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Random Number Generators
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The author discusses some promising new random number generators, as well as formulates the mathe-
matical basis that makes them random variables in the same sense as more familiar ones in probability and
statistics, emphasizing his view that randomness exists only in the sense of mathematics. He discusses the
need for adequate seeds that provide the axioms for that mathematical basis, and gives examples from Law
and Gaming, where inadequacies have led to difficulties. He also describes new versions of the widely

used Diehard Battery of Tests of Randomness.
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Introduction

In 1985 | was invited to give the keynote address
“A current view of random number generators”
at Statistics and Computer Science: XVI Sympo-
sium on the Interface. An article based on that
address was published in the Proceedings of that
conference,[5]. Judging from newsgroups and
citations, the article seems to have been widely
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read, although such proceedings are often difficult
to access. Availability of the file keynote.ps in the
CDROM [6], stat.fsu.edu/pub/diehard, may have
made the article easier to get. Two other postscript
files in that CDROM provide more detail on topics
of the present article: mwcl.ps and monkey.ps.

In this article | will update that “cur-
rent” view, dwelling at some length on what
| see as more important kinds of RNGs,
particularly Multiply-With-Carry (MWC) and
Complimentary-Multiply-With-Carry (CMWC),
because they have simple implementations, are
very fast, can have incredibly long periods and
pass tests randomness at least as well as, and often
better than, other kinds of RNGs.

But first I will provide a summary discus-
sion of congruential RNGs, because they remain
the most common kind, and of xorshift RNGs,
because they are as fast and simple as congruen-
tial but better behaved in tests of randomness. |
will list all 648 of the full-period, 32-bit xorshift
RNGs. There will also be a short description of
lagged Fibonacci RNGs. These have diminished
in importance, because MWC and CMWC RNGs
provide far far longer periods for the same effort,
and have better performance on tests.



3 RANDOM NUMBER GENERATORS

But one kind is still important because it can pro-
vide floating point uniforms directly, without the
usual floating of integers.

I will also dwell on the problem of seeds
and their relation to randomness, and on the need
for an adequate number of seeds that has arisen in
Law and Gaming. Finally, I will discuss the latest
version of my DIEHARD Battery of Tests of Ran-
domness [6], which includes some new, difficult-
to-pass tests.

Random Number Generators (RNGs)

The mathematics of random number
generators requires a set Z, an invertible func-
tion f over Z, and, for a random choice of a
seed z from 2, the sequence of random val-
ues in Z produced by iterating the function f:

1), £2(2), £2(2),- -,

where f2(z) means f(f(2)), /% (z) means f (f2(z)),
etc. Sometimes—in fact, most often—the set Z is
just the set of integers represented by 32-bit com-
puter words, but for RNGs that meet more strin-
gent requirements, the set Z might be the set of all
m-tuples (z,T2,...,%m,) of 32-bit integers, and
f a function that converts one such m-tuple into
another.

If f is a one-to-one function over Z, then
for any seed z chosen uniformly from Z, the ran-
dom variable f(z) is also uniformly distributed
over Z. (Just as if you randomly choose a digit d
from 2 = {0,1,2,...,8,9} and I instead choose
3d + 5 mod 10, my choice has the same uniform
distribution as yours, since f(z) = 3z+5 mod 10
is one-to-one over Z.) For the general case with
seed set 2, the choice of a random seed z from 2
will provide, through f(z), f2(2),... a long se-
quence of uniform random choices from Z. They
will not be independent random choices, but for
many purposes they may behave as though they
were, allowing us, with the minimal effort of
choosing a random seed from 2, to provide the
huge samples that many simulation studies call
for.

Note that when Z is {(z1,%2,---,Zm)},

a set of m-tuples, and a random seed =z
from Z leads to a sequence of uniform but
not-independent random choices from Z:
f(2), f%(z),..., then the elements of each
(z1,%2,...,%Zm) may themselves be uniform
over their range, and furthermore, substrings such
as 1,2, T3 may be quite close to uniform and
independent over their joint product set. This sug-
gests, as experience shows, that RNGs with seed
sets Z made up of m-tuples (z1,%2,---,Zm),
may be more desirable, although they may require
that the user provide many more than the usual
single random integer seed. Perhaps the axiom:
“You get what you pay for” applies.

Congruential RNGs

Given a suitable modulus m, multiplier a,
additive constant k and initial random seed xq, use
of the sequence z,, = ax,—1 + k mod m is prob-
ably the oldest and most common method of pro-
ducing random integers. If a is a primitive root of
the prime p, and g is a random seed from

Z2={1,2,...,p—1},
then the sequence generated by z,, = az,—~; mod
p will be strictly periodic, with period p — 1, and
each element of that sequence will be a uniform
random variable on the set Z, but of course they
will not be independent.

