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Identification of Optimal Autoregressive Integrated Moving Average Model
on Temperature Data

Olusola Samuel Makinde Olusoga Akin Fasoranbaku
Federal University of Technology,
Akure, Nigeria

Autoregressive Integrated Moving Average (ARIMA) processes of various orders are presented to
identify an optimal model from a class of models. Parameters of the models are estimated using an
Ordinary Least Square (OLS) approach. ARIMA (p, d, q) is formulated for maximum daily temperature
data in Ondo and Zaira from January 1995 to November 2005. The choice of ARIMA models of orders p
and ¢ is intended to retain persistence in a natural process. To determine the performance of models,
Normalized Bayesian Information Criterion is adopted. The ARIMA (/, 1, 1) is adequate for modeling
maximum daily temperature in Ondo and Zaira; model parameters are estimated and redundant variables
are removed. Causality and the invertibility behavior of some optimal models are also presented.

Key words: Autoregressive Integrated Moving Average, optimal, causality, invertibility, redundancy.

Introduction Models are initialized using observed
A time series of T successive observations is data. As proposed by Lorenz (1963), long range
regarded as a sample from an infinite population forecasts - those made at a range of two weeks
of a time-series that could have been generated or more - are impossible to definitively predict
by the stochastic process under study. A the state of the atmosphere owing to the chaotic
powerful way to extract useful information on nature of the mechanism involved. Forecast
the underlying process - solely on the basis of models are used to determine future conditions.
the past behavior of the time series itself - is the However, in real life research and practice,
univariate Box-Jenkins approach. Although patterns of data are unclear and individual
originally developed for forecasting purposes observations involve considerable error; thus, it
(Box & Jenkins, 1976; Nelson, 1976), Box- is necessary to not only uncover the hidden
Jenkins models are useful tools for describing patterns in the data but also to forecast. The
the time dependent structure of stationary and ARIMA methodology (Box & Jenkins, 1976)
non-stationary time series. Box-Jenkins models provides a method to accomplish these tasks.
for stationary time series, or ARIMA models, Considering estimates of times series
have been applied in many areas of research, for model parameters, Pham-Dinh (1978) computed
example in tree-ring chronologies (Meko, 1981), the exact log likelihood of a time series model
in the evolution of the unemployment rate and also proposed and justified an asymptotic
(Dobre & Alexandru, 2008), and in the analysis approximation of the model. Bobba, et al (2006)
of UK Pounds/US Dollar exchange rate (Shittu formulated a stochastic model simulating trends
and Yaya, 2009). in hydrological and meteorological variables:

Their choice of ARIMA model of orders p and q

was intended to retain any persistence in the

O. S. Makinde is Graduate/Research Assistant in natural processes and they claimed that an
the Department of Mathematical Sciences. ARIMA (1, 0, 1) model was adequate for
Email him at: osmakinde@futa.edu.ng. O. A. modeling three variables of temperature,
Fasoranbaku is Senior Lecturer in the precipitation and stream flow on a seasonal basis
Department of Mathematical Sciences. Email in the North East Pond River Watershed. Ojo
him at: olusogaf@yahoo.com. (2009) compared subsets of autoregressive

integrated moving average models to full
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autoregressive  integrated moving average
models. The parameters of these models were
estimated and the statistical properties of the
derived estimates were investigated. In his
study, he showed that subset autoregressive
integrated moving average models performed
better than full autoregressive integrated moving
average models. Makinde (2011) investigated
the behavioural pattern of invertibility parameter
m; of the ARIMA (p, d, q) model for various p
and d. He showed that behaviour of 7; depends
on the order of autoregressive part (p), the order
of integrated part (d), positive and negative
values of moving average parameter (&).
Similarly, Fasoranbaku & Makinde (2011)
investigated causality parameter of ARMA
model. From their findings, It is deduced that the
behaviour of causality parameter 47, depends on
positive and negative values of autoregressive
parameter ¢ and moving average parameter 5.

In this study, we shall evaluate
parameters of ARIMA(p,d,q) for various values
of p and d using an ordinary least squares (OLS)
method and Crammer’s rule; identify optimal
model in a class of ARIMA models for
temperature profile of two cities in Nigeria and
check for redundant variables in the models
using a t-test.

Stationarity and Test of Stationarity
A process is said to be strictly stationary

if, for any value of j,/,,....J,, the joint
distribution of  (¥,, ¥,415 Y125+ V;y;) depends
only on the
(jl,jz,...,j,7 ) , and not on the date (¢) itself. If a

interval separating the dates

process is strictly stationary with finite second
moments, then it must be covariance stationary
(Hamilton, 1994).

