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In other to study the complex simultaneous relationships existing in forest/tree growth modeling, six 
estimation methods of a simultaneous equation model are examined to determine how they cope with 
varying degrees of correlation between pairs of random deviates using average parameter estimates. A 
two-equation simultaneous system assumed covariance matrix was considered. The model was structured 
to have a mutual correlation between pairs of random deviates: a violation of the assumption of mutual 
independence between pairs of such random deviates. The correlation between the pairs of normal 
deviates were generated using three scenarios r  = 0.0, 0.3 and 0.5. The performances of estimators 
considered were examined at various sample sizes (N = 20, 25, 30) and correlation levels with 50 
replications for each. Using the average of parameter estimates criterion, 2 3SLIML were the best 
estimators followed by FIML and OLS for the three cases studied. Also, as sample size increases from 20 
to 25 to 30, 2-3SLIML performed best and was most consistent. 
 
Key words: Growth models, Monte Carlo, random deviates, mutual correlation, average of parameter 

estimates, simultaneous equation models. 
 
 

Introduction 
Growth models assist forest researchers and 
managers in many ways. Some important uses 
include the ability to predict future yields and to 
explore silvicultural options. Models provide an 
efficient way to prepare resource forecasts, but a 
more important role may be their ability to 
explore management options and silvicultural 
alternatives. For example, foresters may wish to 
know the long-term effect on both the forest and 
on future harvests, of a particular silvicultural 
decision, such as changing the cutting limits for 
harvesting. With a growth model, they can 
examine the likely outcomes; both with the 
intended and alternative cutting limits and can 
make their decision objectively. The process of 
developing  a  growth  model  may  also offer 
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interesting new insights into stand dynamics. 
Forest growth models are very useful to forest 
managers and forestry researchers in many 
respects. A forest growth model aims to describe 
the dynamics of the forest closely and precisely 
enough to meet the needs of the forester or 
forestry researcher (dynamics includes all the 
change processes throughout the forest or tree’s 
lifetime). The primary changes in the forestry 
field are related to the incorporation, growth and 
death of trees, a forest’s key asset.  

There are many forest growth models. 
Forest models the individual tree. The most 
common uses of these models for managers are 
to forecast timber production or, less often, other 
forestry products (cones, cork, etc.) and to 
simulate different forestry management 
alternatives with a view to decision-making. The 
models help to forecast what long-term effects a 
forestry management intervention is likely to 
have on both timber production and the future 
conditions of the actual forest, as well as the 
impact of interventions on other forest values. 
For forestry researchers, models are most useful 
as tools for researching forest dynamics. 
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Monte Carlo simulation is a method of 
analysis based on recreating a chance process 
(usually with a computer), running it many 
times, and directly observing the results. The 
term Monte Carlo method was coined by 
physicists working on nuclear weapons projects 
at the Los Alamos National Laboratory. Monte 
Carlo methods are extensively used in many 
fields such as operational research, nuclear 
physics and econometrics, where there are a 
variety and complexity of problems beyond the 
available resources of the theoretician (Adepoju, 
2009a, c). Many modern investigations have 
employed Monte Carlo Methods, notable 
examples include: Wagner (1958); Nagar 
(1960); Johnston (1972); Anderson & Sawa 
(1979); Basmann (1963); Cragg (1966); 
Anderson (1990); Metropolis (1987); Fomby, 
Hill & Johnson (1988); and Smith (1973).  

In Monte Carlo studies, data sets are 
generated with stochastic terms that are free of 
the problems of multicollinearity, non-spherical 
disturbances, measurement error and 
specification error. In the context of a 
simultaneous equation system, the design of 
Monte Carlo experiments requires the generation 
of orthogonal normal deviates or mutually 
independent sequences distributed as ( )1,0N . 
These normal deviates are then transformed to 
ensure that the disturbance terms are distributed 
as ( )Σ,0N , which are not serially correlated, 
where Σ  is the assumed variance-covariance 
matrix of the disturbances: However, in real life 
situations, the errors are not completely 
correlation free (Adepoju, 2009b; Johnston & 
DiNardo, 1984; Anderson & Sawa, 1973). This 
study examined the performance of estimators of 
a two-equation simultaneous model to varying 
degrees of correlation between pairs of normal 
deviates. 
 