Getting az mod p for a prime p is usu-
ally much more difficult than getting az mod
232 a5 the latter is virtually automatic in most
CPUs. Thus sequences such as z, = azp—1 +
k mod 232, with k£ odd and @ = =3 mod 8
have dominated, since, given a random seed

z9 € Z=1{0,1,...,2%2~1},
each element in the sequence will be uniformly
distributed over Z, and the sequence will have pe-
riod 232,

Congruential RNGs have the flaw of
“falling mainly in the planes”,[2]. For example,
if z,y,z are any three successive integers pro-
duced by a congruential RNG with multiplier
a, then the point (z,y,z) falls on the lattice
of points generated by all linear combinations,
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with integer coefficients, of the three points
(1,a,a?),(0,m,0),(0,0,m); any point (z,y)
lies on the lattice generated by (1,a),(0,m);
any four consecutive outputs provide a point
(z,y,z,w) in 4-space that must fall on the
lattice of integer combinations of the four points
(1,a,a?a%,(0,m,0,0),(0,0,m,0),(0,0,0,m),
etc.. See [2,3,4]. The last reference describes
a simple way to characterize the lattice of a
congruential RNG, in terms of ratios of edges of
a unit cell—nearly cubic is better than long and
thin.

Partly because it is one of the few exact
measures for congruential RNGs, a widely used
assessment is that of Knuth’s ‘Spectral test’, [1]
which dwells on the lattice stucture only tangen-
tially. The spectral test amounts to characterizing
a lattice by the minimum distance between its hy-
perplanes. Although I discovered the lattice struc-
ture of congruential RNGs, I have never found it a
very useful measure of their goodness or badness,
but it remains a measure that is frequently taken,
because of its exact, interesting mathematical un-
derpinnings.

Cracking a Congruential RNG

Because congruential RNGs are so com-
mon, and are often a system RNG, it may be worth
pointing out a simple method for determining
whether an unknown RNG is congruential, and if
50, how to determine its modulus and multiplier.
I have used this method for over thirty years, and
it is implicit in references {2,3], but has not been
stated explicitly in a journal before this. Suppose
the rule for the RNG is ¢, = az,—1 + k£ mod m.
Suppose ¢, 3, are any three points in the plane
with coordinates successive integers produced by
that congruential RNG. Then the determinant of
the 2x2 matrix with rows f—a and y—a: is the vol-
ume of the parallelepiped determined by the three
points, and must be an integer multiple of m, the
unit-cell volume of the lattice. Thus the ged of
five or six such determinants will usually provide
m, from which a and & may be found.

For example, a certain simple RNG pro-
duces integers
308,785,930,695,864,237,1006,819,204,777,378,
495,376,357,70,747,356.. . .,
leading to points c; = (308, 785) a2 = (785, 930),
a3=(930,695),.. .,

Then the parallelepiped determined by
a1, a9, a3 has volume 133120, that determined
by g, as,a4 has volume 30720, etc. The se-
quence of volumes determined by «, @41, 42
is 133120,30720,118784,263168,474112,.. ., and
the gcd of the first two, then the first
three, then the first four,..., leads to the
sequence 10240,2048,1024,1024,1024,1024,. . .,
and thus to the inference that n = 1024. Solving

{308a+k = 785, 785a+k = 930} mod 1024
yields a = 69,k = 13. Thus, with g = 308, the
sequence T, = 69z,_1 + 13 mod 1024 produces
the above output of the RNG.

Query: Which congruential RNG produced
768,54,747,221,321,48,225,669,414,163,260,
723,127,119,420,685,809,630?

Xorshift RNGs

Theory behind these RNGs is based on
viewing a 32- (or 64-) bit integer as an element of
a vector space with components in the field mod
2. For such, addition of two vectors can be im-
plemented with the exclusive-or (xor) operation.
That, combined with the shift operation, can be
used to create certain linear transformations over
that vector space. Here the seed set Z is the set of
all non-zero 1 x 32 binary vectors and f is a lin-
ear transformation on Z, represented by a 32 x 32
binary matrix T, nonsingular. Then for a random
seed y € Z, the sequence is yT,yT2,yT3.... If,
and only if, the order of T is 2321 in the group of
32x32 nonsingular binary matrices, then sequence
YT, yT2,yT3, ... will have period 232 —1.

Applications require a simple and fast
way to form the matrix product yT", and that can
be done if, say, T = (I + L®)(I + R®)(I + L°),
where L is the matrix that effects a left shift of
one (in C, y~=(y<<1}), so that yL® in C is
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y~=(y<<a). The matrix R, the transpose of
L, effects a right shift of one. Thus, for T =
(I + L%)(I + R*)(I + L°), for a random 32-
bit seed y from Z, each new y in the sequence
yT,yT?,yT3,... can be produced in C by suc-
cessive application of the three instructions

y =y<<13; y"=y>>17; y =y<<5;

Such xorshift sequences are among the
most desirable of simple RNGs: quick and easy,
with seemingly better performance than congru-
ential on tests of randomness.

For 32- (or 64-) bit binary vectors, there
are no two-shift matrices T’ = (I + L%)(I + RY)
that have full period, and certainly no one-shift,
so 3-shift T’s are needed. There are 81 triples
[@,b,c], a < ¢, for which the 32 x 32 binary ma-
trix T = (I 4+ L®)(I + R®)(I + R°) has order

232_1 listed in four columns:

1, 3, 10|11, 5 16| 1, 5, 19| 1, 9, 29
1,11, 6| 1, 11, 16| 1, 19, 3| 1, 21, 20
1, 27, 27} 2, 5, 15| 2, 5,21| 2, 7, 7
2, 7, 9|2 7,252 9 15|2, 15 17
2, 15, 25| 2, 21, 9| 3, 1, 14| 3, 3, 26
3, 3,283 3,293 5 203 5 22
3, 5,253 7,29 3,13, 7| 3, 23, 25
3, 25, 24| 3, 27, 11| 4, 3, 17| 4, 3, 27
4, 5,15( 5, 3,215 7,225 9, 7
5 9,285 9, 3115 13, 6| 5, 15, 17
5 17, 13| 5, 21, 12| 5, 27, 8| 5, 27, 21
5, 27,25 5, 27,28 6, 1,11| 6, 3, 17
6, 17, 9| 6,21, 7| 6,21, 137, 1, 9
7, 1, 18| 7, 1, 25{ 7, 13, 25| 7, 17, 21
7, 25, 12| 7, 25, 20| 8, 7, 23( 8, 9, 23
9, 5 1|9, 5 25| 9, 11, 19( 9, 21, 16
10, 9, 21(10, 9, 25|11, 7, 12(11, 7, 16
11, 17, 13|11, 21, 13|12, 9, 23|13, 3, 17
13, 3, 27|13, 5, 19|13, 17, 15{14, 1, 15
14, 13, 15{15, 1, 29|17, 15, 20{17, 15, 23
17, 15, 26

IfT = (I + L%)(I + R)(I + L°) has full pe-
riod, then so does (I + L¢)(I + R®)(I + L%),
and so does (I + L%)(I + L°)(I + R®), lead-
ing to 4 x 81 Ts with order 232 —1. But then
the transpose of each also has full period. That
provides 8 x 81 = 648 matrices. Any [a, b, ¢] in

the above table of 81 yields eight lines of C code:

y =y<<a; y"=y>>b; y =y<<c;
Yy =y<<c; y =y>>b; y =y<<a;
y =y>>a; y =y<<b; y =y>>C;
y =y>>c; y"=y<<b; y"=y>>a;
v =y<<a; y =y<<c; y =y>>b;
y =y<<c; y"=y<<a; y =y>>b;
y =y>>a; y " =y>>c; y =y<<b;

y =y>>c; y'=y>>a; y =y<<b;

In summary: for each of the above 81 ftriples
[a,b,c] with @ < c, any one of those eight lines
of C can provide the instructions for a 32-bit RNG
with period 232 1.

For 64-bit integers, there are 8 X 275 or
2200 such xorshift T"s with periods of 264 —1. A
list is available from the author, as well as a fast C
program for finding all full period xorshift T"s

Lagged Fibonacci RNGs

The basic recurrence for a lagged Fi-
bonacci RNG is £, = ZTp—r ® Tp—s, for ‘lags’
r and s, with 7 > s. Here e is a binary relation
for pairs of elements in some set A and the seed
set Z is the set of r-tuples (zy, T2, ...,Z,) With
the z’s in X. Usually, X is the set of 32-bit in-
tegers and e is addition or subtraction mod 232 or
addition of binary vectors (exclusive-or: @). A
promising choice has X the set of odd integers
and e multiplication mod 232. Theory for the lat-
ter may be based on expressing elements z, y from
X in the form z = £3°%,y = £3° mod 232 so that
z ey = +3(@+bmod 2%) anq the recurrence rules
for addition mod 230 apply.

The notation F(r,s,e) is used for a
lagged Fibonacci RNG. For proper choice of the
lags r, s, the period of F(r, s, %+ mod 232) can be
23247 while that of F(r, s, ®) will at best be 2",
whatever the word size. For proper choice r > s,
the period of F(r, s, * on odds mod 2%2) is 230,

As with other RNGs, formal definition
of lagged Fibonacci RNGs requires a seed set
Z and a function f on Z. Here, 2 is the set
{lz1, %2, ..., 2]}, with 2’s in the set A’ on which
we have the binary relation, and the function f:
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f([z'la L2yeeey wT]) = [$21 ceesTr, T1 @ z'r—s-i-l]-

Implementing lagged Fibonacci se-
quences with lags r > s requires keeping a table
of the r most recent values. Their periods, around
23247 are far short of the possible 232" that is
attainable with certain RNGs that also keep a
table of the r most recent values, discussed in
the next two sections. One of the most useful
applications of lagged Fibonacci RNGs is in
the generation of floating point uniform [0,1)
variates directly, without the usual floating of
random integers. For example, suppose we want
to generate 64-bit (C’s double or Fortran’s
double precision) uniform [0,1) random
variables using the IEEE 754 standard: 1 sign
bit, 11 exponent bits, 52 fraction bits, with the
implied 1 leading the fraction part. For our binary
relation z e y we use the rule:

If z2y then z~y, else z—y+1.
If z and y are floating point representations of
rationals a/25% and b/253, then o y will produce
the (exact) floating point version of ¢/2%3, with
¢ =z —ymod 253,

A single precision version of this is in
the widely used ‘Universal’ generator [9], while
a double precision version is the RNG in Mat-
lab and described in the new DVD version of [6].
Both combine an F(99, 33, —) sequence with a
simple Weyl sequence y, = yp-1 + d, withd a
constant and the y's double representations of ra-
tionals of the form j /2%, with & = 23 or 53. Then
the double precision operation

if <y then z—y else z—y+p/2F
produces rationals with denominators 2¥ and nu-
merators the difference modulo the largest prime
p < 2%