In short, if a time series is stationary, its
mean, variance, and autocovariance (at various
lags) remain the same regardless of the point at
which they are measured; that is, they are time
invariant. There are several tests of stationarity;
which include: (1) graphical analysis, (2) a
correlogram, and (3) unit root test, e.t.c. For a
stationary time series, a correlogram tapers
quickly; whereas for non-stationary time series it
dies off gradually. If autocorrelations start high
and decline slowly, then the series is
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nonstationary and should be differenced.
Similarly, an ARIMA process is said to be
stationary if spikes decay to zero after a few
lags. In this study, correlogram use was adopted
to test for stationarity of temperature data.

Test for Model Adequacy

To test the adequacy of the model, the
Ljung-Box (1978) statistic will be used; this is a
statistical test for determining whether any of a
group of autocorrelations of a time series is
different from zero. As opposed to testing
randomness at each distinct lag, it tests the
overall randomness based on a number of lags,
and is therefore a portmanteau test. The Ljung-
Box Statistic is:

"

n—k’

O(7) =n(n+ 2)Z

Specification of ARIMA in Terms of A Lag
Operator

When the models are specified in terms
of the lag operator L, the AR (p) model is given
by

6 = (I—Zd),ﬂ}y, =0(L) ¥

where

0(L)=1-3 0L

and the MA(q) model is given by

i=1

p
¥, :[1+Zﬁiﬁjet =0(L)e,,

where

P
O(L)=1+>0L.
i=1
ARIMA (p,0, q) is

(1—i¢;’) y, = [Hi@,ﬂ}%

(1)
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or more concisely:

2
1+ OL+O, +.. 40, @

T 1-0L-0,—...—0,L"

The ARIMA process is stationary if
This occurs if the series ¥ (Z ) converges for

every Z with |Z| <1. Because y/(Z) is a
rational function, the series converges for every
Z with |Z| <1 if the complex zeros of ¢(Z) lie
outside the unit circle. If a process is stationary,
then because Yy, =\|I(L)8t, and the expected

values of ¢, are all 0, the expected value of y,
is also 0.

Causality of Some ARIMA Processes

Some ARIMA processes of various
orders are shown in causal form to provide a
useful way of generating a random sequence.

That is, a linear process ),, as a linear
combination of white noise variates &,. For an
ARIMA (1, 0, 1) process,
y,=c+by_ +e +0¢ implies that

v, =(1=0L) " c+(1-¢L)" (¢, +6,,) which

gives

o

i fq)) +e + Z((pi +00 e,

i=12,...

Y=

with E(yt)zluz

where ;
(1-9)
this holds only if ¢ # 1.

For an ARIMA (1, 0, 2) process,
yt :C+¢yz—1 +8t +018t—1 +028

._, which gives
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y, = ¢ +e, +i(¢" +0,07 +60,0)e,_,
i—0) " "4
c
v, = (=) + ;l//iat—i’ 3)
where W, =1, w,=0+0 and
v, =0 +0,0 +0,0', j=2,3,4,...; this is
valid if ¢ #1.

Fasoranbaku & Makinde (2011) has shown that
the causality parameter 1; is skewed to the
right and sinusoidal for positive and
negative values of ¢ respectively. Absolute
value of causality parameter 1, of ARIMA
(1, 0, g) increases as the value of q increases
for positive values of @. The behavioural
pattern of the causality parameters for d = 0

and |&| =1 is well studied in Fasoranbaku &
Makinde (2011).

Representation ARIMA Models in Inverted
Form

An ARIMA (p, d, q) process is said to
be invertible if the series converges in mean to
£. as v — co. This happens when &8(Z) — 0 lie
outside the unit circle. An ARIMA (p, d, g)
process is invertible if the absolute value of the
parameters of ARIMA (p, d, ¢) model satisfy
|| <=1fori=1,...q.

ARIMA (1, 0, 1)

y,=c+oy,_, +e +0¢_,, 4)
g = —(cha)+yt +2(—1)i @ +00™")y, .,
e S 00 0y, 4,
V= > (5)

C
(1+9) + E Ty, e,
i=1

where

,=(=D)"[ 007 +0],i=1,2,3,...;
this holds if 6 #—1.
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ARIMA (1, 1, 1)

Ay, =c+ @Ayt +05 (6)
=
o)
& = = T T-V,._.
= El N Ej L Ve
{ iﬁ +1, i=1 (7
(=1 e L gle L] =2

ARIMA (2, 0, 1)

y=ctoy,  +o,y,,+¢e 0, ®)
. -
+(0+
(1+9) ( q)l)ytfl
v, =+ D0 +0,67 |,
i=2
+(_1)[+1¢20i72 ]yt_i +8t
y=— 4 in V. +e )
t (1+9) = i t=i 1>

where 7, = ¢, +60 and

7, =(=D)"07 + 0,0 +(=1)" 9,01,

j=2,3,4,...; this holds if § #—1.