General Study Framework 

Simultaneous equation models (SEM) 
are at the heart of a class of models in a data 
generation process that depends on more than 
one equation interacting together to produce 
observed data. Unlike a single-equation model, 
in which a dependent (y) variable is a function of 
independent (x) variables, other y variables are 
among the independent variables in each SEM 

equation. The y variables in the system are 
jointly (or simultaneously) determined by the 
equations in the system.  

The following two structural equations 
are assumed: 
 

12211112211 ttttt UXXYY +++= γγβ  
 
and 

2 12 1 12 1 32 3 2.t t t t tY Y X X Uβ γ γ= + + +  

 
These equations can be rewritten as: 
 

12211112211 ttttt UXXYY +++=− γγβ  
 
and 

12 1 2 12 1 32 3 2.t t t t tY Y X X Uβ γ γ= + + +  

 
These equations are exactly identified. 

The reduced form model is derived as 
 

UXY +Γ=β  

UXY 11 −− +Γ= ββ i.e VX +π  
 

where, Γ= −1βπ , and by extension, the 
following endogenous equations are obtained: 

 

11 1 21 2 21 12 1
1

21 32 3 1 21 221 12

1

1
t t t

t
t t t

X X X
Y

X U U
γ γ β γ

β γ ββ β
+ + 

=  + + +−    
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and 
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2 1 2

21 12 21 12

32 12 1 2
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1 1

       .
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t t t
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   += +   − −   
   ++ +   − −   

 

 
Monte Carlo Data Generation 

Monte Carlo simulation was used to 
examine the properties of different statistics 
computed from sample data. In other words, 
test-drive estimators were tested, to determine 
how different recipes perform under different 
circumstances. The procedure was as follows: In 
each case an artificial environment was created 
in which the values of important parameters and 
the nature of the chance process were specified; 
then the computer simulated the chance process 
repeatedly and displayed the results of the 
experiment. 

The main task was the generation of 
stochastic dependent (endogenous) variables 

( )TtiYit ,...,1;2,1 == , which are subsequently 

used in estimating the parameters of the model. 
To achieve this, the following assumptions were 
necessary: 
 
(i) Values of the predetermined variables 

1 ,tX  2 ,tX and ( )3 1,..., ;tX t T=  

 
(ii) Values of the parameters: β12, β21, γ11, γ12, 

γ32; and 
 
(iii) Values of elements Ω . 
 

The simulation of the error term 
( )TiU it ,...,2,1=  is the most complex step in 

generating stochastic dependent variables. To 
conduct the Monte Carlo experiment, first, the 
sample size N was specified as N= 20, 25, 30. 
After specifying the sample size, numerical 
values were arbitrarily assigned to each 
structural parameter as follows: 5.112 =β , 

8.121 =β , 5.111 =γ , 5.111 =γ  5.012 =γ , 

0.232 =γ  for all cases. The covariance matrix 

of the disturbances was specified arbitrarily as: 

11 12

21 22

Ω

5.0 2.5
.

2.5 3.0

σ σ
σ σ
 

=  
 
 

=  
 

 

 
The standard random number generator 

with values obtained from the uniform 
distribution with mean 0 and standard deviation 
1 (Kmenta, 1971) was used to generate the 
values of the exogenous variables, 

( )TtiX it ,...,1;3,2,1 == . 

 
Generation of Random Disturbance Term, U 

A 3-stage process was employed to 
generate random disturbance terms. In the first 
stage, independent series of normal deviates of 
required length (N = 20, 25, 30) were generated. 
At the second stage, these series were 
standardized to a normal distribution with mean 
zero and variance 1. Lastly, the random 
disturbance terms were generated assuming 
three degrees of correlation between pairs of 
random deviates: 
 
(i) Case I: no correlation between the 

random deviates ( 0
21 , =εεr ); 

 
(ii) Case II: 0.3 correlation level between 

the random deviates ( 3.0
21, =εεr ); and 

 
(iii) Case III: 0.5 correlation level between 

the random deviates ( 5.0
21, =εεr ). 