Multiply-With-Carry (MWC) RNGs

An early description of MWC RNGs is
in the file mwcl.ps of [6]. For another, sup-
pose we extend the example of the second para-
graph: You randomly choose a number from 1
to 58 as a pair ¢z—that is, 23 is represented as
23, 49 as 19, etc. Your seed set Z is the 58

pairs ¢z, 0 < ¢ < 6, 0 < z < 10, excluding
00 and %9. I convert your choice °z into a new
pair by means of the function f(°x) = cg!, with
¢ = |(6z + ¢)/10] and 2’ = 6z + ¢ mod 10.
Thus f(25) =32, f(°1) ='1, etc. For each uni-
form choice of z € Z, my result f(z) will be
uniform in Z, and the sequence f(2), f2(2),...
will be a sequence of uniform choices from Z. If
you randomly choose, say, z =5, the result of
f(2), f(z(3)... is a period-58 sequence that will
contain every element of 2Z:

83,21, 98,8, %2,...,19, 55,35, 33, 21,...,
each of them the realization of a true random
variable in the mathematics sense, uniformly dis-
tributed over the finite set Z.

If I use the z-component of each pair in
the first cycle, I get a small sample of 58 random
digits:

3,1,8,8,2,7,3,...,2,2,3,9,5,5.
and if I take, in reverse order, the z’s
from the full cycle, then attach a decimal
point, I get the decimal expansion g—g— =
.559322033898305084745762711864406779
6610169491525423728813 5593- - -.

Now take an eminently practical example,
(used as one of the components in the KISS RNG
below): Let a = 698769069,b = 232. You ran-
domly choose one of the ab—2 seeds from the set
Z of pairs [¢,z],0 < ¢ < @, 0 < z < b, exclud-
ing [0, 0] and [a—1, b-1]. For each choice of seed z,
form the sequence f(2), f2(z), f3(z), ..., where

f([a,<]) = [|(az + ) /b], (az + ¢) mod }].

The resulting sequence will have period ab—2,
about 2694 or 10'®2. The z components of
each element of that sequence of pairs will pass
tests of randomness at-least-as-well-as, and usu-
ally better-than, most commonly used RNGs that
produce 32-bit integers, and with a period far
greater than the &~ 232 of most RNGs. But you
must pay a little more for that longer period: two
random seeds, the ¢ in 0 < ¢ < a and the z in
0 < z < b. (The forbidden seeds in the exam-
ples: [0,0] and [a — 1,b — 1], have the property
that f(z) = z and thus produce sequences with
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period 1. This nuisance restriction is overcome in
the next section on CMWC.)

Another feature of this example, and true
in general: the generated z’s will form, in reverse
order, the base b = 232 ‘digits’ of the expansion
of 7/(ab—1) for some integer 0 < j§ < ab — 1,
while the forbidden seeds [0,0] and [a — 1,5 — 1]
will provide base-b expansions of 0/(ab—1) and
(ab—1)/(ab—1).

And still another feature of the MWC
sequence generated on pairs [c, z] by means of
f(la,c]) = [{az + )], (az + ¢) mod ] is that
the resulting =’s are just the elements of the
congruential sequence y, =ay,; mod (ab—1),
reduced mod b. For example, with seed z =
[123,456789] in that last example, the sequence
of 2’s becomes

939722732,3858638025,3534982343,
2658951225,1839178858,1673917006. . .,
while with seed yp = 123b+-45678, the congruen-
tial sequence y, = ayp mod (ab—1) produces

319190024259564, 656649178557850825, 269
6296900490136775, 2470136321377329209. ..
and that sequence, taken mod 232, yields the z’s
of the MWC sequence.

The above MWC sequences may be
described by z, = azp_; + carry mod b, with
the ‘carry’ ¢ being the number of b’s dropped in
the modular reduction that produced the new z:
¢ = |(azp-1 + ¢)/b]. These are lag-1 MWCs.
For lag-r MWCs, as with any RNG, we need a
collection Z of seeds and an invertible function
f. In this case, Z is the set of (r + 1)-tuples

Z= {[C, Zo,T15--- 11;7‘—1]}9
with0 < ¢ < a,0 <z < b, except for [0;0,...,0]
and [a—-1;b—-1,...,b—1].
Then the function f is
f([c zo, 21, .- -y Tr—1]) = [(azo + ¢)/b];
Z1,%2;...,%r—1,aZy + ¢ mod b].

For example, with ¢ = 5,b = 10 and
r = 6, the lag-6 MWC generator z,, = 5z,_¢ +
c mod b, starting with seed z = [4;2,3,5, 3,9, 4],
will produce this sequence of z’s:
[1;3,5,3,9,4],(1;5,3,9,4,4],(2;3,9,4, 4, 6],

[1;9,4,4,6,6],[4;4,4,6,6,7],..., with output
the sequence of z’s: 4,4,6,6,7,. ...

The period of the sequence is the order of
10 for the prime p = ab% — 1 = 5999999, which
is (p — 1)/2 = 2,499, 999.

Here is an example of a C program to
compute the sequence through a little more than a
full period, and to provide basis for comments on
programming the general lag-r MWC RNG:

int main(void){

unsigned long i,t,x0=2,x1=3,
x2=5,x3=3,x4=9,x5=4,c=4;
for(i=1;i<2500006;i++){
{t=5*x0+c;c=t/10;x0=x1;x1=x2;

x2=x3; x3=x4;x4=x5 ; x5=t10;

if(i<7 || 1>2499993)printf{
"%7d,%d;%d,%d, %d, 4d, %d\n",
i,c,x0,x1,x2,x3,x4,x5); }}
The output of that C progam will give the first
six, then the last six 2’s in the cycle of length
2,499,999, as well as confirming that the first six
of the second cycle match those of the first cycle.

