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Modeling Repairable System Failures with Interval Failure Data 
and Time Dependent Covariate 

 
Jayanthi Arasan Samira Ehsani 

University Putra Malaysia, 
Malaysia 

 
 
An application of a repairable system model for interval failure data with a time dependent covariate is 
examined. The performance of several models based on the NHPP when applied to real data on ball 
bearing failures is also explored. The best model for the data was selected based on results of the 
likelihood ratio test. The bootstrapping technique was applied to obtain the variance estimate for the 
estimated expected number of failures. Results demonstrate that the proposed model works well and is 
easy to implement, in addition the bootstrap variance estimate provides a simple substitute for the 
traditional estimate. 
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Introduction 
A repairable system is a system that can be 
restored back to functionality after a failure has 
occurred. The period where the system is unable 
to function is referred to as repair time and is 
assumed to be negligible. Grouped data, also 
known as interval failure data occurs when a 
component’s failure time falls within a certain 
interval  where  is the lower 
inspection time and  is the upper inspection 
time in the  interval. In reliability this 
phenomenon occurs when components are 
inspected periodically to carry out maintenance 
or repair actions. These types of data often arise 
in the medical field where patients are examined 
periodically, for example every 3 or 6 months, 
so the exact failure time is typically unknown. 

Many stochastic models have been 
developed to describe the failure rate of a non-
homogenous Poisson process (NHPP) such 
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as the power law model proposed by Crow 
(1974) and based on the ideas of Duanne (1964). 
Other popular models are the log linear proposed 
by Cox and Lewis (1966) and linear models 
discussed by Vesely (1977) and Atwood (1992). 
Lawless and Thiagarajah (1996) introduced an 
important repairable system model that 
incorporates both time trends and renewal 
behavior, known as a proportional intensity 
model. Guo, et al. (2006) proposed a 
proportional intensity model that is based on the 
powerlaw model. Guo, et al. (2007) also 
developed a new general repair model based on 
the expected cumulative number of failures to 
capture the repair history. Samira and Arasan 
(2009) extended the model to include a time 
dependent covariate and applied it to pipe 
failures in water networks. 

Other literature on repairable system 
models and recurrent events includes Brown 
(1975), Gasmi, et al. (2003), Kaminskiy and 
Krivtsov (1998), Kijima and Sumita (1986), 
Kijima (1989), Wang and Pham (1996) and 
Yanez, et al. (2002). Park, et al. (2008) 
presented an application of the log-linear and 
power law models for interval failure data in 
water distribution systems. 

More details regarding recurrent event 
models for grouped and interval failure data can 
also be found in Meeker and Escobar (1998), 
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Lawless and Zhan (1998) and Cook and Lawless 
(2007). 
 
The Model 

Most recurrent event data, such as in the 
case of repairable systems, usually has 
recurrence times that are not be independent. 
The most widely used models for recurrence 
data are those based on the non-homogenous 
Poisson process, mainly the power law and log-
linear models. This research extends the power 
law model to incorporate the analysis of grouped 
or interval failure data while accommodating the 
effect of covariates or other factors that may 
affect or contribute to system failure. Thus, the 
failure intensity or recurrence rate can be 
described as , where  is a 
time dependent covariate that may impact 
system failure. 

Thus, the proposed model takes into 
account both the effect of time and a time 
dependent covariate on the recurrence rate of a 
system. Because it is dealing with interval 
failure data - and there can be more than one 
failure in any time interval - the number of 
intervals is always less or equal to number of 
failures observed. 

Suppose  is the number of failures in 
the  interval and  is the value of covariate 
at time . The expected number of recurrences  
 

 

 
where . 

If the intervals are contiguous, the 
Poisson process log-likelihood for a series of  
time intervals is: 

 

 

(1) 
 
The first and second derivatives of the log-
likelihood function are as follows: 

 

 
The extended power law model allows 

interval failure data to be analyzed by 
incorporating the effect of time and covariates 
simultaneously. Occasionally, the effect of 
covariates are insignificant, thus, the reduced 
form of the model may prove to be a better fit 
for the data; this can be obtained by setting 

. Another useful NHPP model is the log 
linear model, which has the failure intensity 
function , where  and  are the 
parameters of the model. The log linear model 
can also be extended to accommodate interval or 
grouped failure data. Let  
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The log-likelihood function for a series of  
time intervals is: 
 

 

(2) 
 
The first and second derivatives of the log-
likelihood function are: 
 

 
Application with Real Data 

The real data used in this study consists 
of 25 time intervals to ball bearing failures in a 
conveyer belt in an automobile production. The 
failure occurrences are in intervals because the 
conveyer is only checked by the inspection team 
at certain times, referred to as inspection times 
(hours). There can be more than 1 failure in a 
certain time interval for which repair action is 
carried out. The time dependent covariate used 
is the number of maintenance actions taken 
throughout the study period. 

Graphical methods are often used in 
modeling repairable systems to check trends in 
the data which then enables a reasonable model 
selection. Figure 1 displays the plot of the 
cumulative number of failures,  versus 

operating hours, . Because data are failures 
within intervals, the graph was drawn using the 
upper interval point. The plot suggests that the 
use of a NHPP model might be appropriate 
because the failure rate appears to be 
inconsistent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 shows the value of the 
parameter estimates and their standard errors 
when the data is fitted to the extended power 
law, power law, log-linear and HPP models. The 
table also shows the log likelihood value for 
each model at the estimated parameters. In the 
case of the extended power law model, the 
parameter estimate  has a positive value; this 
implies that the maintenance action could not 
prevent the system from deteriorating with time. 
In addition, the estimate of  shows a reliability 
improvement, but overall this fails to improve 
the system. All of the models show evidence of 
increasing failure intensity over time. 