 
The samples sizes considered for each 

scenario were N = 20, 25 and 30. The pairs of 
random normal deviates based on these sample 
sizes were generated and each was replicated 50 
times. The deviates were then standardized and 
appropriately transformed to have a specific 
variance-covariance matrix Σ  assumed in the 
model. Numerical values were generated for 
exogenous variables of the model as described. 
Next, selected ( )tt 21 εε  were transformed to be 

distributed as ( )Σ,0N  where Σ  was 

( ) Ttt IUUCov ⊗Ω=′  and elements of Ω  were 
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decomposed by a non- singular matrix ρ  such 

that Ω.ρρ′ =  

Recall, UV 1−= β  
 



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
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2
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t

t
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βββ
βββ

 

 
According to Nagar (1960), M  independent 
terms of standard normal deviates of length N  
can be transformed into M  series of random 
normal variables with mean 0 and a 
predetermined covariance matrix. In this model, 

2=M , i.e. tU1 , tU2 , if the covariance matrix 

is  









=Ω

2221

1211

σσ
σσ

 

 
where ( ) 111var σ=U , ( ) 222var σ=U  and 

( ) 1221cov σ=UU , considering both upper and 
lower triangular matrices. If the upper triangular 
matrix is 

11 12
1

22

,
0

P
η η

η
 

=  
 

 

 
and the lower triangular matrix is 

 

11
2

21 22

0
,P

η
η η
 

=  
 

 

then 
 

11 12
1 1

21 22

.PP
σ σ

Ω
σ σ
 ′= =  
 

 

 
The pair of standard deviates can be transformed 
into a pair of random normal variables with 
mean Zn variance 11σ , 22σ  and covariance 12σ  
using 
 









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
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t
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t
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0 ε
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to obtain a pair of random disturbances for the 
upper triangular matrix: 
 

1 11 1 12 2

11.707825128 1.4043
t t t

t

U η ε η ε
ε

= +
= +  

and 

2 22 2

21.732050808 .
t t

t

U η ε
ε

=
=

 

 
where 1,  2,  ...,  .t T=  Similarly, an alternative 
solution can be obtained for the lower triangular 
matrix: 

1 11 1

12.236067978
t t

t

U η ε
ε

′ ′=
=  

and 
 

2 12 1 22 2

1 21.118033989 1.322875656 .
t t t

t t

U η ε η ε
ε ε

′ ′ ′= +
= +

 

 
Generation of Endogenous Variables 

Assigning numerical values to the 
structural parameters provided all values 
required to generate the endogenous variables. 
Considering the upper and lower triangular 
matrix Ut1, Ut2 defined as 
 

1 1

2 2

1.707825128 1.443375673
,

0 1.732050808
t t

t t

U
U

ε
ε

    
=     
    

 
and the lower triangular matrix 1 2t tU U′ , ′  

defined as 
 

1 1

2 2

1.707825128 0
,

1.443375673 1.732050808
t t

t t

U
U

ε
ε

′    
=     ′     

 
then, solving Yt1 and Yt2 using upper triangular 
matrix results in: 
 

1 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

        -2.117647059X -0.588235294U

         -0.88235294U

t t t

t t

t

 

and 
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2 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

         -2.117647059X -0.88235294U

         -0.588235294U .

t t t

t t

t

 

 
Solving Yt1 and Yt2 using lower triangular 
matrix results in: 
 

1 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

         -2.117647059X -0.588235294U

         -0.88235294U

t t t

t t

t

′
′

 

and 
 

2 1 2

3 1

2

Y  = -1.411764706X - 0.588235294X

          -2.117647059X -0.88235294U

          -0.588235294U .

t t t

t t

t

′
′

 

 
Results 

In theory, and as confirmed by Johnson (1991), 
when an equation is just identified, estimates of 
the parameter obtained by 2SLS, 3SLS and 
LIML should be identical. The results obtained 
in this study show that 2SLS, 3SLS and LIML 
estimators yielded virtually identical results, but 
the OLS, ILS and FIML yielded clearly different 
results from those estimators. Because 2SLS, 
3SLS and LIML have the same results; the 
estimators shall be denoted as 2-3SLIML. 