As with the lag-1 MW(Cs, the more gener-
al lag-r MWC:

Ty = QZTp_p + carry mod b
will produce a sequence of z’s that are, in re-
verse order, the digits in the base-b expansion of
j/(ab™ — 1), with 0 < 7 < ab” — 1. For example,
from the above C program, the sequence of z’s
in reverse order are 935328987 - - - 8322467664,
and, sure enough,
e = .9353289870657974131594 - - -
16916123383224676644 935328 - - - |

the trailing digits of which can be determined by
expanding (1049997 x 4676644 mod 5999999) to
30 places. To find which j provides the expansion
of 7/p, just put a decimal point in front of the re-
versed z’s that end a cycle—for the above case,
.9353289.. ., and find that 4676644 is the integer
closest to .935289p.

A possibly simpler way is to use the in-
verse function of f, say

f_l(z) = g([cv Zo,T1y--- 71'1‘—1]) =
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[bc + r—1 mod a;

L(bc + zr_1)/a) |, %0, %1, - - - , Tr_2)-
Then, with z = [4;2,3,5,3,9,4], the rightmost
z’s in the sequence 2,9(z),9%(z),... will gen-
erate, in order, the digits of the base-b expan-
sion of 4676644/p, just as the rightmost z’s in
f(2), F2(z), f3(2),- .. will generate those digits
in reverse order.

For computer implementation, we
often choose b = 232, and then it is clear
that the f sequence is more practical than
the g sequence, as the integer operations

= az + ¢;¢ = [t/b];z = t mod b are built into
most CPUs. One merely forms ¢ = az + ¢ in 64
bits, then c is the top-32 and z the bottom-32 bits
of t.
In the C program above, for lag-6, it is just barely
feasible to keep the last six z’s by means of pro-
motions: x0=x1; x1=x2; and so on. Keeping
a (circular) table of the r most recent z’s in an
array Q[ 1, and a pointer that rotates through
the elements provides simple and very fast MWC
RNG’s. An example is this C procedure that
provides 32-bit random integers with period
greater than 233245 » 1010007,

static unsigned long Q[1038],c=123;

unsigned long MWC1038(void){

static unsigned long i=1037;

unsigned long long t,a=611373678LL;

t=a*Q[i]+c; c=(t>>32);

if (--i) return(Q[il=t);-

i=1037; return(QL0l=t); }
You need to assign random 32-bit seeds to the
static array Q[1038].
Note: Unlike simple MWC RNGs

Ty, = GZTp—1 + carry mod m,
which can be expressed as the reduction, mod b,
of the congruential sequence
Yn = aYp—1 mod ab—1,
there seems to be no such simple relation between
lag-r MWCs
Ty = QTp—p + carry mod b
and the congruential sequence
Yn = QYp—r mod ab" —1.

Complimentary-Multiply-With-Carry (CMWC)
RNGs

A few nagging problems come with
MWC RNGs z, =azp.r+cmodb when
b= 2% is chosen for computer implementation:
the period is the order of b for the modulus
m = ab” — 1, but even whenp = ab" — lis a
prime, the period cannot be p — 1 because b = 232
is a square. Thus, as in the above example,
MWC1038(), even though p = ab'%® —1 is
prime, (as is (p — 1)/2), the generated 32-bit
integers will have period (p—1)/2, and they will,
in reverse order, form either the base-232 digits of
the expansion of j/p for some j in the subgroup
{b,82,b%,...,b®1)/2 ;mod p}, or else for some j
in the coset {hb, hb?, hb®, ..., hb®1)/2 mod p},
where h is some group element not in the cyclic
subgroup generated by b.

Thus, strictly speaking, we do not
have a seed set Z until we choose the seed
[e;zo, %1, .., T1037]. Half of the choices will
lead to the digits in the expansion of j/p for j
in the group, half for j in the coset. (An inter-
esting sidelight: if [¢, zg, z1,-..,Zr-1] is a seed
whose subsequent z’s form the reversed digits
in §/p, with j in the subgroup, then the seed
[a—1—c;b—1—zg, b—1—x1, ..., b—1—z,_1] will
form the reversed digits in the expansion of k/p,
with k in the coset—indeed, & = p — j.)

Another nuisance feature of MWC RNGs
is that the two seeds [a—1;b—1,...,b—1] and
[0;0,...,0] must be avoided, as they have the
property that f(z) = 2z, so that their periods
are 1 (with reversed digits corresponding to the
base-b expansions of 0/p and p/p, as, in base 10,
23/23 = .9999999---).

Complimentary-multiply-with-carry
RNGs (CMWC) permit us to avoid both of those
difficulties. By making b = 232 —1, we can still
exploit the way that integer arithmetic is carried
out in modern CPUs (with a little fiddling for
reductions mod 232 —1 rather than mod 232). For
this, we seek primes of the form p = ab™ + 1 with
b = 232—1 a primitive root of p. Then the CMWC
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recursion is z, = (b — 1) — [azp_, + ¢ mod B],
where rather than the £ of MWC, we return the
(b—1)-complement of that z. The period will be
p—1=ab".