Makinde (2011) has shown that invertibility
parameter ; of ARIMA (p, d, 1) for various
integer values of d are sinusoidal, the
absolute value of the invertibility parameter,
|7.] increases as d increases for positive
values of & and the lower the integer value
of d, the faster |m;| converges to zero. The
behavioural pattern of the invertibility
parameter is well discussed in Makinde (2011).

Evaluation of ARIMA (p, d, q)
ARIMAC(1, 0, 0)

Yy, =c+oy,_ +e, (10)
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T T
If ¢ = 0, then Zytyt71—¢2yt712 =0, which
t=1 t=1

implies that
=17 T 1yl‘yl‘ 1

Zt lytl

If ¢ # 0, equation (8) gives

o= (11)

T T

n ;Vz—l [ CJ ;.yt
\ zyty i1

T

T
2
t-1 t-1

t=1 t=1

Using Crammer’s rule to solve for ¢ and ¢
results in

\%
Land =2 12
and ¢ v (12)

where

ARIMA (1, 1, 0)

Ay, =c+oAy,_, +€ (13)
when ¢ =0, Ayt = @Ay, , + &, which gives
yt 1 ¢(yt 1 yt—2)+gt
¢2‘ Zt l(yf ytl)(ytl yt 2) (14)

z, l(yz 1~ Ve 2)
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When ¢ # 0, equation (11) gives

o)

Using Crammer’s rule, results in

T
n szt—l
=1
, ;
ZA)’ -1 ZA)/ t—lz
=1 =1

t=1

6=—Land g=—2
¢ \Y

\%

where

T
V= nszt 1 |:sz; 1} )
=1

T

:{szMsz, 1 } {szt 1

T
DAy,
t=1

T
ZAytAyt—l

(15)

[go.

T T T
V. =iy Ay, —[szt}{szﬂ}
t=1 t=1 t=1

ARIMA (2, 0, 0)

Y, =c+oy,  +dy, ,+E (16)
If ¢ =0, then
T T ) T T
¢2‘ _ ViV 2y Vi T 20, VY2 2o, Vi Vi
(I T T T
Zt=1yz—12 t=1yz—22 - (Z,=1yt—1yt—2)2
T T T T
. DI D IV 2 IV D YeaVes
2 = T T T
zt=1yt—12 t=1yt—22 - (Zt=1yz—1yt—2)2
(17)
If ¢ #0, then
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T
: \,J t-1
t=1

T

t=1

Using Crammer’s rule, ¢c=—-, ¢ =—=
¢ \Y% % \%

T
§ Ji
=1
T
2
-1
=1
r T
E Ji2 2 JiaVia
t=l1 t=l1
2
T
= 2 JYiVia
=1
T
E JiVioa
=1

\Y
¢, = — where

T
V,= Zb/tytfl
Zyyz 2 Zy—1J’z—z

t=1

T
: l,) t-2
t=1

T
ZVz—ly — || @
P 4,

T

2
t=2

t=1

-

T T
2
2 Jic1 2 iV
P P
r r

Z‘XHJ’ -2 2};722

t=1 t=1
T
: ,Jt72
t=1
T
§ iV
t=1

T

2
t=2

t=1 t=1

T
: ,) t-1
t=1
T
2
t—1

o



MAKINDE & FASORANBAKU

T T
n E Ji 2 Ji2
=1 =1
T T T
V,= 2 Y1 Vic1 E YiaVia|s
t=1 t=1 t=1
T T T
2
2 Ji2 E YiVioa 2 Ji2
t=1 t=1 =1
and
T T
n : f] t—1 : I‘j t
=1 =1
T T T
_ 2
V3 - z ,.}t—l z ,}t—l z ,.}tyt—l .
t=1 t=1 t=1
T T T
§ Ji2 E YiVi2 E YiVia
=1 =1 =1

ARIMA (2, 1, 0)
Ay, =c+oAy,  +PAy, , +E,

c=0,

when,

which is

(18)