Analysis of results show that, in case I, 
2-3SLIML performed best; it had the closet 
values to the assumed values in most cases (22) 
followed by FIML (8 cases) and OLS (5 cases); 
ILS did not perform at all. Also, as the sample 
size increased from 20 to 25 to 30, the value of 
the estimates moved closer to the true estimates 
of the parameters in about 72% of the cases 
across the upper and lower triangular matrices. 
For Equation I, the estimates improve from the 
lower triangular matrices to the upper triangular 
matrices. 

Case II revealed that as the sample size 
increased, the estimates obtained by 2 3 SLIML 
were - in most cases - better than the remaining 
estimators, which did not show any clear pattern. 
For both P1 and P2 comparing cases I, II and III 
across the lower and upper triangular matrices, 
the performance of estimators under case I was 
better than those for case II and case III. 

Case III revealed that, as the sample size 
increased from 20 to 25 to 30, the value of the 
estimates moved closer to the true estimates of 
the parameters across the upper and lower 
triangular matrices. For Equation I, the estimates 
improve from the lower triangular matrices to 
the upper triangular matrices. 

As an illustration, for OLS over the 
three magnitudes of the correlation coefficient 
the estimates of β21 fell consistently for sample 
sizes N = 20, 25 and 30, that is, column wise 
comparison for the six estimates: 
 
 
 
 
 
 
 
 
 
 
 

A comparison of the three entries in 
each row shows that estimates rose and fell in 
CASE 2, and rose consistently in both CASE 1 
and CASE 3. Also, along the columns the 
estimates fell consistently at the three cases of 
the correlation coefficient at sample sizes N=20, 
25 and 30. 

The best OLS estimates for β21 ,γ 11 and 

γ 21 of Equation 1 respectively are: 0.92455 
(CASE 1), 0.9256 (CASE 1), 0.9286 (CASE 1) 
for β21, 0.0077 (CASE 2), 0.0487 (CASE 2), 
0.0323 (CASE 1), for γ 11v and 0.0065 (CASE 

2), 0.0594 (CASE 3), 0.0022 (CASE 3) for γ 21. 
Thus, entries 3 (r = 0.0), 0 (r = 0.3) and 0 (r = 
0.5) under β21, 1 (r = 0.0), 2 (r = 0.3), 0 (r = 0.5) 
under γ 11 and 0 (r = 0.0), 1 (r = 0.3), 2 (r = 0.5) 

under γ 21 (See Table 1). 
Similarly, for equation 2, the best OLS 

estimates for γ 12 are observed for case 1. 
Hence, 3(r = 0.0), 0 (r = 0.3) and 0 (r = 0.5). For 
β12 they are 0 (r = 0.0), 1 (r = 0.3; 1.0757) and 2 
(r = 0.5; 1.0944, 1.0914) and finally, 1 (r = 0.0; 
0.06858), 1 (r = 0.3; 0.0272) and 1 (r = 0.5; 
0.0955) for γ 32. This is repeated for the other 
three estimators. Results are displayed in Tables 

 N = 20 N = 25 N = 30 

Case 1 0.92455 0.9256 0.9286 

Case 2 0.9105 0.9098 0.9108 

Case 3 0.9024 0.9045 0.9052 
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1 and 2 for P1 and P2 respectively. Hence 
Tables 1 and 2 reflect the sensitivity of 
distribution of best estimates to varying 
correlation coefficients. 

Tables 3 and 4 are derived from Tables 
1 and 2. Each table contains the correlation-
based distribution of estimators which yielded 
best estimates of not less than 50 percent of the 
parameters for each equation. Tables 3 and 4 
show that CASE 2, where the error term has 0.3 
level of correlation, has the least proportion of 
best estimates and hence fewest so-called best 
estimators. The most frequent estimator in this 
interval is the ILS and 2-3SLS.  