Formally, if p = ab" + 1 is a prime for
which b is a primitive root, then the seed set

Z= {[C; Zo,T1y- .- ’zr—l]}v

0<c<a,0<z<b,
has ab” elements, and for any z € Z, (including
all 0’s and ¢ = a — 1 with all z; = b — 1), the se-
quence f(z), f2(z),... will have period ab”. Here
f(2) = f(le; o, @1, - .., Tr—1]) =
[L(azo + c)/b]; 21, 25 - . . , Tp—1,

(b—1) — (azp + ¢ mod b)].
Furthermore, the sequence of trailing z’s in the
sequence f(2), f2(2),... will, in reverse order,
form the base-b digits in the expansion of j/p for
some 0 < j < p.

Example: b = 10 is a primitive root of the
prime p = 7b? 4+ 1 = 701. The seed set is the 700
elements Z = {[¢;z,y]} with0 < ¢ < 7, 0 <=
z < 10, 0 <y < 10. The iterating function is

(e, z,y)) = [L(Tz + ¢)/10]; 4,9 — (72 + ¢ mod 10)].

Starting with seed 2 = [2;3,4], the sequence
f(2), f?(2),... produces the 700 elements of Z,
then repeats:
[2;4,6],3;6,9],[4;9, 4], [6: 4, 2],[3;2,5], ..

(4; 6,6], [4;6,3],[4;3,3],(2;3,4], [2;4,6],[3;6,9], - . ..
The trailing z’s, taken in reverse order from the
end of a cycle, are 4336..., and .4336p =
303.9536, so we expect j =304, and so it is:

% =.433666191155492154 - - -
932952924393723252496 4336661912 - - -
provides the output from the CMWC z, = 9 —
[7Tzp—2 + c mod 10] starting with ¢ = 2,79 =
3, z1 = 6 and put in reverse order.

Those digits could be produced in direct
order with the sequence z, g(z), g%(z), ... where g
is the inverse of f:

9([¢i z,y]) = [10¢ + y mod 7; [ (10c + y) /7], z].
Then the sequence z, g(z), g%(z), - . . becomes

(2;3,4],[4;3,3],[4;6,3], [4; 6,6],[1;6,6],...,
and the trailing components, 43366 --- form the
digits in the expansion of 304/701.

The digits in the base-b expansion of j/p
for a large prime p are likely to serve quite well as
random integers from O to b — 1, whether in direct
or reverse order. But for computer implementa-
tion, with b = 232 or b = 232 — 1, the arithmetic
in g(z) is much less well suited to computer oper-
ations than that in f(z).

With period exceeding
here is a C procedure that produces the CMWC
sequence

zp=(b—1) —[aZp + carry mod b],
with b =2%2-1, q = 18782:

2131086 ~ 1039461 ,

static unsigned long Q[4096],c=123;
unsigned long CMWC(void){

unsigned long long t, a=18782LL;
static unsigned long i=4095;
unsigned long x,m=Oxfffffffe;
i=(i+1)&4095; t=axQ[i]+c;
c=(t>>32); x=t+c; if(x<c){x++;c++;}
return(Q[i]=m-x); }

The static array Q[ 1 must be filled with random
32-bit integers for different runs. Rather than
keeping the most recent 4096 z’s in an array Q,
smaller sizes 2048,1024,512,... can be used.
(Choice of array size 2¥ simplifies incrementing
the array index). Different choices of na require
slight changes to the above C code for CMWC:
Make Q[ ] have size r, change multiplier a and
change the two 4095’s to (decimal) r-1.
Here are a few good choices for r and a:
r a r a
2048 1030770 64 987651206
2048 1047570 64 987657110
1024 5555698 32 0987655670
1024 987769338 32 987655878
512 123462658 16 987651178
512 123484214 16 987651182
256 987662290 8 987651386
256 987665442 8 987651670
128 987688302 4 987654366
128 087689614 4 9087654978
The results will be CMWC RNGs that
seem to pass tests of randomness as well as any I
know of, are simple and extremely fast, and have
periods ab”, with b= 2321, roughly 23230,
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Choice of r and a have little effect on speed—
about 18 nanoseconds on a 1.2MHz PC, or bet-
ter than fifty million random numbers per second.
Those wanting even more pairs r,a will need to
find primes of the form p = ab" 4+ 1 for which
b= 2%2—1 is a primitive root.

Randomness and Choice of Seeds

Just as in geometry, where existence of
and conclusions about complicated objects are
premised on the existence of fundamentals such
as points, lines, planes, etc., most distribution the-
ory in probability is premised on the existence of
more fundamental random variables. In particu-
lar, the distribution of elements in the RNG se-
quence f(z), f2(z), f3(z),. .. is premised on the
existence of a random selection z from the seed
set Z, and it has as firm a basis in mathematics
as do results in geometry, number theory and the
like.

In my view, use of the name pseudo ran-
dom number generators (PRNGs) is not appropri-
ate. The qualifier pseudo can have several impli-
cations, most commonly: unreal, false, pretended,
spurious, sham.

Use of pseudo, in the sense of unreal
implies that there is real randomness, when the
only kind we are sure of is in the sense of
mathematics—exactly the sense that applies in
our use of f(z), f2(z),-- ..