Ay, =6y, + PN, , +E

Ye=Via :¢1(yt—1 _yt—2)+¢2(yt—2 _yt—3)+gt'

~ vV ~ 'V
The result is ¢, = Vl and ¢, = 72, where

T T
V= Z(yt—l — Vi )2 Z(yt—z — Vi3 )2
t=1 t=1

- {Z(ytl — Vi )(yzfz - yz3)}

T T
V1 = Z(yx ~Via )(yt—l - yx—z)z(yt—z - yt—3)2
t=1 t=1

DY)V V) D Gi = Vi)V = Vis)
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and
T 5 T
Vz = Z(yt—l _yt—z) Z(yt _yt—l)(yt—z _yt—3)
t=1 t=1
T
Z(yt - yt—l)(yt—l _yt—z)
t=1

T
* Z(yz—l — Vi )(yt—2 - yt—3)
t=1

ARIMA (P, 0, 0)

Vi =CHQY Oy Lty st Gy, TE
(19)

given ¢ =0, A¥Y = B .Thatis

T T T
2
t-1 ,,zy,,l 173y171
t=1 t=1 t=1

T T T

: rJ ,,ly,,p : r] 272ylfp : (] r73yr7p
=1 =1 =1

T

E Y1V
t=1

T
z ,)tyt—p
t=1

where A is pX p matrix and ¥ is a column

matrix, that is T=(¢1 o ... ¢p). Bis a
column matrix:

T

§ Vi

t=1

T

DV

t=1
The  expression for each  parameter

),i=1,2,...,p can thus be determined using

Crammer’s rule or the Gauss-Schidel method.
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Given c#0, AY =B,
'z"=(c,¢1 o ... ¢p) . That is,

where

T
: ‘)t—Z

t=1 =1

r
R E :}H
=1

T T . T . T . 5 ¢.
DVVy DVaViy DViVw = 2V |7

t=1 t=1 t=1 t=1

T

2

t=1

T
2 ‘}tyz—l
=1

T
DV

t=1

ARIMA (P, 1, 0)

Ay, =c+¢ Ay +d Ay, (20)
+OAY s+ O Ay, tE

When, ¢ =0 (see Formula 1).

For the estimate of parameters in
ARIMA (p, 0, 0) and (p, 1, 0), it is deduced that

every term y, ; in ARIMA (p, 0, 0) is replaced
by y,_; =¥, mnARIMA (p, 1, 0). Also, ¥ is
a p column matrix for ¢=0,and ¥ is a

(p+1) column matrix for ¢ # 0.

Results
Daily temperature data for the maximum daily
temperature of Ondo, Nigeria and Zaira, Nigeria
from January 1995 to November 2005 are used
in this study. Stationarity of a series is
determined by the use of a correlogram for
describing both autocorrelation and partial

autocorrelation functions for the series. The
series 1S non-stationary, it is therefore
differenced once (i.e., d=1) to ensure
stationarity. Figures 1 and 2 show the

correlograms for the series after differencing
each once (stationary at d =1). Also, the
residual terms (white noise process or
innovation series (Bobba, et al., 2006)) are
independently and identically distributed
because the autocorrelation function at various
lags hover around zero (see Figure 1) (Gujarati,
2004). Similarly, Figures 3a and 3b show that

Formula 1: ARIMA (P, 1, 0) when ¢ =0

Z(yt - yt—l)(yt—l - yt—z)

T
Z(yt - yt—l)(yt—p - yt—p—l)
t=1

T T
Z(yt—l — Vi )2 Z(yt—l — Vi )(yt—z _yt—3)
t=1 t=1

T T
DOt =9y = Vi) DV = Y)Yy = Viept)
t=1 t=1
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residuals are normally distributed, thus,
g ~iid N(0, 0°).
T
Y=YV = Vi)
= )
- ¢
Z(yt—p _yt—p—l)2 !
t=1
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Figure 1: Correlogram after Difference for Ondo, Nigeria
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Figure 2: Correlogram after Difference for Zaira, Nigeria
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Figure 3(a): Histogram of Residuals for Ondo, Nigeria
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Figure 3(b): Histogram of Residuals for Zaira, Nigeria
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Table 1: Various ARIMA Model Fits with Normalized BIC Values