As shown in Table 5 under P1, when 
error terms are not correlated (r = 0.0), OLS, 2-
3SLS and FIML are best for estimating equation 
1, OLS and ILS are good at CASE 2 (r = 0.3), 
and 2-3SLS is best at CASE 3 (r = 0.5). For 
equation 2, 2-3SLS is best at CASE 1, ILS is 
best at CASE 2 and FIML performed best at 
CASE 3. Under P2, the parameters of the first 
equation are poorly estimated at CASE 2 of the 
correlation coefficient (r = 0.3), ILS is best at 
CASE 1 followed by OLS at CASE 3. Results 
show that 2-3SLS performed equally well for 
this equation when the error term is positively 
correlated as in CASE 3. For equation 2, OLS 
and ILS are best at CASE 1, 2-3SLS is best at 
CASE 2 and FIML is best at CASE 3. There is a 
greater scope of estimating equation 2 at the 
three cases of correlation coefficient by several 
estimators. 

The scope of estimating the parameter 
of the first equation is more sensitive to the 
varying correlation between the error terms than 
for the equation 2 and this observation is more 
obvious for P2 than for P1. The ranking of the 
estimators as displayed in Tables 6 and 8 shows 
that the estimators rank differently depending on 
whether the upper (P1) or lower (P2) triangular 
matrices were used. The ranking also shows that, 
although ILS ranks highly as the best estimator 
for the error term with r = 0.0, OLS is best for 
the error term with r = 0.3 and FIML is best for 
the error term with r = 0.5. The estimator 
rankings shown in Table 10, in which P1 and P2 
are combined, is dominated in part by the 
ranking obtained under P2. In that table, ILS 
ranks high in case 1, 2-3SLS in case 2 and FIML 

ranks high in case 3 where the error terms are 
positively correlated. 
 

Conclusion 
The finite sampling property of estimators used 
in this work was the average of parameter 
estimate. Using the average of parameter 
estimates   criterion,   2 3SLIML   are  the  best  
estimators, followed by FIML and OLS, 
respectively, for the three cases studied. Also, as 
the sample size increased from 20 to 25 to 30, 2-
3SLIML continued to perform best (that is, 2-3 
SLIML is consistent); as the sample size 
increased, the estimates moved closer to the true 
parameter estimate in most cases. The result of 
this study will be used to determine the 
parameter estimation of simultaneous 
relationships of tree growth models with 
independent variables like Temperature, rainfall 
and relative humidity. 
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Table 1: Sensitivity of Estimators Using Average N= 20, 25, 30, R= 50 (P1) 
 

Estimators 

Equation 1 Equation 2 

β21=1.8 γ 11=1.5 γ 21=1.0 β12=1.5 γ 12=0.5 γ 32=2.0 

OLS 
C1 
C2 
C3 

3 
0 
0 

1 
2 
0 

0 
1 
2 

0 
1 
2 

3 
0 
0 

1 
1 
1 

ILS 
C1 

C2 
C3 

1 
1 
1 

0 
2 
1 

2 
1 
0 

1 
1 
1 

1 
2 
0 

2 
1 
0 

2-3SLS 
C1 
C2 

C3 

2 
1 
0 

2 
0 
1 

0 
0 
3 

2 
0 
1 

1 
0 
2 

2 
1 
0 

FIML 
C1 

C2 
C3 

1 
0 
2 

2 
1 
0 

1 
1 
1 

1 
0 
2 

1 
1 
1 

0 
2 
1 

 
 
 

Table 2: Performance of Estimators Using Average of Parameter Estimate N= 30, R= 50 (P2) 
 