Use of pseudo in the sense of false is
not appropriate either. If z and y are indepen-
dent standard normal variates then we say that
x? + y? is a chi-square variate; we do not call
it a pseudo chi-square variate. Its properties
may be deduced from that of its defining vari-
ates, just as are those of elements of the se-
quence f(2), f2(2), f3(2),...—both considera-
tions a real consequence of assumptions in the
mathematical model.

Use of pseudo in the sense of pretended
might be considered the least objectionable, for
it might seem that we are pretending that our se-
quence f(2), f2(2), f3(2) ... produces truly ran-

dom numbers. But to many, (including me),
true randomness exists only in the sense of
mathematics—whether or not we understand it,
the Universe is unfolding as it must. So the pre-
tending is that there is such a thing as true ran-
domness.

And finally, use of pseudo in the sense
of spurious or sham is worst of all. Few would
argue over the usefulness of RNGs for the past
fifty years, and considerable effort has gone into
studying their mathematics. Unfortunately, joint
distribution theory for elements in the sequence
f(2), f2(2), f3(2) ... is not readily determined
other than through simulation. Thus, except in
cases such as the lattice structure of congruential
RNGs, use of number or matrix theory to estab-
lish the periods, presence or absence of various
m-tuples, relation to base-b decimal expansions,
most of what we know about RNGs has been de-
termined from extensive use, and those are far
from spurious or sham endeavors.

If you must use ‘pseudo’, it would be
more appropriate to say that our random-in-the-
sense-of-mathematics numbers are pseudo inde-
pendent, for we are pretending that they are
independent—our random variables are identi-
cally distributed (id) uniform, but not independent
identically distributed (iid) uniform.

Choice of Seeds

It is often convenient to choose just one or
two random integers as seeds, even when several
hundred may be needed to specify an element z of
the seed set Z. The other parts of the seed z may
already have been assigned by default or previous
use. Use of a RNG sequence can be likened to
randomly choosing a starting position on a huge
wheel of numbers (the RNG’s cycle), then us-
ing them sequentially from that selected starting
point. Even though that wheel might contain over
1010990 numbers, a single 32-bit integer can pro-
vide over four billion potential starting points, and
the features you may want to study are likely to be
consistent with the underlying probability theory
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at all but a few of those starting points.

But there are some applications where the
seed selection procedure must be able to pro-
vide every element in the seed set Z. Such
requirements arise in Law. Many states have
laws that permit use of computers (and hence a
RNG) to select a jury venire—a panel of citi-
zens selected to serve on juries. For example,
Flor.Stat.ch.40.225(2000) authorizes use of com-
puters to select jury venires, if such drawing is by
lot and at random by a method approved by The
Florida Supreme Court.

I was retained by that court to see if meth-
ods used in the various court districts were meet-
ing this statutory requirement. It turned out that
they were not,[8]. In most counties, a seed of
perhaps ten digits is chosen by the staff or by the
computer clock for the RNG of some proprietory
administrative system. Suppose the task were to
chooses 80 potential jurors from a list of 200 eligi-
bles. There are (3y) > 1057 ways to choose such
a panel, and the & 1010 ways of selecting a single
seed, (or worse, the 65,536 possible 16-bit inte-
gers from a computer clock) can not come close
to providing the necessary number of choices.

The requirement that selection be by lot
and at random means that a litigant should be en-
titled to any one of the possible venires; in this
case, a RNG requiring at least eight 32-bit random
integers to determine the element z of the seed
set Z would be required. The Florida Supreme
Court has implemented recommended procedures
for choosing the necessary number of random
seeds, from publicly available data—for example,
from a coming week’s stock market—which is un-
predictable yet verifiable after the fact, see [7,8].

Another place where the need for ade-
quate seeds arises is in the gaming industry. For
example, The Michigan Game Control Board
received an application to license a computer
poker game that would permit the player to play
as many as fifty games of poker at a time. The
application was initially rejected because the
Board ruled that a player was entitled to the

chance that his fifty hands would all be straight
flushes, and the RNG used by the machine had
far too meager a seed set Z. The company was
presumably able to get a license after I advised
them on overcoming the problem by extending
the seed set Z for the version of my KISS RNG
that they were using (without permission, as
published mathematics or algorithms are not
protected by patent or copyright law).

Combination RNGs

A RNG produces a random sequence of
uniform selections from the seed set Z. They are
used to provide a sequence of integers 1, T2, .. -,
each z coming from one of the random elements
in Z, either, for simple RNGs , as the element
Zn, = f™(2) itself, or as one of the z-components
of an r-tuple of z’s that make up each z € Z.
When, as is the most common case, the RNG
merely produces a sequence of integers with pe-
riod 232, then it can produce only 1/232 of the
possible pairs (z,7), only 1/254 of the possible
triples (z,y, z), etc. If your simulation concerns
certain properties of triples (z, v, z) that are ade-
quately represented in the limited supply that the
RNG provides, then fine. But with such a limited
supply, it is likely that there will be many simula-
tions for which such a RNG is not suitable.