The extended power law model gives 
the highest log likelihood value, this implies that 
it fits the real data better than the other models. 
Figure 2 shows the estimates of the expected 
number of failures using the extended power 
law, power law, log linear and HPP models. The 
extended power law model shows the best fit for 
the real data, although the log linear appears to 
be a reasonable fit as well. The plot also shows 

Figure 1: Cumulative Number of Failures vs. Time 
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an obvious change in the slope towards the end 
on the process and certain data tend to form 
clusters, requiring further investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis Testing and Confidence Intervals 

If parameters  and  are significant 
then there is evidence of both maintenance effect 
and time trend within the model. The 
significance of the parameters  and  can be 
tested using likelihood ratio (LR) test. The idea 

of a LR test is to compare the maximized 
likelihood of two nested models, the full model 
and the reduced model. The reduced model is 
restricted by certain conditions in . 

Let  be the maximum likelihood 
estimator of the restricted model under  and 

 the maximum likelihood estimator of the full 
model. The maximized likelihood of the reduced 
model,  can never exceed the maximized 

likelihood of the full model, , because it is a 
subset of the full model. Thus, the ratio of the 
maximized likelihood of the reduced model to 
the full model is bounded between 0 and 1. A 
ratio close to 1 indicates that the reduced model 
is close to the full model whereas a ratio close to 
0 indicates that the two models are very different 
and the reduced model is unacceptable. The 
likelihood ratio statistic for testing  versus  
is the given by: 
 

              (3) 
 

For a large sample size,  is 
approximately , where  is the number of 

parameters in the full model minus the number 
of parameters in the reduced model. The test 
statistic for testing the significance of the 
parameter, , is 9.41, which is higher than 

, thus implying that the 
effect of  is significant at the 0.05 level. The 
test statistic for testing the significance of 
parameter , is 27.014, thus implying that the 
effect of  is also significant at the 0.05 level. 
Thus, it may be concluded that the extended 
power law model is the most suitable model for 
the data. 

Confidence intervals for the expected 
number of failures over interval , 

 can be obtained by using 
the log normal distribution. The variance of an 
estimator can be calculated using the Delta 
method. The Delta method uses the  order 
Taylor expansion to approximate the variance of 
a function of random variables. Thus, 
 

Table 1: Parameter Estimates 
for Various Models 

 

 
 

 
 
 
 

Figure 2: Real vs. Fitted for Several Models 
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Following this, the confidence interval for 

 is 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another way to obtain the variance of 
 is to use the bootstrap technique. 

Recently, alternative techniques requiring only 
minimal assumption have become popular. The 
bootstrapping technique was proposed by Efron 
(1993) and the procedure depends on how the 
bootstrap sampling is done. Efron (1993) 
showed that, in certain cases, the bootstrap 
estimate of variance or standard error can be 

used as an alternative for numerically estimating 
the traditional variance or standard error 
estimate. 

Several different methods for generating 
bootstrap samples exist, namely parametric and 
nonparametric sampling procedures. This study 
utilizes the parametric bootstrap sampling 
procedure where B bootstrap samples of size  
are generated from an assumed parametric 
distribution. The number of failures over interval 

 follows a Poisson distribution with mean 
. Thus, random samples can be generated 

from the Poisson distribution and bootstrap 

estimates of the mean,  can be calculated 
where  are estimates calculated 
from each of the bootstrap samples of size . 

The bootstrap estimate of the variance 
of  is 
 

 

 
where 

 

 
Following this, the confidence interval 

for  can be obtained in the similar way as 
 

 

 
Figure 4 shows the 95 % confidence interval for 
the expected cumulative number of failures 
using the bootstrap standard error estimate. This 
shows that the interval estimation using the 
bootstrap standard error estimate provides a 
good alternative and is slightly narrower than the 
traditional method. 
 

Conclusion 
This article proposed the use of the extended 
power law model for repairable systems with 
interval or grouped failure data and a time 
dependent covariate. The model reduces to the 
power law and HPP as a special case, thus it is 
convenient and useful. The model also allows 
incorporation and analysis of both time trend  

Figure 3: Confidence Interval for  
 

 



ARASAN & EHSANI 
 

623 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and covariate effects simultaneously. More 
research may be done by implementing the 
methods discussed herein to other repairable 
system models to determine if similar results are 
obtained. The use of other types of log-linear 
and linear models that can incorporate interval 
failure data with covariates should also be 
investigated. 

The parametric bootstrap computer 
based technique was also employed to obtain the 
variance estimate for the estimated expected 
number of failures Alternative computer 
intensive techniques are simpler to implement 
and - in many cases - provide better estimates 
than traditional methods. Bootstrapping 
techniques are useful particularly when 
traditional methods become unreliable and 
certain assumptions are not satisfied. The high 
capability of modern day computers makes these 
methods practical. 

Other parametric bootstrapping 
techniques and block jackknifing techniques for 
confidence interval estimation could also be 
explored. There may also be chances of applying 
other bootstrap confidence interval estimates 
such as percentile bootstrap, bootstrap-t and 
BCa. These intervals are usually known to be 
more reliable and give better coverage 
probabilities and, as noted by Arasan (2008), are 
more symmetrical. However, their use with 

repairable system data should be done with 
caution; some modifications are also likely 
necessary to avoid violating the basic 
assumptions. 
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