Estimators 

Equation 1 Equation 2 

β21=1.8 γ 11=1.5 γ 21=1.0 β12=1.5 γ 12=0.5 γ 32=2.0 

OLS 
C1 
C2 
C3 

0 
0 
3 

2 
1 
0 

0 
1 
2 

3 
0 
0 

1 
1 
1 

0 
2 
1 

ILS 
C1 

C2 
C3 

1 
0 
2 

2 
0 
1 

2 
1 
0 

1 
0 
2 

2 
0 
1 

1 
2 
0 

2-3SLS 
C1 
C2 

C3 

0 
1 
2 

1 
1 
1 

0 
1 
2 

1 
2 
0 

1 
1 
1 

1 
1 
1 

FIML 
C1 

C2 
C3 

1 
0 
2 

0 
1 
2 

1 
1 
1 

1 
0 
2 

1 
1 
1 

0 
2 
1 
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Table 3: Correlation-Based Sample Size-Free Distribution of Best Estimators 
N = 20, 25, 30. R = 50, (P1) 

 

Level of Correlation Equation 1 Equation 2 

CASE 1 OLS/2-3SLS/FIML 2-3SLS/OLS/ILS 

CASE 2 - ILS 

CASE 3 2-3SLS FIML 

Source: Table 1 
 
 

 
Table 4: Correlation-Based Sample Size-Free Distribution of Best Estimators  

N = 20, 25, 30. R = 50, (P2) 
 

Level of Correlation Equation 1 Equation 2 

CASE 1 ILS OLS/ILS 

CASE 2 - 2-3SLS 

CASE 3 OLS/2-3SLS/FIML FIML 

Source: Table 2 
 
 

 
Table 5: Sample and Replication-Free Distribution of Best Estimates of P1 

 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

OLS(4) OLS(3) 2-3SLS(4) 2-3SLS(5) ILS(4) FIML(4) 

2-3SLS(4) ILS(3) FIML(3) OLS(4) FIML(3) OLS(3) 

FIML(4) FIML(2) OLS(2) ILS(4) OLS(2) 2-3SLS(3) 

ILS(3) 2-3SLS(1) ILS(2) FIML(2) 2-3SLS(1) ILS(1) 

 
 

 
Table 6: Rank of Estimators Using Level of Correlation (P1) for Eq1 and Eq2 

 

Case 1 Case 2 Case 3 

2-3 SLS(9) ILS(7) 2-3SLS(7) 

OLS(8) OLS(5) FIML(7) 

ILS(7) FIML(5) OLS(5) 

FIML(6) 2-3SLS(2) ILS(3) 
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Table 7: Sample and Replication-Free Distribution of Best Estimates of P2 
 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

ILS(5) 2-3SLS(3) OLS(5) OLS(4) 2-3SLS(4) FIML(5) 

OLS(2) OLS(2) 2-3SLS(5) ILS(4) OLS(3) ILS(3) 

FIML(2) FIML(2) FIML(5) 2-3SLS(3) FIML(3) OLS(2) 

2-3SLS(1) ILS(1) ILS(3) FIML(2) ILS(2) 2-3SLS(2) 

 
 

 
Table 8: Rank of Estimators Using Level of Correlation (P2) For Eq1 and Eq2 

 

Case 1 Case 2 Case 3 

ILS(9) 2-3SLS(7) FIML(10) 

OLS(6) OLS(5) OLS(7) 

2-3SLS(4) FIML(5) 2-3SLS(7) 

FIML(4) ILS(3) ILS(6) 

 
 

 
Table 9: Sample and Replication – Free Distribution of Best Estimates of P1 and P2 

 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

ILS(8) OLS(5) 2-3SLS(9) OLS(8) ILS(6) FIML(9) 

OLS(6) 1LS(4) FIML(8) ILS(8) FIML(6) OLS(5) 

FIML(6) 2-3SLS(4) OLS(7) 2-3SLS(8) OLS(5) 2-3SLS(5) 

2-3SLS(5) FIML(4) ILS(5) FIML(4) 2-3SLS(5) 1LS(4) 

 
 

 
Table 10: Rank of Estimators Using Level of Correlation (P1 and P2 Combined) 

 

Case 1 Case 2 Case 3 

ILS(16) OLS(10) FIML(17) 

OLS(14) ILS(10) 2-3SLS(14) 

2-3SLS(13) FIML(10) OLS(12) 

FIML(10) 2-3SLS(9) ILS(9) 
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