There are ways to overcome this dif-
ficulty. One of them is to use lag-r MWC or
CMWC RNGs, from which every possible r-tuple
of z’s can appear. Another method is to combine
simple, short period generators. One of the first
examples of this was Super Duper, which
combined a congruential and a 2-shift xorshift
RNG. One of the most widely used is the KISS
RNG, which I named during the early days of
the Clinton administration when “Keep It Simple
Stupid” was a buzz phrase relating to economic
policy. The KISS RNG combines three simple
RNGs: congruential, xorshift and the lag-1 MWC
described above. It has had wide use, because it
seems to pass all tests of randomness and yet uses
simple computer instructions and needs no tables.
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Here is a C version:

unsgigned long KISS(){
static unsigned long
x=123456789,y=362436000,
z=521288629,c=7654321;
ungigned long long t;
x=69069*x+12345;
y =y<<13; y =y>>17; y =y<<5;
t=698769069LL*z+c; c=t>>32;
return x+y+(z=t); }
Seeds x,v, z,c may be changed from the de-
fault values. With a period > 2124, KISS() may
be more suitable than single-seed RNGs for ap-
plications. It is used in the gaming industry in
North America and Australia. The speed may be
only 20+ million per second compared to the 50+
million or so for MWC or CMWC, but a RNGs
speed is usually not important in the overall time
of a simulation or in game processing. For For-
tran, which has no easy way to access the 64-bit
product of two 32-bit integers, versions of KISS
adjoin two lag-1 MWC'’s on 16 bits.

For a really powerful combination, I
would recommend CMWC () +KISS (), for the
rare chance that the 4096-tuples provided by
CMWC might benefit from tweaking with KISS.
(The “+” can be ordinary addition mod 232).

Testing RNGs

For some 25 years, in graduate
math/cpt.sci/stat courses, I had discussed us-
ing a battery of tests of randomness for RNGs,
and in one of the classes a Chinese student, who
knew the word ‘battery’ only from pervasive TV
ads for Sears car batteries, used the term Diehard
in referring to the tests we were discussing—
much to the amusement of the class, but the name
stuck. Subsequently, under a grant from NSF, 1
developed

The Marsaglia Random Number CDROM
with
The Diehard Battery of Tests of Randomness
The CDROM contained 600 megabytes of ran-
dom bits produced by combining the output of
good RNGs with the output of physical devices

purporting to provide random bits. Some 1000
free copies of that CDROM were distributed
to researchers worldwide. The CDROM also
contained Fortran and C code for what I called
The Diehard Battery of Tests of Randomness.
Although the free CDROMs were soon gone,
presence of two of them at sites on the web made
it readily available, and it seems to be in wide use.

A new version of those tests is now avail-
able at www.csis.hku.hk/~diehard and
will be included in a DVD version of [6], with
more extensive files of random bits. The new
Diehard tests contain several new ‘tough’ tests
that relate to use of random integers in computa-
tional number theory and cryptography.

Some of the most effective tests for ran-
domness are based on what I call Monkey Tests.
The idea is that some part of each random number
can be used to specify a ‘keystroke’ that produces
a letter from an alphabet. Few images invoke the
mysteries and ultimate certainties of a random se-
quence as well as that of the proverbial monkey at
a typewriter. A discussion of such ‘monkey tests’
is in the file monkey.ps of [6].

The most effective monkey tests are those
for which counts are maintained for the number
of appearances of each k-letter word in a long
string of random letters, and it turns out that if

Qr = S (observed-expected)?/expected
is the naive Pearson statistic for k-letter words,
then Qy — Q1 is the quadratic form in the weak
inverse of the covariance matrix of the k-letter
word counts, and is asymptotically chisquare dis-
tributed with L¥ — L*¥—1 degrees of freedom, when
the alphabet has L letters.

It usually happens that the number of pos-
sible k-letter words is too great to maintain a count
for each word. In that case, the number of k-letter
words missing from a long string of N random
letters is used. That number will be close to nor-
mally distributed with mean Lke~N/L*, Except
for smaller cases k = 2, 3, 4, the variance must be
estimated by simulation.

One of the tests in the new version of
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Diehard is called the ‘Gorilla test’, in the sense of
a strong monkey test. Many RNGs fail it. The Go-
rilla test counts the number of bit strings of length
26 that are missing from a sequence of 226 + 25
bits. Such a string is formed by specifying the bit
position for each 32-bit word, then taking that bit
from each of 226 + 25 calls to the RNG. The Go-
rilla test reports a p-value for the number of miss-
ing 26-bit strings for each of the 32 bits.

Another new test is the ged test. That
test uses two successive 32-bit integers u, v pro-
duced by the RNG, then finds &, the number of
steps needed to find the ged of u,v by Euclid’s
algorithm, and z, the resulting ged. It tests to
see if a sample of ten million such k’s and z’s
have distributions consistent with underlying the-
ory. All congruential RNGs—even those with
prime modulus—fail the gcd test for distribution
of k’s, and many as well for distribution of z’s.

The new tests include a stronger version
of my ‘birthday spacings’ test, and others. These,
with the gorilla and gcd tests, all relate to the suit-
ability of numbers as random integers, an area of
increasing importance in cryptography and com-
putational number theory.

What might be called more conventional
tests are mainly concerned with the performance
of UNIs, that is, the uniform [0,1) variables that
result from floating the RNG’s integers. In a way,
it may be reassuring that most RNGs pass such
tests, because most real-life applications of RNGs
seem concerned with the UNIs that result, not
with observed non-uniformity in the bits of the in-
tegers that produce the UNIs (although poor per-
formance of leading bits often portends bad sets
of UNIs).

The availability of transfers through
the Internet makes it easy to get the new
version of the Diehard Battery of Tests at
www.csis.hku.hk/~“diehard/, which in-
terested readers are invited to try for themselves.
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