: A small sample comparison. 
Computational Statistics and Data Analysis, 21, 
463-470. 

Dielman, T., & Rose, E. (1997). 
Estimation and testing in least absolute value 
regression with serially correlated disturbances. 
Annals of Operations Research, 74, 239-257. 

 
 
 



LAV REGRESSION WITH AUTOCORRELATED ERRORS: IS CORRECTION HELPFUL? 

548 
 

Dielman, T., & Rose, E. (2002). 
Bootstrap versus traditional hypothesis testing 
procedures for coefficients in least absolute 
value regression. Journal of Statistical 
Computation and Simulation, 72, 665-675. 

Koenker, R. (1987). A comparison of 
asymptotic testing methods for L1-regression. In: 
Y. Dodge (Ed.), Statistical data analysis based 
on the L1-norm and related methods, 287-295. 
Amsterdam: North-Holland. 

Koenker, R., & Bassett, G. (1982). Tests 
of linear hypotheses and L1 estimation. 
Econometrica, 50, 1577-1583. 

Maeshiro, A. (1979). On the retention of 
the first observation in serial correlation 
adjustment of regression models. International 
Economic Review, 20, 259-265. 

Mizon, G. (1995). A simple message for 
autocorrelation correctors: Don’t. Journal of 
Econometrics, 69, 267-288. 

McKean, J., & Schrader, R. (1984). A 
comparison of methods for studentizing the 
sample median. Communications in Statistics - 
Simulation and Computation, 13, 751-773. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Park, R., & Mitchell, G. (1980). 
Estimating the autocorrelated error model with 
trended data. Journal of Econometrics, 13, 185-
201. 

Prais, S., & Winsten, C. (1954). Trend 
estimators and serial correlation. Cowles 
Commission Discussion Paper: Stat. No. 383, 
Chicago. 

Sheather, S. (1987). Assessing the 
accuracy of the sample median: Estimated 
standard errors versus interpolated confidence 
intervals. In: Y. Dodge (Ed.), Statistical data 
analysis based on the L1-norm and related 
methods, 203-215. Amsterdam: North-Holland. 

Stangenhaus, G. (1987). Bootstrap and 
inference procedures for L1 regression. In: Y. 
Dodge (Ed.) Statistical data analysis based on 
the L1-norm and related methods, 323-332. 
Amsterdam: North-Holland.  

Weiss, A. (1990). Least absolute error 
estimation in the presence of serial correlation. 
Journal of Econometrics, 44, 127-158. 


	Journal of Modern Applied Statistical Methods
	11-1-2011

	Estimation and Hypothesis Testing in LAV Regression with Autocorrelated Errors: Is Correction for Autocorrelation Helpful?
	Terry E. Dielman
	Recommended Citation


	Microsoft Word - toc_vol10_no2