Normalized BIC Values for Model Fit
Model
Selection
Criteria ARIMA | ARIMA | ARIMA | ARIMA | ARIMA | ARIMA [ ARIMA | ARIMA
0,1,0) | (O,L) | (L,LO) ( (LLL | (1,12) | (210) | LD | (212
Ondo 1.354 0.917 1.144 0.915 0.917 1.049 0.917 0.918
Zaira 0.62 0.558 0.578 0.515 0.518 0.556 0.518 0.52
Table 2: Adequacy Test Results of the Model
Model Statistics
City Number of Model Fit Statistics: Ljung-Box Q(18) Number of
Predictors Stationary R-Squared Statistics DF Sig. Outliers
Ondo 0 0.105 28.999 16 .024 0
Zaira 0 0.105 28.999 16 .024 0
Table 3: Parameter Estimates
Ondo, Nigeria Zaira, Nigeria
Estimate | SE t Sig. | Estimate | SE t Sig.
Constant 0 0.005 | 0.052 | 0.959 | 0.00001 | 0.008 | 0.055 | 0.956
AR ® 0.087 0.02 | 4.391 0 0.55 0.028 | 19.724 0
Maximum
Temperature
Difference 1 1
MA 0 0.833 | 0.011 | 75.779 0 0.836 | 0.018 | 45.597 0
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Using a normalized BIC as the model
selection criterion (that is, to test for goodness of
fit) for various values of p and ¢ (see Table 1),
ARIMA (1, 1, 1) has the least normalized BIC
value, which equals 0.915 for Ondo and 0.515
for Zaira. Hence, the ARIMA (I, I, 1) is
considered the best model for the maximum
daily temperature data. for both Ondo and Zaira.
To test for the adequacy of the model, the
Ljung-Box Statistic is wused to test the
randomness of residuals. The p-values of the
Ljung-Box Statistic at various lags (in ACF and
PACF) are less than 0.05; this shows that the
data are random. The Ljung-Box Statistic for the
model is 28.999 with a p-value = 0.024, this
establishes that the model is adequate (see Table
2).

Table 3 presents the estimates of
parameters of the ARIMA(Z, I, 1) model for
Ondo and Zaira. The model for Ondo is:

,=0.00001+0.087y, , +£ +0.836¢,_,.

and

that c= 0.00001, ¢=0.550,

0 =0.836 (see Table 5). Also, in testing for
significance of the parameter estimates, Table 3
shows the t-statistics for the parameter estimates
of the model. It is shown that a ¢ with ¢ =0.052
and a p-value 0.959 is not significantly
different from zero; thus, c is redundant.

To improve the model result, ¢ was
removed because it is redundant. This removal
had no effect on the estimates of other
parameters or on the Ljung-Box value of the
model; rather it results in a smaller normalized
BIC value (=0.912). Hence, the optimal model
for maximum temperature of Ondo is:

18,

y,=0.087y, , +¢& +0.833¢, .

The invertibility behavior of the optimal model

for Ondo, Nigeria is &£, = Zﬁi V,_;, because c is
i=0
redundant, where

T

1

N
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1, i=0
=1—-(1.920), i=1
(-1)'[0.920(0.833" +0.8337%) |, i =2,3,4,...
The model for Zaira is
y, =0.00001+0.550y, , +&, +0.836¢, ,,
that is, ¢=0.00001, ¢=0.550, and

0 =0.836 (see Table 3). Also, in testing for
significance of the estimates of parameters,
results show that a ¢ with #=0.055 and a p-
value = 0.956 is not significantly different from
zero (see Table 3). Hence, ¢ is redundant.

To improve the model result, ¢ was
removed; this had no effect on the estimates of
other parameters or on the Ljung-Box value of
the model, instead, it results in a smaller
normalized BIC value (=0.512). Hence, the
optimal model for the maximum temperature of
Ondo is:

y,=0.550y, , +& +0.836¢, .

The invertibility behavior of the optimal model

for Zaira is ,S‘t:Zﬂ'[yt_i, because ¢ is
i=0
redundant, where

1, i=0
= —(2.386), i=1
(—1)'[1.386(0.836™" +0.836"%) |, i=2,3,4,...
Conclusion
Autoregressive Integrated Moving Average

(ARIMA) processes of wvarious orders are
presented with the goal of identifying an optimal
model from a class of models. ARIMA (p, d, q)
model is formulated for daily maximum
temperature data of Ondo, Nigeria and Zaira,
Nigeria from 1995 to 2005. A normalized
Bayesian Information Criteria (BIC) is used to
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measure performance of the models. ARIMA (/,
1, 1) is optimal and adequate for modeling the
daily maximum temperatures because it has the
least normalized BIC, parameters of the model
are estimated and the redundant variable is
removed. The behavioral pattern of the optimal
model for each of the cities is reported.
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